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A vast array of microorganisms, especially bacteria, algae, yeasts, fungi and
periphytons have received increasing attention for heavy metal removal and recovery
due to their good performance, low cost and large available quantities. They are unlike
mono functional ion exchange resins, contains variety of functional sites including
carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl,
amide and hydroxyl moieties. They are cheaper, more effective alternatives for the removal
of metallic elements, especially heavy metals from soil and aqueous solution. In this
study, the application of microorganisms for removing heavy metal from soil and water,
is introduced and described based on mechanisms such as assimilation, adsorption, and
biodegradation. The advantages regarding the use of microorganisms to remove pollutants
are discussed.
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Throughout the world there is growing
concern that the heavy metal content of soils are
increasing as the result of industrial, mining,
agricultural and domestic activities1,2. Three kinds
of heavy metals are of concern, including toxic
metals (such as Hg, Cr, Pb, Zn, Cu, Ni, Cd, As,Co,
Sn, etc.), precious metals (such as Pd, Pt, Ag, Au,
Ru etc.) and radionuclides (such as U, Th, Ra, Am,
etc.)3. Unlike many other pollutants, heavy metals
are difficult to remove from the environment. These
metals cannot be chemically or biologically

degraded, and are ultimately indestructible. The
toxic effects of heavy metals result mainly from the
interaction of metals with proteins (enzymes) and
inhibition of metabolic processes. When
accumulated in soils, heavy metals such as copper,
cadmium, lead, zinc, nickel, mercury and chromium
can be present in concentrations toxic to plants,
animals, humans and aquatic life4. To date, the
amount of heavy metals discharged into the
environment keeps on increasing. Heavy metals
like copper, mercury, chromium, cadmium, lead,
nickel and zinc cause serious threat to environment,
animals and human for their extreme toxicity5.

Heavy metals enter the environment from
natural and anthropogenic sources. The most
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significant natural sources are weathering of
minerals, erosion and volcanic activity while
anthropogenic sources include mining, smelting,
electroplating, use of pesticides and (phosphate)
fertilizers as well as biosolids in agriculture, sludge
dumping, industrial discharge, atmospheric
deposition, etc.6. Table 1 gives anthropogenic
sources of selected heavy metals in the
environment.

Health authorities in many parts of the
world are becoming increasingly concerned about
the effects of heavy metal (loid)s on environmental
and human health and their potential implications
to international trade. Heavy metals have adverse
effects on human health and therefore heavy metal
contamination of food chain deserves special
attention. Many heavy metals and metalloids are
toxic and can cause undesirable effects and severe
problems even at very low concentrations7. Heavy
metals cause oxidative stress (Mudipalli, 2008) by
formation of free radicals. Oxidative stress refers
to enhanced generation of reactive oxygen species
(ROS), which can overwhelm cell’s intrinsic
antioxidant defenses and can lead to cell damage
or death8. Furthermore, they can replace essential
metals in pigments or enzymes disrupting their
function9. Regarding their toxicities, the most
problematic heavy metals are Hg, Cd, Pb, As, Cu,
Zn, Sn, and Cr 10. Out of these, Hg, Cd, Pb, and As
are non-essential heavy metals while Cu and Zn
are essential heavy metals (trace elements). Toxic
heavy metals can cause different health problems
depending on the heavy metal concerned, its
concentration and oxidation state, etc. Table 1 gives
harmful effects of selected heavy metals on human
health.

Methods for removing metal ions from
aqueous solution mainly consist of physical,
chemical and biological technologies.
Conventional methods for removing metal ions from
aqueous solution have been suggested, such as
chemical precipitation, filtration, ion exchange,
electrochemical treatment, membrane technologies,
adsorption on activated carbon, evaporation etc.
However, chemical precipitation and
electrochemical treatment are ineffective, especially
when metal ion concentration in aqueous solution
is among 1 to 100 mg L-1, and also produce large
quantity of sludge required to treat with great
difficulty. Ion exchange, membrane technologies

and activated carbon adsorption process are
extremely expensive when treating large amount
of water and wastewater containing heavy metal
in low concentration, they cannot be used at large
scale. Volesky (2001) summarized the advantages
and disadvantages of those conventional metal
removal technologies11. Biological treatment,
based on living or non-living microorganisms or
plants, offers the advantages, such as low
operating cost and high efficiency11. The aim of
this work is to present the state of the art of
bioremediation investigation of heavy metals and
to compare results found in the literature.
Heavy Metal bioremediation

Metals are not degradable. Unlike
hydrocarbons, biodegradation of metals into
innocuous CO

2 
and water is not possible.

