Genetic Variability of Aflatoxigenic and Non-Aflatoxigenic *A. flavus* Isolates by using Aflatoxin Biosynthesis Genes

A.R.M. Abd-El-Aziz^{1*}, M.A. Mahmoud² and M.R. Al-Othman¹

¹Botany and Microbiology Department, College of Science, King Saud University, Riyadh 1145, Kingdom of Saudi Arabia. ²Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.

(Received: 06 November 2013; accepted: 02 January 2014)

The five aflatoxin (AF) biosynthetic pathway genes included regulatory genes aflR and aflS and the structural genes aflD, aflM, aflP were evaluated in 81 Aspergillus flavus isolates isolated from wheat, corn, barley and sorghum. The amounts of aflatoxin B1 (B1) produced by 81 isolates varied from 0.3 to 1.2 ppb. The isolates were placed into seven groups based on their DNA banding pattern and B1 production. Only one group their isolates were able to produce B1 and six groups their isolates were unable to produce aflatoxin B1. All aflatoxinogenic isolates¹⁴ showed in group I, representing more than (17%), amplification DNA fragments that correspond to the complete set of genes. Nonaflatoxigenic isolates showed six groups, group I constituted by twenty eight isolates (34.6%) correspond to the complete set of genes. Group II constituted by sixteen isolates (19.8%) showed four DNA banding pattern clustered in three profiles: aflD, aflM, aflP and aflS was the most frequent profile (11.1%) followed by aflD, aflM, aflR and aflS (6.2%) and aflD, aflR and aflS (2.5%). Group III constituted by twelve isolates (13.5%) yielded three DNA banding pattern grouped in two characteristic profiles: aflD, aflP and aflS (7.4%) and aflD, aflM and aflR (6.1%). Group IV seven isolates (8.6%) showed two DNA banding pattern clustered in two profiles. Group V constituted by three strains (3.7%) gave one profile with one DNA fragment specific for αflD gene. Finally, a group VI constituted by two isolates (2.5%) gave no DNA bands were found. Our data show a non genetic variability in aflatoxigenic A. flavus isolates, whereas a high level of genetic variability in non-aflatoxigenic A. flavus isolates.

Key words: Aspergillus flavus, Genetic variability, HPLC, Aflatoxin biosynthesis genes.

Aspergillus section Flavi, are distributed worldwide. Among the 22 closely related species in Aspergillus section Flavi, A. flavus and A. parasiticus are the most contaminate and frequent aflatoxin (AF) producers encountered in many economically important crops, cereal crop, corn, cotton, peanuts, and many tree nuts (Klich, 2007, Godet and Munaut, 2010). About 40% of the naturally occurring isolates of *A. flavus* lack the ability to produce AF and different isolates show large differences in the levels of AFs produced. It seems that *A. flavus* populations are a mosaic of toxigenic and nontoxigenic strains belonging to divergent clades which reproduce in diverse ecological niches throughout warm climates (Cotty *et al.*, 1994).

AF gene cluster including more than 18 enzymatic stages and at least 25 genes residing in a 75 kb cluster in the third fungal chromosome (Zeng *et al.*, 2011). Nearly all genes involved in the aflatoxin biosynthesis pathway have already been identified and cloned, but there exist some genes

^{*} To whom all correspondence should be addressed. E-mail: aabdelaziz@ksu.edu.sa

with unknown functions (Georgianna and G. Payne, 2009, Yu et al., 2004). On the other hand, nonaflatoxinogenic A. flavus isolates have been found to be extremely diverse in terms of four genes aflR, nor-1, ver-1 and omtA, whereas aflatoxigenic isolates always show the complete gene set. Nonaflatoxigenic isolates lacking one, two, three or four genes (Criseo et al., 2008). The non-aflatoxigenic A. flavus isolates probably results from point mutations (Ehrlich et al., 2004) or small deletions in genes essential for aflatoxin production, such as those having a regulatory role (Calvo et al., 2004) or being involved in the signaling pathway (Hicks et al., 1997). A total of 18 strains of Aspergillus section Flavi isolated from Egyptian peanuts were assessed for AF production during growth on YES medium using HPLC. Thirteen of these strains produced AFB1 and AFB2. All strains were analysed for presence and/or absence of four genes, *aflD* (nor-1), *aflM* (ver-1), *aflP* (omt A) and aflR. PCR revealed that all tested strains contained all four genes (Abdel-Hadi et al., 2011). 134 nonaflatoxin producing strains of A. flavus isolated from food, feed and officinal plants were examined the presence and/or absence of four genes, aflD (nor-1), aflM (ver-1), aflP (omt A) and aflR by Quadruplex PCR. PCR data showed high level of genetic variability among non-aflatoxigenic A. flavus isolates (Criseo et al., 2008).

In this study, we evaluate the presence and the frequencies of the PCR products corresponding to amplification of *aflD*, *aflM*, *aflP*, *aflR* and *aflS* genes in aflatoxigenic and nonaflatoxigenic A. *flavus* isolates isolated from wheat, corn, barley and sorghum.

MATERIALSAND METHODS

Isolates of A. flavus

81 isolates of *A. flavus* isolated from wheat (21), corn (23), sorghum (19) and barley (18) were used in this work.

Determination of AFs by HPLC

Isolates were grown in sterile SMKY liquid medium (20 g sucrose, 0.5 g magnesium sulfate, 3 g potassium nitrate, 7 g yeast extract, and 1000 mL distilled water) (Davis *et al.*, 1987). The flasks were inoculated with 6-mm diameter discs of *Aspergillus* spp at $25^{\circ} \pm 2^{\circ}$ C for 7 days (Paranagama *et al.*, 2003), with three replicates.

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

After incubation, the content of each flask was filtered (Whatman No. 1). For B1 extraction, the filtrate of each flask was treated three times with 50 mL chloroform in a separatory funnel. The chloroform extract was separated, dehydrated with anhydrous sodium sulfate and evaporated to dryness on a water bath at 50°C under vacuum. The residues were dissolved in 10 mL methanol and stored in dark vials. The extract was passed through a 0.45-µm micro-filter. Analysis of compounds was performed by HPLC (Perkin Elmer model series 200 UV/VIS) with a C18 column (300 mm x 3.9 mm, 4 μ m). The HPLC system was equipped with a UV detector and fluorescence with 365 nm excitation and 430 emission wavelengths. The mobile phase consisted of methanol: acetic acid: water (20:20:60, v/v/v). The total run time for the separation was approximately 25 min at a flow rate of 1 mL/min (. Christian, 1990).