Irrespective of the available reactions, the same
metal will still be present but bacterial strains have
been found to have the capacity to concentrate or
remediate them into forms that are precipitated or
volatilized from solution and hence less toxic and
easily disposable. In other words, microorganisms
can only alter the speciation of metal contaminants
and convert them into non-toxic form13.

The interaction of heavy metals with  has
become an increasing global interest because of
its potential as a biotechnological method in
removing heavy metals from polluted aqueous
systems. The possibility of removing heavy metals
saturated from its environment by using biomass
may provide an economic method for removing
heavy metals from wastewater. The removal of
heavy metals from industrial waste water or
recovery of heavy metals from their solutions as
part of their mining by leaching can be
accomplished by biotechnological methods that
make use of microorganisms as sorbent14.

To date, the use of technologies based
on microorganisms has provided a wide range of
useful and promising strategies to clean up many
types of pollutants, such as cadmium, copper, lead15

and microcystins16 environmentally benign
technologies based on microorganism and
microbial aggregates, such as periphyton and
hybrid bioreactors are now used to remove
pollutants from aquatic systems17. These
technologies have been applied worldwide and are
generating an explosion of data on the pollutant
removal process and improvements in removal



J PURE APPL MICROBIO, 8(SPL. EDN.), MAY 2014.

283YAKOUT & MOSTAFA:   BIOREMEDIATION OF HEAVY METALS BY MICROBES

efficiency, some of which will be discussed in this
review. Little information however, focuses on
describing the mechanisms of the technologies
based on the use of microorganism and/or microbial
aggregates to remove pollutants from water and
wastewater.

Environmentally friendly technologies
based on microorganisms are usually used to
remove pollutants from aquatic ecosystems. The
cell wall constituents play a key role in metal
sequestering18. Such compounds possess
numerous functional groups, including carboxylate,
hydroxide, amine, imidazole, sulfate and sulfhydryl,
with various charge distributions and geometries,

so they can selectively bind certain metal ions.
The main pollutant removal mechanisms include
to ion exchange, adsorption, complexation,
microprecipitation and crystallization processes
occurring on the cell wall19. The various ways by
which metal uptake can occur are depicted in Fig.
1. The most common microbial materials used for
micro-remediation include bacteria, algae, yeasts
and fungi. Most of these microorganisms are
environmentally benign and can be isolated from
natural ecosystems. The use of technologies based
on microorganisms offers benefits of
bioremediation not only reduces pollutant

Fig. 1. Possible mechanism of  bioremidation21

concentrations effectively but can also transform
end-products into nontoxic, harmless and stable
substances, e.g. carbon dioxide, water and
nitrogen20. Compared with chemical processes,
which often require high temperatures and
pressures, biodegradation is an economical
investment as evidenced by its low cost, low
consumption, better results, more stable processes
and simple operation.
Bacteria

Bacteria have a complex membrane

containing abundant potentially active
chemosorption sites in their walls. The cell surface
hosts multiple functionally and structurally different
proteins and they differ considerably from Gram-
negative to Gram-positive bacteria22. This enables
them to destroy the pollutants present in the
contaminated sites22, 23. Amongst bacteria, Bacillus24,
Pseudomonas25, and Streptomyces26 acts as a potent
metal biosorbents. The potential of Streptomyces
strain to retain trace elements from polluted waters
has recently been confirmed by many workers. Some
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Table 1. Sources and toxic effects of heavy metals on human beings12

Metal Source Toxic effect

Lead Electroplating, manufacturing of Anaemia, brain damage, anorexia, malaise, loss
batteries,  pigments, ammunition of  appetite, diminishing IQ

Cadmium Electroplating, smelting, alloy Carcinogenic, renal disturbances, lung, insufficiency,
manufacturing,  pigments, plastic, bone lesions, cancer, hypertension, Itai–Itai
mining, refining disease, weight loss

Mercury Weathering of mercuriferous areas, volcanic Neurological and renal disturbances, impairment of
eruptions, naturally-caused, forest fires, pulmonary function, corrosive, to skin, eyes,
biogenic emissions, battery production, muscles, dermatitis, kidney damage
fossil  fuel burning,  mining and metallurgical
processes, paint and chloralkali industries

Chromium Electroplating, leather tanning, textile, Carcinogenic, mutagenic, teratogenic, epigastric pain
(VI) dyeing, electroplating, metal processing, nausea, vomiting, severe  diarrhoea, producing lung

wood preservatives, paints and pigments, tumors
steel fabrication and canning industry

Arsenic Smelting, mining, energy production Gastrointestinal symptoms, disturbances of
from fossil fuels, rock sediments cardiovascular and nervous system functions, bone

marrow depression, haemolysis, hepatomegaly,
melanosis, polyneuropathy and encephalopathy,
liver tumor

Copper Printed circuit board manufacturing, Reproductive and  evelopmental toxicity,
electronics plating, plating, wire neurotoxicity, and acute toxicity, dizziness,
drawing, copper polishing, paint diarrhoea
manufacturing, wood preservatives
and printing operations

Zinc Mining and manufacturing processes Causes short term ‘‘metal-fume fever”,
gastrointestinal distress, nausea and diarrhoea

Nickel Non-ferrous metal, mineral processing, Chronic bronchitis, reduced lung function, lung
paint formulation, electroplating, porcelain cancer
enameling, copper sulphate manufacture
and steam-electric power plants

other common microorganisms used in the process
of remediation (Table 2) are species of: Achromobacter,
Alcaligenes, Arthrobacter, Bacillus, Cinetobacter,
Corynebacterium, Flavobacterium, Micrococcus,
Mycobacterium, Norcardia, Pseudomonas, Vibrio,
Rhodococcus and Sphingomonas27. These
microorganisms are used for the treatment of
contaminated sites containing a wide variety of
pollutants.

A study by Asku28 demonstrated that
Chiarella vulgaris and Zoogloea ramigera
showed biosorption of copper through adsorption
and formation of bonds between metals and amino
or carboxyl groups of cell wall (polysaccharides).
A study by Doyle et al.,29 also indicates that heavy
metal cations showed adsorption to the cells walls
of Gram-positive bacteria. Many bacteria, such as

Actinomycetes, Azotobacter and Pseudomonas,
synthesizes different substances to capture Fe2+

which they require for their metabolic activity and
biosorption30. A study by Jayashree et al..31 proved
that the Pseudomonas acts as fuel eating bacteria
which can degrade the hydrocarbons.
Pseudomonas syringae also showed the formation
of bond which play Important role in the
accumulation of calcium, magnesium, cadmium,
zinc, copper and mercury Geobacter
metallireducens is a Fe (III) reducing organisms
that can oxidize a variety of aromatic contaminants
such as benzene and naphthalene and removes
uranium (a radioactive waste) from drainage water
in mining operations and from contaminated
groundwater32. Soylak and co-workers developed
a number of methods including bacteria as
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substrate for solid phase extraction procedures.
Bacillus thuringiensis var. israelensis immobilized
on Chromosorb 101 was used for the pre
concentration and separation of Cd (II), Co (II) Cr
(III), Mn (II), Ni (II) and Pb (II) in environmental
samples33.
Yeasts

Yeasts are readily available source of
biomass which shows the ability to resist under
unfavorable environment. The cell walls of yeast
include a large number of complex organic
compounds and their polymers, such as glucan
(28%), mannan (31%), proteins (13%), lipids (8%),
chitin and chitosan (2%) 45. Different cell
components allow different charge distributions
and geometries, providing to yeast the possibility
of binding different elements.  The research over
the last ten years involving the use of  yeast for
heavy metal biremidation is detailed in Table 3.