Isolation of fungal DNA

A. *flavus* isolates were cultured on double-layer media on 50-mm Petri dishes, one solid and the other liquid. The solid base medium was PDA as a film, and the top medium, liquid, was 1200 μ L peptone yeast glucose. Fungi were incubated at 25°C for two days. Fungal mycelia (50 mg) were scraped using slide cover slips and transferred to 1.5-mL sterile Eppendorf tubes for DNA isolation. DNA was extracted from 50 mg fresh mat according to (Amer *et al.*, 2011).

PCR reaction

Five pairs of primers were designed on the basis of the sequences of A. flavus AF biosynthetic genes aflD, aflM, aflP, aflR and aflS. Amplification was performed in 25 µL reaction, containing reaction buffer (20 mM Tris-HCl, pH 8.4, 50 mM KCl), 3.4 mM MgCl, 0.25 mM dNTPS, 0.4 mM of each primer, 2 U Taq DNA polymerase (Bio Labs), and 25 ng genomic DNA. Amplification parameters (aflR, aflD, aflM, aflP, and AflQ) consisted of 1 cycle 95 °C (1 min), 65 °C, (30 s), 72 °C (30 s) and 34 cycles at 94°C (30 s), annealing at $65^{\circ}C$ (30 s), and extension at $72^{\circ}C$ (30 s). Amplification parameters (aflS) 95°C for 10 min, 5 cycles 94°C (1 min), 60°C (1 min), and 72°C (1 min), 30 cycles 94°C (1 min), 55°C (1 min), and 72°C (1 min), with a final extension at 72°C for (6 min). PCR products were separated by 1.5% agarose gel, stained with ethidium bromide in 1X TAE buffer (Tris-acetate EDTA, pH 8.0) at 100 V for 50 min, using a 100-bp ladder DNA marker (Intron, Korea). The DNA gel was scanned for band Rf using a gel documentation system (AAB Advanced American Biotechnology, Fullerton, CA, USA). Sequences of primers are listed in Table 1.

RESULTS

B1 production by A. *flavus* isolates

81 isolates were analyzed for the levels of AFB1 (B1) by HPLC (Table 2). B1 production showed that 14 (17.3%) of 81 tested *A. flavus* isolates produced detectable levels of B1. Four isolates of (wheat and corn) and three isolates of (barley and sorghum) were produced detectable levels of B1 at concentrations ranging from 0.3 to 1.2 ppb.

PCR of AF biosynthesis genes

All *A. flavus* isolates examined using PCR to amplification the AF biosynthetic genes. DNA fragments amplicons of 400 bp, 537 bp, 797 bp, 1032 bp and 1399 were obtained with *aflD*, *aflM*, aflP, *aflR* and *aflS* genes respectively (Figure 1). **Amplification patterns of aflatoxin biosynthesis genes and B1 production**

Primers pairs were designed for this study to target five AF biosynthetic genes: the two regulatory genes *aflR* and *aflS*, and the structural genes *aflD*, *aflM*, *aflP* and *aflS*. As shown in (Table 3). The presence or absence the AF biosynthetic genes in the genomes of all *A*. *Flavus* isolates was separated into seven groups on the basis of PCR products and AFB1 production. Only one group their isolates were able to produce AFB1 and six groups their isolates were unable to produce AFB1. Group I of 12 isolates was characterized by amplification of all five biosynthetic genes and the isolates were able to produce B1.

Group II of 28 was characterized by amplification of all five biosynthetic genes and the isolates were unable to produce B1. Group III, consisting of sixteen isolates was characterized by amplification four of five AF biosynthetic genes clustered in three profiles, 1) *aflD*, *aflM*, *aflP*, and aflS (nine isolates), 2) *aflD*, *aflM*, *aflR* and *aflS* (five isolates), 3) *aflD*, *aflP*, *aflR* and aflS (two isolates). Group IV constituted by eleven isolates was characterized by amplification three of genes clustered in two profiles, 1) *aflD*, *aflP*, and *aflS* (six isolates), 2) *aflD*, *aflM*, and *aflR* (five isolates).

Group V consisting of eight isolates was characterized by amplification two genes clustered in two profiles, 1) *aflM* and *aflP* (four isolates), 2) *aflD* and *aflP* (three isolates). Group VI consisting of three isolates gave one profiles with one DNA fragment specific for *aflD* gene. Group VII consisted of two isolates that lacked all of the biosynthetic genes tested.

Genetic pattern of A. flavus isolates

All *A. flavus* isolates yielded different DNA banding patterns with a number of bands ranging from zero to five (Table 4). All aflatoxinogenic isolates (14 isolates) showed a complete set pattern, indicating the presence of the five genes of the AF biosynthetic pathway, whereas non-aflatoxinogenic isolates (67 isolates) presented varying patterns.

Non- aflatoxinogenic *A. flavus* isolates divided into six groups on the basis of their DNA banding patterns: twenty eight isolates displayed

Primer code	Target gene	Primer sequences	PCR product size (bp)
nor-1	aflD (nor-1) ^a	5' -ACCGCTACGCCGGCACTCTCGGCAC'	400
nor-2		5' -GTTGGCCGCCAGCTTCGACACTCCG'	
ver-1	aflM (ver-1)	52 -GCCGCAGGCCGCGGAGAAAGTGGT'	737
ver-2		5' -GGGGATATACTCCCGCGACACAGCC'	
omt-1	aflP (omt-1)	5' -GTGGACGGACCTAGTCCGACATCAC'	799
omt-2		5' -GTCGGCGCCACGCACTGGGTTGGGGG'	
aflR-1	aflR	5' -TATCTCCCCCGGGCATCTCCCGG'	1032
aflR-2		5' -CCGTCAGACAGCCACTGGACACGG'	
AflJ-gF	aflS (aflJ)	5' -GAACGCTGATTGCCAATGCC'	1399
AflJ-giR		5' -CGGTCAGGATGTTACTAAGC'	

Table 1. Sequences of the nucleotide primers used in this study

^a Aflatoxin biosynthetic genes are named as proposed by Yu et al. (2004), old names are reported in brackets.

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

C139

a complete set pattern, sixteen isolates displayed four-banded pattern, eleven sixteen isolates displayed three-banded pattern, seven isolates displayed two-banded pattern, three isolates displayed one-banded pattern and finally two isolates displayed no-banded pattern.