As observed in Table 3, the most
representative microorganism employed for
biosorption from the yeast group is S. cerevisiae.
In our opinion it is because this substrate is easy
to obtain and cheap. Other species have been
employed like Debaryomyces hansenii and
Candida tropicalis46. Within the Saccharomyces

genus, other species besides cerevisiae have been
employed like S. carlsbergensis47. For Cd2+

preconcentration, Menegário et al. immobilized S.
cerevisiae in agarose gel as a binding agent for
diffusive gradients48. Mapolelo et al.,48 employed
a simpler configuration with a commercial
preparation of baker’s yeast, strains, with 90% of
cell viability49. S. cerevisiae, D. hansenii and C.
tropicalis strains were tested for Cd2+, Cr3+, Cr6+,
Cu2+, Pb2+, and Zn2+ preconcentration50. A study
by Kujan et al.,51 also showed that Candida utilis
biomass can conveniently be used for cadmium
biosorption from aqueous solutions. There are
some yeast like Rhodotorula mucilaginosa which
is efficient in bioadsorption of lead and are also
known to accumulate free and complexed silver
ions by metabolism dependent and independent
processes52. A comparative study was made by
Ksheminska et al.53 on the sensitivity of yeast
Pichia guilliermondii to Cr (III) and Cr (VI) as well
as on the uptake potential of Cr. The results
indicated accumulation of Cr (III) and Cr (IV) by
Pichia sp. and also showed increase in Cr tolerance
by the addition of riboflavin.
Algae

The term “algae” refers to a large and

Table 2. Heavy metal bioremediation by Bacteria

Bacteria Metal Reference

Bacillus subtilis Cu, Cd [34]
Streptococus pyogenes Hg CH

3
 Hg+ [35]

Bacillus thurigesis israelensis Cu, Fe, Zn [36]
Bacillus sphaericus Cr, Cr [37]
Geobacillus Cd, Ni [38]
Bacillus sphaericus Ni, Ag [39]
Corynebacterium glutamicum Arsenate [40]
Escherichia coli Cu, Zn, Fe, Ni and Cd [41]
Escherichia coli Fe, Co, Mn and Cr(III) [42]
Agrobacterium tumefacients Fe, Co, Mn and Cr [43]
Bacillus thurigesis israelensis Cd, Pb, Mn, Cr, Ni, Co [33]
Bacillus subtilis Cu, Cd [34]
Streptococus pyogenes Hg, CH

3
 Hg+ [35]

Bacillus thurigesis israelensis Cu, Fe, Zn [36]
Bacillus sphaericus Cr, Cr [37]
Geobacillus Cd, Ni [38]
Bacillus sphaericus Ni, Ag [39]
Corynebacterium Arsenate [40]
Escherichia coli Cu, Zn, Fe, Ni and Cd [41]
Escherichia coli Fe, Co, Mn and Cr [42]
Agrobacterium tumefacients Fe, Co, Mn and Cr [43]
Bacillus thurigesis israelensis Cd, Pb, Mn, Cr, Ni, Co [33]
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diverse assemblage of organisms that contain
chlorophyll and carry out oxygenic
photosynthesis. Algae present some
characteristics turning them into interesting
options to be employed as biosorbents like growing
in large quantities with relative easiness and simple
handling71 along with low cost production72. The
cell walls of brown algae contain alginic acid (10–
40%), fucoidan (5–20%), and cellulose (2–20%),
being the carboxylic groups the most abundant
acidic functional group73. Red algae cell walls’
contain agar, carrageenan, xylans, lectin, and
cellulose, while the cell walls of green algae contain
mainly pectic substances and cellulose73. Zoe et
al. established that the functional groups
responsible of metal retention by Chlorella vulgaris
were hydroxyl and ether57. Uptake of metals by
living microalgae occurs in two steps. The first
step is independent of cell metabolism and involves
“adsorption” onto the cell surface (physical
adsorption) afterwards these ions are transported
slowly into the cytoplasm known as
chemisorption74. The second step is dependent

on cell metabolism and involves absorption or
intracellular uptake of heavy metals. Many studies
have showed that various metals such as Pb, Cu,
Cd, Co, Hg, Zn, Mg, Ni and Ti are sequestered in
polyphosphate bodies of algae and perform two
functions i.e. storage and detoxification of metals75.
Due to its role in sequestration of heavy metals by
algal cell wall, these are considered as an ideal
source of multifunctional polymers76. Algae are
also known for effective removal of nitrogen from
soil or water through the process of absorption
and store it as biomass. As the time passes, the
biomass decomposes and releases the nitrogen
back into the soil (ammonia or urea) or atmosphere
(N