0.0

Table 2. B1 production by Aspergillus flavus isolatesisolated from wheat, corn, barley and sorghum grains

Code of A. flavus isolatesB1C141Code of A. flavus isolatesC143WheatC143W1010.0BarleyB145W1020.9W1030.0W1041.1B147W1050.0B148W1060.0B149W1070.0B150W1080.0B151W1090.0B152W1100.0B153W1120.0B154W1130.0B155W1140.0B156W1150.0B157W1160.7B158W1170.0B160W1180.6B161W1200.0SorghumC1221.2S163C1410.0S163C140.0S163C1221.2S164C1230.0S165C1240.0S166C1270.0S170C1280.0S170C1310.0S174C1320.0S175C1340.0S176C1350.9S178C1360.0S179C1380.0S181	isolated from wheat, corn, barley an	C140	
Cl43 Cl43 Wheat Cl44 W101 0.0 W102 0.9 Barley W103 0.0 W104 1.1 W105 0.0 W104 1.1 W105 0.0 W106 0.0 W107 0.0 W108 0.0 W109 0.0 W110 0.0 W112 0.0 W112 0.0 W113 0.0 W114 0.0 W115 0.0 W116 0.7 W117 0.0 W118 0.6 W119 0.0 W120 0.0 W121 0.0 W121 0.0 W121 0.0 W122 1.2 S164 S122 1.2 S163 S164 S155 S166 <	Code of A. flavus isolates	B1	C141 C142
Wheat C144 W101 0.0 Barley W102 0.9 B145 W103 0.0 B144 W104 1.1 B147 W105 0.0 B148 W105 0.0 B148 W106 0.0 B150 W107 0.0 B150 W108 0.0 B151 W109 0.0 B152 W110 0.0 B153 W111 0.0 B154 W112 0.0 B155 W113 0.0 B158 W114 0.0 B158 W115 0.0 B158 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W120 0.0 Storghum W121 0.0 Storghum W122 1.2 Storghum C124 0.0 Storghum C125			C142 C143
W101 0.0 BarleyW102 0.9 B145W103 0.0 B146W104 1.1 B147W105 0.0 B148W106 0.0 B149W107 0.0 B150W108 0.0 B151W109 0.0 B152W110 0.0 B153W112 0.0 B154W113 0.0 B155W114 0.0 B156W115 0.0 B157W116 0.7 B158W116 0.7 B159W117 0.0 B160W118 0.6 B161W120 0.0 SorghumW121 0.0 S163CornS164C122 1.2 S165C123 0.0 S166C124 0.0 S166C125 0.0 S168C126 0.0 S170C129 1.1 S171C130 0.0 S172C131 0.0 S174C132 0.0 S174C133 0.0 S176C134 0.0 S177C135 0.9 S178C136 0.0 S179C137 0.0 S179C138 0.0 S181	Wheat		C144
W102 0.9 $B145$ $W103$ 0.0 $B146$ $W104$ 1.1 $B147$ $W105$ 0.0 $B148$ $W106$ 0.0 $B149$ $W107$ 0.0 $B150$ $W108$ 0.0 $B151$ $W109$ 0.0 $B153$ $W110$ 0.0 $B153$ $W111$ 0.0 $B153$ $W112$ 0.0 $B155$ $W113$ 0.0 $B156$ $W114$ 0.0 $B157$ $W115$ 0.0 $B158$ $W117$ 0.0 $B160$ $W117$ 0.0 $B161$ $W119$ 0.0 $B161$ $W120$ 0.0 $S163$ $Corn$ $S164$ $C122$ 1.2 $S164$ $C122$ 1.2 $S165$ $C124$ 0.0 $S166$ $C124$ 0.0 $S166$ $C127$ 0.0 $S166$ $C124$ 0.0 $S177$ $C125$ 0.0 $S168$ $C127$ 0.0 $S177$ $C130$ 0.0 $S173$ $C134$ 0.0 $S177$ $C135$ 0.9 $S178$ $C134$ 0.0 $S177$ $C135$ 0.9 $S178$ $C138$ 0.0 $S179$ $C138$ 0.0 $S179$	W101	0.0	Barley
W103 0.0 B 146W1041.1B 147W105 0.0 B 148W106 0.0 B 149W107 0.0 B 150W108 0.0 B 151W109 0.0 B 152W110 0.0 B 153W111 0.0 B 153W112 0.0 B 155W113 0.0 B 156W114 0.0 B 157W115 0.0 B 156W116 0.7 B 158W117 0.0 B 160W118 0.6 B 161W119 0.0 B 162W120 0.0 S 163CornS 164C1221.2S 165C124 0.0 S 163C125 0.0 S 166C126 0.0 S 168C127 0.0 S 167C128 0.0 S 169C1291.1S 170C130 0.0 S 173C131 0.0 S 174C132 0.0 S 174C133 0.0 S 176C134 0.0 S 177C136 0.0 S 178C137 0.0 S 179C136 0.0 S 179C137 0.0 S 180C138 0.0 S 181	W102	0.9	B145
W104 1.1 B147 W105 0.0 B148 W106 0.0 B149 W107 0.0 B150 W108 0.0 B151 W109 0.0 B152 W100 0.0 B153 W101 0.0 B153 W110 0.0 B153 W111 0.0 B154 W112 0.0 B154 W113 0.0 B155 W114 0.0 B157 W115 0.0 B158 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W119 0.0 B162 W120 0.0 S164 Corn S164 S164 C122 1.2 S164 C123 0.0 S167 C124 0.0 S167 C125 0.0 S168 C126 0.0 S168 C127 0.0 S170 <	W103	0.0	B145 B146
W105 0.0 $B147$ $W106$ 0.0 $B148$ $W107$ 0.0 $B149$ $W107$ 0.0 $B150$ $W108$ 0.0 $B151$ $W109$ 0.0 $B151$ $W109$ 0.0 $B152$ $W110$ 0.0 $B153$ $W111$ 0.0 $B154$ $W112$ 0.0 $B155$ $W113$ 0.0 $B156$ $W114$ 0.0 $B156$ $W115$ 0.0 $B157$ $W116$ 0.7 $B158$ $W117$ 0.0 $B160$ $W118$ 0.6 $B161$ $W119$ 0.0 $B162$ $W120$ 0.0 $S163$ $Corn$ $S163$ $Corn$ $S164$ $C122$ 1.2 $S164$ $C123$ 0.0 $S167$ $C124$ 0.0 $S166$ $C125$ 0.0 $S167$ $C126$ 0.0 $S169$ $C127$ 0.0 $S170$ $C128$ 0.0 $S171$ $C129$ 1.1 $S172$ $C130$ 0.0 $S173$ $C131$ 0.0 $S174$ $C132$ 0.0 $S174$ $C133$ 0.0 $S178$ $C134$ 0.0 $S179$ $C135$ 0.9 $S177$ $C136$ 0.0 $S179$ $C137$ 0.0 $S180$ $C138$ 0.0 $S181$	W104	1.1	B140 B147