2
O), where it may be recycled or lost77.

Accumulation of Cd and Zn was recorded
with alga Scenedesmus obliquus, it also showed
enhanced absorption with increased concentration
of phosphorus in the media, where Se
accumulation was found to be inhibited. Metals
such as Cu, Pb, Cd and Co are also accumulated
by Cladophora glomerata and Oedogonium

Table 3. Heavy metal bioremediation by yeast

Yeast Metal Reference

Saccharomyces cerevisiae Cr [50]
Saccharomyces cerevisiae Sb [54]
Saccharomyces cerevisiae Pd [55]
Saccharomyces cerevisiae Cd [50]
Saccharomyces cerevisiae Cd, Cr, Cu, Pb, Zn [46]
Debaryomyces hansenii, Cd, Cr, Cu, Pb, Zn [48]
Saccharomyces cerevisiae Cr [56]
Saccharomyces cerevisiae Cd [57]
Saccharomyces cerevisiae As [58]
Saccharomyces cerevisiae Mo [59]
Saccharomyces cerevisiae As [60]
Saccharomyces cerevisiae Cd  and Cd-metallothionein [61]
Saccharomyces cerevisiae Sn [62]
Saccharomyces carlsbergensis Fe, Co, Cr [63]
Saccharomyces Zn, Cu, Cd [64]
carlsbergensis
Saccharomyces cerevisiae Sb [65]
Saccharomyces cerevisiae Pt, Pd [66]
Candida utilis Cd [51]
Hansenula anomala Cd [67]
Rhodotorula Zn and Cd [68]
mucilaginosa
Rhodotorula rubra Hg [69]
Streptomyces sp. Pb [26]
Saccharomyces cerevisiae Cu, Zn, Cd, Pb, Fe, Ni, Ag, Th,  Ra, U and Hg [70]
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rivulare. Spirogyra hatillensis a fresh water
filamentous alga showed continuous uptake of Ni,
Cr, Fe and Mn from aqueous solution75. The algae
are significantly efficient in treating more than one
problem at a time, which is not possible by
conventional process of chemical treatment. The
phycoremediation shows advantage over other
chemical methods as the removal of algal mass
from the treated effluents is easy and economic.
Fungi

The importance of metallic ions to fungal
metabolism has been known for a long time [86].
The presence of heavy metals affects the metabolic
activities of fungal cultures, and can affect
commercial fermentation processes, which created
interest in relating the behavior of fungi to the

presence of heavy metals. Most fungi have a cell
wall consisting largely of chitin and other
polysaccharides87. The fungal mycelia secrete
various extracellular enzymes and acids that break
down the lignin and cellulose. The key to
mycoremediation is to determine the right fungal
species to target a specific pollutant

Penicillium can remove a variety of heavy
metal ions from aqueous solutions, such as Cu,
Au, Zn, Cd, Mn, U and Th, see Table 5 Penicillium
italicum88, Penicillium spinulosum, Penicillium
oxalicum44 Penicillium austurianum90,
Penicillium verrucosum91, Penicillium
purpurogenum92, Penicillium canescens93,
Penicillium griseofulvum94, P. austurianum95,
Penicillium chrysogenum, etc. were reported to

Table 4. Heavy metal bioremediation by Algae

Algae Metal Reference

Ascophyllum nodosum Pb, Cu and Cr [24]
Anabaena inaequalis Cr [78]
Chlorella vulgaris Cd, Ag, Cu, Th, Zn, Pb, Ni, Ra, Fe and U [79]
Cladophora glomerata Cu, Pb, Cd, Cr, Ni, Fe, Zn, Mn, Sr and Cs [74]
Cyanobacteria Pb, Hg and Cd [80]
Nostoc sp. Hg, Pb , Cd [80]
Oedogonium rivulare Cr, Ni, Zn, Fe, Mn Cu, Pb, Cd and Co [81]
Oscillatoria spp. Cu, Pb, Cd and Co [82]
Sargassum spp. Pb, U, Cd, Ni, Zn, Cu and Cr [83]
Scenedesmus obliquus Cd and Zn [84]
Spirogyra spp. Ni, Cr, Fe and Mn [82,24]
Spirulina spp. Pb and Cd [85]