W106 0.0 $B143$ W107 0.0 $B150$ W108 0.0 $B150$ W109 0.0 $B151$ W110 0.0 $B152$ W111 0.0 $B153$ W112 0.0 $B154$ W113 0.0 $B155$ W114 0.0 $B156$ W115 0.0 $B157$ W116 0.7 $B158$ W117 0.0 $B160$ W118 0.6 $B161$ W119 0.0 $B162$ W120 0.0 $S163$ CornS163CircaS164CircaS164CircaS164CircaS165CircaS164CircaS165CircaS166CircaS167CircaS168CircaS167CircaS168CircaS169CircaS169CircaS169CircaS169CircaS169CircaS169CircaS169CircaS169CircaS170CircaS170CircaS170CircaS170CircaS170CircaS173CircaS174CircaS174CircaS176CircaS176CircaS176CircaS179CircaS179CircaS179CircaS179Circa	W105	0.0	D147
W107 0.0 B149 W108 0.0 B150 W109 0.0 B151 W110 0.0 B152 W111 0.0 B153 W111 0.0 B153 W112 0.0 B154 W112 0.0 B155 W113 0.0 B156 W114 0.0 B157 W115 0.0 B158 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W120 0.0 B162 W121 0.0 Sorghum V120 0.0 Sl63 Corn S164 S164 C122 1.2 Sl65 C123 0.0 Sl66 C124 0.0 Sl66 C125 0.0 Sl70 C128 0.0 Sl70 C129 1.1 Sl72 C130 0.0 Sl74 C131 0.0 Sl74	W106	0.0	D140
W108 0.0 B 150 W109 0.0 B 151 W110 0.0 B 152 W111 0.0 B 153 W112 0.0 B 155 W113 0.0 B 155 W114 0.0 B 156 W115 0.0 B 157 W116 0.7 B 158 W117 0.0 B 160 W118 0.6 B 161 W119 0.0 B 162 W120 0.0 B 162 W121 0.0 Sorghum Corn S 163 S 167 C122 1.2 S 164 C122 1.2 S 164 C123 0.0 S 167 C124 0.0 S 167 C125 0.0 S 167 C128 0.0 S 170 C129 1.1 S 172 C130 0.0 S 174 C131 0.0 S 174 C132 0.0 S 175 C133 0.0 <	W107	0.0	D149 D150
W109 0.0 B151 W110 0.0 B152 W111 0.0 B153 W112 0.0 B154 W112 0.0 B155 W113 0.0 B155 W114 0.0 B157 W115 0.0 B157 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W119 0.0 B162 W120 0.0 S163 Corn S163 S164 Cl22 1.2 S165 Cl23 0.0 S166 Cl24 0.0 S166 Cl25 0.0 S168 Cl26 0.0 S169 Cl27 0.0 S170 Cl28 0.0 S173 Cl30 0.0 S174 Cl31 0.0 S174 Cl33 0.0 S174 Cl33 0.0 S177 Cl36 0.0 S177 <	W108	0.0	D150
V110 0.0 $B152$ $V111$ 0.0 $B153$ $V112$ 0.0 $B154$ $V112$ 0.0 $B155$ $V113$ 0.0 $B156$ $V114$ 0.0 $B157$ $V115$ 0.0 $B158$ $V116$ 0.7 $B159$ $V117$ 0.0 $B160$ $V118$ 0.6 $B161$ $V119$ 0.0 $B162$ $V120$ 0.0 $S163$ $V120$ 0.0 $S163$ $V121$ 0.0 $S164$ $V122$ 1.2 $S164$ $V122$ 0.0 $S166$ $V124$ 0.0 $S167$ $V125$ 0.0 $S167$ $V124$ 0.0 $S170$ $V124$ 0.0 $S170$ $V124$ 0.0 $S170$ $V125$ 0.0 $S173$ $V126$ 0.0 $S174$ $V127$ 0.0 $S176$ $V128$ 0.0 $S176$ $V129$ 0.0 $S176$ $V129$ 0.0 $S176$ $V134$ 0.0 $S179$ $V134$ 0.0 $S179$ $V135$ 0.0 $S180$ $V138$	V109	0.0	B151
W111 0.0 $B153$ W112 0.0 $B154$ W113 0.0 $B155$ W114 0.0 $B156$ W115 0.0 $B157$ W116 0.7 $B158$ W117 0.0 $B160$ W118 0.6 $B161$ W119 0.0 $B162$ W120 0.0 $Sorghum$ V121 0.0 $Sorghum$ Corn $S163$ Cl22 1.2 $S164$ Cl23 0.0 $S166$ Cl24 0.0 $S166$ Cl25 0.0 $S167$ Cl26 0.0 $S169$ Cl27 0.0 $S170$ Cl28 0.0 $S170$ Cl29 1.1 $S171$ Cl30 0.0 $S173$ Cl31 0.0 $S174$ Cl32 0.0 $S174$ Cl33 0.0 $S176$ Cl34 0.0 $S176$ Cl35 0.9 $S177$ Cl36 0.0 $S179$ Cl37 0.0 $S180$ Cl38 0.0 $S181$	W110	0.0	B152
W112 0.0 $B154$ W113 0.0 $B155$ W114 0.0 $B156$ W115 0.0 $B157$ W116 0.7 $B158$ W117 0.0 $B160$ W118 0.6 $B160$ W119 0.0 $B161$ W120 0.0 $B162$ W121 0.0 $Sorghum$ CornS163Cl22 1.2 $S164$ Cl23 0.0 $S166$ Cl24 0.0 $S166$ Cl25 0.0 $S167$ Cl28 0.0 $S170$ Cl29 1.1 $S171$ Cl30 0.0 $S173$ Cl31 0.0 $S174$ Cl32 0.0 $S174$ Cl33 0.0 $S176$ Cl34 0.0 $S177$ Cl36 0.0 $S177$ Cl36 0.0 $S179$ Cl37 0.0 $S179$ Cl38 0.0 $S181$	W111	0.0	B153
W113 0.0 B155 W114 0.0 B156 W115 0.0 B157 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W119 0.0 B162 W120 0.0 Sorghum V120 0.0 Sl63 Corn S164 Sl65 Corn Sl64 Sl65 Cl22 1.2 Sl66 Cl24 0.0 Sl66 Sl25 0.0 Sl68 Sl26 0.0 Sl69 Sl27 0.0 Sl70 Sl28 0.0 Sl71 Sl30 0.0 Sl71 Sl31 0.0 Sl73 Sl31 0.0 Sl74 Sl32 0.0 Sl75 Sl33 0.0 Sl76 Sl34 0.0 Sl77 Sl35 0.9 Sl78 Sl36 Sl79 Sl78 Sl36 O.0 Sl79	W112	0.0	B154
W114 0.0 B156 W115 0.0 B157 W116 0.7 B159 W117 0.0 B160 W118 0.6 B161 W119 0.0 B162 W120 0.0 Sorghum V120 0.0 Sl63 Corn Sl64 Sl65 Cl22 1.2 Sl65 Cl23 0.0 Sl66 Cl24 0.0 Sl66 Cl25 0.0 Sl68 Cl26 0.0 Sl69 Cl27 0.0 Sl70 Cl28 0.0 Sl70 Cl29 1.1 Sl72 Cl30 0.0 Sl73 Cl31 0.0 Sl74 Cl32 0.0 Sl74 Cl33 0.0 Sl76 Cl34 0.0 Sl76 Cl35 0.9 Sl78 Cl36 0.0 Sl77 Cl36 0.0 Sl77 Cl35 0.9 Sl78	W113	0.0	B155
W115 0.0 B157 W116 0.7 B158 W117 0.0 B159 W118 0.6 B161 W119 0.0 B162 W120 0.0 Sorghum W121 0.0 St63 Con S164 S163 Con S164 S163 Cl22 1.2 S164 Cl23 0.0 S166 Cl24 0.0 S166 Cl25 0.0 S168 Cl26 0.0 S168 Cl27 0.0 S169 S124 0.0 S170 S125 0.0 S170 S126 0.0 S171 S130 0.0 S172 S131 0.0 S174 S132 0.0 S176 S133 0.0 S176 S134 0.0 S177 S135 0.9 S178 S136 0.0 S179 S136 0.0 S180	W114	0.0	B156
W116 0.7 B158 W117 0.0 B159 W118 0.6 B160 W119 0.0 B162 W120 0.0 Sorghum W121 0.0 St63 Com S164 S163 Com S164 S165 C122 1.2 S165 C123 0.0 S166 C124 0.0 S166 C125 0.0 S168 C126 0.0 S168 C127 0.0 S169 C128 0.0 S170 C130 0.0 S173 C131 0.0 S174 C132 0.0 S174 C133 0.0 S176 C134 0.0 S177 C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S180	W115	0.0	B157
W117 0.0 B159 W118 0.6 B160 W119 0.0 B161 W120 0.0 B162 W120 0.0 Sorghum W121 0.0 Sorghum Corn S163 Corn S164 C122 1.2 S164 C123 0.0 S165 C124 0.0 S166 C125 0.0 S168 C126 0.0 S169 C127 0.0 S170 C128 0.0 S170 C129 1.1 S172 C130 0.0 S173 C131 0.0 S174 C132 0.0 S174 C133 0.0 S176 C134 0.0 S177 C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S180	W116	0.7	B158
W118 0.6 $B160$ W119 0.0 $B162$ W120 0.0 $Sorghum$ W121 0.0 $Sorghum$ Com $S163$ Com $S164$ C122 1.2 $S164$ C123 0.0 $S165$ C124 0.0 $S166$ C125 0.0 $S167$ C126 0.0 $S168$ C127 0.0 $S169$ C128 0.0 $S170$ C129 1.1 $S172$ C130 0.0 $S173$ C131 0.0 $S173$ C132 0.0 $S174$ C133 0.0 $S177$ C134 0.0 $S177$ C135 0.9 $S178$ C136 0.0 $S179$ C137 0.0 $S180$ C138 0.0 $S180$	W117	0.0	B159
W119 0.0 $B161$ W120 0.0 $Sorghum$ W121 0.0 $Sorghum$ Corn $S163$ Corn $S163$ Cl22 1.2 $S164$ Cl23 0.0 $S165$ Cl24 0.0 $S166$ Cl25 0.0 $S168$ Cl26 0.0 $S169$ Cl27 0.0 $S169$ Cl28 0.0 $S170$ Cl29 1.1 $S171$ Cl30 0.0 $S173$ Cl31 0.0 $S174$ Cl32 0.0 $S175$ Cl33 0.0 $S177$ Cl34 0.0 $S177$ Cl35 0.9 $S177$ Cl36 0.0 $S179$ Cl37 0.0 $S180$ Cl38 0.0 $S180$	W118	0.6	B160
N120 0.0 $B162$ $W120$ 0.0 Sorghum $W121$ 0.0 $S163$ $Corn$ $S163$ $C122$ 1.2 $S164$ $C123$ 0.0 $S165$ $C124$ 0.0 $S166$ $C125$ 0.0 $S168$ $C126$ 0.0 $S168$ $C126$ 0.0 $S169$ $C128$ 0.0 $S170$ $C128$ 0.0 $S171$ $C129$ 1.1 $S171$ $C130$ 0.0 $S173$ $C131$ 0.0 $S174$ $C132$ 0.0 $S175$ $C133$ 0.0 $S176$ $C134$ 0.0 $S178$ $C136$ 0.0 $S179$ $C138$ 0.0 $S180$	W119	0.0	B161
N120 Sorghum W121 0.0 S163 Con S164 C122 1.2 S165 C123 0.0 S166 C123 0.0 S166 C124 0.0 S167 C125 0.0 S168 C126 0.0 S169 C127 0.0 S169 C128 0.0 S170 C129 1.1 S171 C130 0.0 S173 C131 0.0 S174 C132 0.0 S175 C133 0.0 S176 C134 0.0 S177 C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S180	W120	0.0	B162
112 5163 Corn 5163 Cl22 1.2 5164 Cl23 0.0 Cl24 0.0 Cl25 0.0 Cl26 0.0 Cl27 0.0 Cl28 0.0 Cl29 1.1 Cl30 0.0 S172Cl31 0.0 Cl32 0.0 S175Cl33 0.0 Cl34 0.0 Cl35 0.9 S177Cl36 0.0 S179Cl37 0.0 S180Cl38 0.0 S181	W121	0.0	Sorghum
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^o orn	0.0	S163
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122	1.2	S164
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7123	0.0	S165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2123	0.0	S166
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7125	0.0	S167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7126	0.0	S168
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2120	0.0	S169
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2127	0.0	S170
1.1 \$172 C130 0.0 \$173 C131 0.0 \$173 C132 0.0 \$174 C133 0.0 \$175 C133 0.0 \$176 C134 0.0 \$177 C135 0.9 \$177 C136 0.0 \$179 C137 0.0 \$180 C138 0.0 \$181	C120	0.0	S171
0.0 \$173 C131 0.0 \$173 C132 0.0 \$174 C133 0.0 \$175 C134 0.0 \$176 C135 0.9 \$177 C136 0.0 \$178 C137 0.0 \$180 C138 0.0 \$181	C129	1.1	S172
C131 0.0 \$174 C132 0.0 \$175 C133 0.0 \$175 C133 0.0 \$176 C134 0.0 \$177 C135 0.9 \$178 C136 0.0 \$179 C137 0.0 \$180 C138 0.0 \$181	C130	0.0	S173
0.0 \$175 0.33 0.0 \$176 0.34 0.0 \$177 0.35 0.9 \$178 0.136 0.0 \$179 0.137 0.0 \$180 0.138 0.0 \$181		0.0	S174
C133 0.0 S176 C134 0.0 S177 C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S181	C132	0.0	S175
C134 0.0 S177 C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S181	0133	0.0	S176
C135 0.9 S178 C136 0.0 S179 C137 0.0 S180 C138 0.0 S181	C134	0.0	S177
C136 0.0 S179 C137 0.0 S180 C138 0.0 S181	C135	0.9	S178
C137 0.0 \$119 C138 0.0 \$180 C138 0.0 \$181	C136	0.0	S179
C138 0.0 S180	C137	0.0	S180
	C138	0.0	S181