Table 5. Heavy metal bioremediation by fungi

Fungi Metal Reference

Aspergillus tereus Cr [100]
Aspergillus niger Pb, Zn, Cd, Cr, Cu, Ni and [101]
Funalia trogii Hg, Cd and Zn [102]
Ganoderma lucidumk Cr and Cu [103]
Penicillium Pb, Fe, Ni, Ra, Th, U, Cu, Zn, [26]
chrysogenum Ag, and Cd
Rhizopus sp. Cr [104]
Aspergillus niger, Mucor rouxii, Rhizopus arrhizus (living cells) Au [105]
Penicillium spp. (living cells) AgCu [105]
Penicillium, Aspergillus, Trichoderma, Rhizopus, Mucor,
Saccharomyces, Fusarium (living cells) Cd

Pb Pb [105]
Aspergillus, Penicillium, Rhizopus, Saccharomyces, Trichoderma,
Mucor, Rhizopus (living cells Cu Cd Zn Th
Phanerochaete chryosporium (living cells) U Sr Cs La Cd [106]
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adsorb various metals.
Aspergillus niger is an important

microorganism in biotechnological applications96.
Waste biomass of A. niger from fermentative
industry, is used to remove hazardous heavy metal
ions, such as cadmium, lead, chromium, and copper
from aqueous solution. As it produces organic
acids, A. niger can be used to bioleach metals from
mining ores. Yakout 2014, review various metal ions
could be removed by A. niger97. Fungus A. niger
405 showed a good affinity for binding Cu2+, Zn2+

and Ni2+ ions in single composition system, while
in multi-component solution it occurred only for
copper and zinc98.

A waste fungal biomass containing killed
cells of A. niger was efficiently used for the removal
of toxic metal ions such as nickel, calcium, iron and
chromium from aqueous solution. The adsorption
capacity for various metal ions could be arranged
as Ca > Cr (III) > Ni > Fe > Cr (VI)99. Non-living
waste biomass consisting of A. niger attached to
wheat bran was used as a biosorbent for the
removal of copper and zinc from aqueous solution
Periphytons

Metal accumulation by periphyton has
been relatively well investigated107. Recently
reported their studies of copper exposure and
its effects on the periphyton community in
fluvial ecosystems, albeit under controlled
conditions. Bere et al. (2012) found that Cr (III)
and Pb (II), under field conditions, influence
accumulation and toxicity of Cd (II) in tropical
periphyton communities108. Concentration and
speciation were observed to vary dynamically
in a small stream during rain events. Analysis
revealed that the Cd (II) content in periphyton
closely followed Cd (II) concentrations in water,
despite being in the presence of higher
concentrations of Zn (II) and Mn (II). Decrease
of the Cd (II) content in periphyton after the rain
events was slower than its decrease in water
and is suggestive of metal accumulation109.
Many photosynthetic species such as the green
alga Chlamydomonas reinhardtii also known
to possess the immense capacity to absorb
metals, and so have great potential for removing
metals from waste waters110.

Periphyton accumulate heavy metals by
three main mechanisms111: adsorption in
extracellular polymeric substances, cell surface

adsorption, and intracellular uptake (or
absorption). Metal uptake in periphyton by
adsorption and absorption have been evaluated
by measuring total and intracellular metal
content107. Further research has revealed that
inactive/dead microbial biomass also passively
binds metal ions via various physicochemical
mechanisms112.

CONCLUSION

Overall, the application of
environmentally friendly microorganisms in the
prevention and control of environmental pollution
is a promising prospect. The research findings
discussed herein should encourage us to further
investigate the mechanisms of pollutant removal
and develop more effective and cost-efficient
microorganisms to control aqueous environmental
pollution.
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