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

364

Code of A. flavus isolates	AB1 ^b	aflD	aflM	aflP	aflR	aflS	Group
W102	+						Ic
W104	+						
W116	+						
W118	+						
C122	+						
C129	+						
C135	+						
C141	+						
B149	+						
B157	+						
B161	+						
S165	+						
S173	+						
S180	+						
W103	-						Π
W105	-						
W106	-						
W107	-						
W111	-						
W112	-						
W114	-						
W117	-						
W123	-						
C127	-						
C128	-						
C131	-						
C133	-						
C139	-						
B145	-						
B146	-						
B147	-						
B153	-						
B154	-						
B159	-						
S163	-						
S164	-						
S170	-						
51/1	-						
S1/2 S179	-						
S1/8 S170	-						
51/9	-						

S181

W101

W108

W109

_

-

-

_

Table 3. Amplification patterns of aflatoxin biosynthesis genes and aflatoxin B1 production in A. *flavus* isolates^a

C125	-	
C126	-	
C130	-	
B150	-	
B151	-	
S166	-	
C136	-	
C138	-	
B160	-	
B162	-	
S167	-	
C132	-	
C137		
W110	-	III
C134	-	
C140	-	
C142	-	
S168	-	
S169	-	
W119	-	
W121	-	
B152	-	
B155	-	
S177	-	
W120	-	IV
C143	-	
S174	-	
S175	-	
W115	-	
C144	-	
B156	-	
W113	-	VI
C124	-	
B158	-	VII
B148	-	
S176		

ABD-EL-AZIZ et al.: GENETIC VARIABILITY OF A. flavus ISOLATES

a Presence (black box) or absence (grey box) of PCR products of the tested AFs genes

b B1 (+/-): B1 and no B1 production

366

c Distribution of isolates in seven amplification patterns.

Frequency of single genes and genetic pattern in *A. flavus* isolates

Frequency of single genes in all *A. flavus* isolates were showed in Table (5). All aflatoxinogenic isolates (14) showed in one group, representing more than (17%), amplification DNA fragments that correspond to the complete set of genes. Non-aflatoxigenic isolates showed six groups, first group constituted by twenty eight

isolates (34.6%) correspond to the complete set of genes. Second group constituted by sixteen isolates (19.8%) showed four DNA banding pattern clustered in three profiles: *aflD*, *aflM*, *aflP* and *aflS* was the most frequent profile (11.1%) followed by *aflD*, *aflM*, *aflR* and aflS (6.2%) and *aflD*, *aflR* and *aflS* (2.5%). Third group constituted by twelve isolates (13.5%) yielded three DNA banding pattern grouped in two characteristic profiles: *aflD*, *aflP*, *afl*

Crop		A	flatoxigenio	c isolates			
	No. of isolates	Complete set	Four bands	Three bands	Two bands	One band	No band
Wheat	4	4	0	0	0	0	0
Corn	4	4	0	0	0	0	0
Barley	3	3	0	0	0	0	0
Sorghum	3	3	0	0	0	0	0
Total	14	14	0	0	0	0	0
Non-aflatoxig	genic isolates						
Wheat	17	8	3	3	2	1	0
Corn	19	6	7	3	2	1	0
Barley	15	6	4	2	1	1	1
Sorghum	16	8	2	3	2	0	1
total	67	28	16	11	7	3	2

 Table 4. Genetic pattern of A. flavus isolated from different crops

Table 5. Frequency of single gene and genetic pattern in A. flavus isolates^a

No of	Aflatoxigenic isolates						
isolates	aflD	aflM	aflP	aflR	aflS	Genetic pattern %	
14						17.3	
	Non-afla	atoxigenic	isolates				
28						34.6	
9						11.1	
5						6.2	
2						2.5	
6						7.4	
5						6.1	
4						4.9	
3						3.7	
3						3.7	
2						2.5	
81	92.6%	80.2%	81.5%	66.7%	79.2%		

^a Presence (black box) or absence (grey box) of PCR products of the tested AFs genes

and *aflS* (7.4%) and *aflD*, *aflM* and *aflR* (6.1%). Fourth group seven isolates (8.6%) showed two DNA banding pattern clustered in two profiles. Fifth group constituted by three strains (3.7%) gave one profile with one DNA fragment specific for *aflD* gene. Finally, a sixth group constituted by two isolates (2.5%) gave no DNA bands were found. The *aflD* gene was the most representative more than (92%) between the five AF assayed genes followed by *aflP* (81.5%) and *aflM* (80.2%) and *aflS* (79.2%). Lower incidence (66.7%) was found for *aflR* gene. The frequencies of banding pattern and respective profiles are showed in (Fig. 2).

DISCUSSION

In present work, *A. flavus* including both aflatoxigenic and non-aflatoxigenic isolates were screened for the presence of five genes (*aflD*, *aflM*, *aflP*, aflR and *aflS*) of the aflatoxin biosynthesis. The result was the grouping of aflatoxigenic isolates into one group, complete set of genes, whereas non-aflatoxigenic isolates lacking one, two, three and four genes or no DNA band. Our data show a low level genetic variability in aflatoxigenic *A. flavus* isolates, a high level of genetic variability in non-aflatoxigenic *A. flavus* isolates.

Fig. 1. Agarose gel electrophoresis analysis PCR products using primers and DNA extracted from of *A. flavus* isolates, M: 100 bp DNA ladder (A): Lanes 1-21, *A. flavus* isolates isolated from wheat using *aflD* primer with 400bp. (B): Lanes 1-23, *A. flavus* isolates isolated from corn using *aflM* primer with 537bp. (C): Lanes 1-18, *A. flavus* isolates isolated from barley using *aflP* primer with 797bp. (D):

Lanes 1-19, A. flavus isolates isolated from sorghum using aflR primer with 1032bp

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

Fig. 2. Frequencies of four (A), three (B), two (C) and one (D) genes pattern in A. flavus isolates

In the last few years, several PCR-based systems have been developed to revealed genetic variation in *A. flavus* isolates; PCR-based systems included molecular marker (APLP, DAF, RAPD and ISSR) and the aflatoxin biosynthesis gene cluster. Molecular markers are useful for genetic variation in fungi (Majer *et al.*, 1996).

Several molecular methods were employed in an attempt to study genetic variability for aflatoxigenic and non aflatoxigenic isolates of A. flavus. (Montiel et al., 2003) who analysed 24 isolates of A. sojae, A. parasiticus, A. oryzae and A. flavus using the AFLP technique, and could clearly separate the A. sojae D A. parasiticus isolates from the A. oryzae D A. flavus isolates. Barros et al., 2007 reported that AFLP analysis was applied to compare 82 isolates of A. flavus and A. parasiticus. AFLP analysis indicates that no genotypical differences can be established between aflatoxigenic and nonaflatoxigenic producers in both species analysed. Ribosomal sequence ITS for 24 isolates of Aspergillus sojae, A. parasiticus, A. oryzae and A. flavus (aflatoxigenic) found some variation between A. oryzae and A. flavus isolates, but it is difficult to use molecular data to separate the two species (Montiel et al., 2003). Using DNA amplification fingerprinting (DAF) to differentiate aflatoxigenic from nonaflatoxigenic isolates of A. flavus but, could not be separated the isolate types (Baird et al., 2006). The ISSR primers produced differential amplification products, varying both in size and band intensity. ISSR revealed higher genetic variability in several strains of A. flavus, even though high interspecific variation was observed (Yin et al., 2009, Tran-Dinh et al., 2009, Wang et al., 2012)). The utility of DNA markers as RAPD-DNA employ it as well established sample molecular marker tool for detecting genetic variability for many phytopathogenic fungi (Megnegneau et al., 1993) especially Aspergillus genera and related species (Wostemeyer and Kreibich et al., 2002, Gashgari et al., 2010, Sepahvand et al., 2011). Furthermore, several researches have adopted detect an AF biosynthetic gene and differentiate AF-producing from nonproducing strains of A. flavus (Criseo et al., 2001). Who combined sets of primers for aflR, nor-1, ver-1 and omt-A genes of the AF biosynthetic pathway, Quadruplex-PCR showed that aflatoxinogenic strains gave a quadruplet pattern, indicating the presence of all the genes involved in the AF biosynthetic pathway which encode for functional products. Non-aflatoxinogenic strains gave varying results with one, two, three or four banding patterns.

Aspergillus flavus (14 isolates) isolated from maize. The isolates were analysed for the presence of five AF biosynthesis genes in relation to their capability to produce AFB1, targeting five genes of the AF gene cluster of A. flavus, two regulatory (aflR and aflS) and three structural (aflD, aflO and aflQ). The isolates were placed into four groups based on their patterns of amplification products: group I (5 isolates) characterized by presence of all five amplicons; groups II (one isolates) showing all five amplicons, group III (three isolates) and group IV showing three (aflO, aflQ and *aflR*) and two (*aflO* and aflQ) amplicons, respectively. Only group I isolates able to produce aflatoxin B1 (Degola et al., 2007). Fourteen strains of A. flavus were examined using TLC and PCR with nor-1, ver-1, omt-1 and aflR primers. The results showed that three isolates fourteen strains of A. flavus were positive aflatoxin production and complete pattern of fragment genes. Other eleven isolates were negative aflatoxin production and presenting varying pattern of fragment genes (Erami et al., 2007). 134 non-aflatoxin producing strains of A. flavus isolated examined using a multiplex PCR-system, four DNA fragments specific for aflR, nor-1, ver-1, and omt-A genes. Forty nine (36.5%) of the examined non-aflatoxigenic A. flavus strains showed DNA fragments that correspond to the complete set of genes (quadruplet pattern). Forty three strains (32%) showed three DNA banding patterns grouped in four profiles where nor-1, ver-1 and omt-A. Twenty five (18.7%) yielded two DNA banding pattern whereas sixteen (12%) of the strains showed one DNA banding pattern. In one strain, isolated from poultry feed, no DNA bands were found (Criseo et al., 2008).

Using PCR showed that all aflatoxin and non-aflatoxin producers of A. flavus harbor the four genes (aflD, aflM, aflP and aflR) examined. This discounts the possibility that a lack of aflatoxin production in certain strains is due to loss of the genes from the genome (Hicks et al., 1997). The PCR of four aflatoxin (AF) biosynthetic pathway genes (aflD, aflO, aflP and aflQ) was evaluated in 24 Aspergillus flavus strains (toxigenic and nontoxigenic) isolated from soils of pistachio orchards. The PCR results obtained with genomic DNA as the template indicated that four genes, aflD, aflO, aflP and aflQ, were present in all strains either aflatoxigenic or non-toxigeni (Jamali et al., 2013). Our results are in agreement with the results reported by (Criseo et al., 2001, Degola et al., 2007, Erami et al., 2007) and disagreement with (Abdel-Hadi et al., 2011, Jamali et al., 2013).

In our study, we found that 27 of aflatoxin non-producing *A. flavus* isolates lacking the *aflR*

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

PCR amplicon because in these strains the *aflR* gene has been lost or mutations occurs within the primer binding sites. This could be due to the location of the aflatoxin gene cluster in the telomeric region of *A. flavus* that would facilitate gene loss as well as recombination, DNA inversions, partial deletions, translocations and other genomic rearrangements (Carbone *et al.*, 2007).

ACKNOWLEDGMENTS

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

REFERENCES

- 1. Abdel-Hadi, A., Carter, D. Magan, N. Discrimination between aflatoxigenic and nonaflatoxigenic strains of *Aspergillus* section *Flavi* group contaminating Egyptian peanuts using molecular and analytical techniques, *World Mycotoxin Journal*, 2011; **4**:69-77.
- Amer, O.E. Mahmoud, M.A., El-Samawaty, A.M.A., Sayed, S.R.M. Non liquid nitrogenbased-method for isolation of DNA from filamentous fungi, *African Journal of Biotechnology*, 2011; 10: 14337-14341.
- Baird, R.E., Trigiano, R.N., Windham, G., Williams, P. Comparison of aflatoxigenic and nonaflatoxigenic isolates of *Aspergillus flavus* using DNA amplification fingerprinting techniques, *Mycopathologia*, 2006; 161: 93-99.
- Barros, G.G. Chiotta, M.L. Reynoso, M.M. Torres, A.M. Molecular characterization of *Aspergillus* section *Flavi* isolates collected from peanut fields in Argentina using AFLPs, *Journal* of *Applied Microbiology*, 2007; **103**: 900-909.
- 5. Calvo, A.M., Bok, J., Brooks, W., Keller, N.P. *veA* is required for toxin and sclerotial production in *Aspergillus parasiticus*, *Applied and Environmental Microbiology*, 2004; **70**: 4733-4739.
- 6. Carbone, I. Ramirez-Prado, J.H. Jakobek, J.L. Horn, B.W. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster, *BMC Evolutionary Biology*, 2007; 7:111-119.
- 7. Christian, G. HPLC tips and tricks, 1990; Great Britain at the Iden Press, Oxford, p 608.
- Cotty, P.J., Bayman, P. Egel, D.S. Elis, K.S. Agriculture, aflatoxins and *Aspergillus*, In: The Genus *Aspergillus*: From Taxonomy and Genetics to Industrial Applications, Powell,

K.A., Renwick, A., Peberdy, J.F. (Eds.), Plenum Press, New York, 1994;1-27.

- 9. Criseo, G. Racco, C., Romeo, O. High genetic variability in non-aflatoxigenic A. flavus strains by using quadruplex PCR-based assay. *International Journal of Food Microbiology*, 2008; **125**: 341-343.
- Criseo, G., Bagnara, A. Bisignano, G. Differentiation of aflatoxin-producing and non producing strains of *Aspergillus flavus* group, *Letters in Applied Microbiology*, 2001; **33**: 291-295.
- 11. Davis, N.D., Iyer, S.K., Diener, U.L. Improved method of screening for aflatoxin with a coconut agar medium, *Applied and Environmental Microbiology*, 1987; **53**: 1593-1595.
- 12. Degola, F. Berni, E. Dall'Asta, Spotti, C.E. A multiplex RT-PCR approach to detect aflatoxigenic strains of *Aspergillus flavus*, *Journal of Applied Microbiology*, 2007; **103**: 409-417.
- 13. Ehrlich, K.C. Chang, P.K., Yu, J., Cotty, P.J. Aflatoxin biosynthesis cluster gene cyp. A is required for G aflatoxin formation. *Applied and Environmental Microbiology*, 2004; **70**: 6518-6524.
- 14. Erami, M., Hashemi, S.J., Pourbakhsh, S.A., Shahsavandi, S. Application of PCR on detection of aflatoxinogenic fungi, *Archives of Razi Institute*, 2007; **62**: 95-100.
- Gashgari, R.M. Shebany Yassmin M., Gherbawy, Y.A. Molecular characterization of mycobiota and aflatoxin contamination of retail wheat flours from Jeddah markets, *Foodborne Pathogen Disease*, 2010; 7: 1047-54.
- Georgianna, D.R., Payne, G. Genetic regulation of aflatoxin biosynthesis: from gene to genome, *Fungal Genetics and Biology*, 2009; 60: 43-49.
- 17. Godet, M., Munaut F. Molecular strategy for identification in *Aspergillus* section *Flavi*, *FEMS Microbiology Letters*, 2010; **304**:157-168.
- Hicks, J.K. Yu, J.H., Keller, N.P., Adams, T.H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G± protein-dependent signaling pathway, *The EMBO Journal*, 1997; 16: 4916-4923.
- Jamali, M., Karimipour, M., Shams-Ghahfarokhi, M., Amani, A. Expression of aflatoxin genes *aflO* (*omtB*) and *aflQ* (*ordA*) differentiates levels of aflatoxin production by *Aspergillus flavus* strains from soils of pistachio orchards, *Research in Microbiology*, 2012; 164: 293-299.
- 20. Klich, M.A. Environmental and developmental factors influencing aflatoxin production by *Aspergillus flavus* and *Aspergillus parasiticus*. *Mycoscience*, 2007; **48**, 71-80.

- Majer, D., Mithen, R., Lewis, B.G., Vos, P. The use of AFLP fingerprinting for the detection of genetic variation in fungi, *Mycological Research*, 1996; **100**: 1107-1111.
- 22. Megnegneau, B., Debets, F., Hoekstra, R.F. Genetic variability and relatedness in the complex group of black *Aspergilli* based on random amplification of polymorphic DNA, *Current Genetics*, 1993; **23**: 323-329.
- Montiel, D, Dickinson, M.J. Lee, H.A., Dyer, P.S. Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints, Mycological Research, 2003; 107:1427-1434.
- 24. Paranagama, P.A, Abeysekera, K.H Abeywickrama, K., Nugaliyadde, L. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice, Letters in Applied Microbiology, 2003; 37: 86-90.
- Sepahvand, A. Shams-Ghahfarokhi, M., Allameh, A., Jahanshiri, Z. A survey on distribution and toxigenicity of *Aspergillus flavus* from indoor and outdoor hospital environments, *Folia Microbiol*, 2011.; 56: 527-534, DOI 10.1007/s12223-011-0078-1.
- Tran-Dinh, N. Kennedy, I., Bui, T. Carter, D. Survey of Vietnamese peanuts, corn and soil for the presence of *Aspergillus flavus* and *Aspergillus parasiticus*. *Mycopathologia*, 2009; 168, 257-268.
- 27. Wang, X., Wadl, P.A., Wood-Jones, A., Windham, G. Characterization of expressed sequence tag–derived simple sequence repeat markers for *Aspergillus flavus*: emphasis on variability of isolates from the Southern United States, *Mycopathologia*, 2012; DOI 10.1007/ s11046-012-9573-4.
- 28. Wostemeyer, J., Kreibich, A. Repetitive DNA elements in fungi (mycota): impact on genomic architecture and evolution, *Current Genetics*, 2002; **41**:189-198.
- 29. Yin, Y., Lou, Yan, T.L., Michailides, T.J. Molecular characterization of toxigenic and atoxigenic *Aspergillus flavus* isolates, collected from peanut fields in China. *Journal of Applied Microbiology*, 2009; **107**:1857-1865.
- Yu, J., Chang, P.K. Ehrlich, K.C., Cary, J.W. Clustered pathway genes in aflatoxin biosynthesis. *Applied and Environmental Microbiology*, 2004; 70: 1253-1262.
- Zeng, H., Hatabayashi, H., Nakagawa, H., Cai, J. Conversion of 11-hydroxy-O methyl sterigmatocystin to aflatoxin G1 in Aspergillus parasiticus, Applied Microbiology and Biotechnology, 2011; 90: 635-650.

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.