Analysis of Bacterial Communities in Fermented Traditional Food *Suan-cai* and *La-baicai* from Yanbian in China Using DGGE

Junrui Wu¹, Meiling Yu¹, Xuefei Song¹, Ying Zhang¹, Rina Wu^{1,2*} and Xiqing Yue^{1*}

¹College of Food Science, Shenyang Agricultural University, Shenyang - 110866, P. R. China ²State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China.

(Received: 23 February 2014; accepted: 12 April 2014)

Suan-cai and la-baicai are traditional fermented food with Chinese cabbage and still popular in the northeast of China. The present study firstly compared the diversity of lactic acid bacteria involved in suan-cai and la-baicai using denaturing gradient gel electrophoresis (DGGE). The results indicated that Weissella sp., Lactobacillus sakei and uncultured Leuconostoc gasicomitatum present in the fermentation process of all suan-cai and la-baica, which were also the predominate microflroa in la-baicai. Rod shaped of Lactobacillus plantarum and Lactobacillus brevis were only found in suan-cai samples. Moreover, Lactobacillus curvatus and Lactococcus lactis were also found in some of the suan-cai and la-baica samples. It shows different lactic acid bacteria involved in the fermentation of two traditional products might be due to the method for making.

Key words: Lactic acid bacteria, suan-cai; la-baicai, northeast of China, DGGE.

Food fermentation is one of the oldest food processing and preservation methods and dates back thousands of years in China¹. *Suan-cai* and *la-baicai* are traditional fermented food made in the northeast of China both using Chinese cabbage. Chinese cabbage has been consumed for centuries in China, and fermented cabbage is one of effective way to preserve the plant in winter in the northeast of China. Between two fermented foods, *suan-cai* and *la-baicai* do have some similarities, e.g. using Chinese cabbage as material, addition of salt, and maintaining the low temperature, *etc.*. But *la-baicai* product also contains the spice of hot red pepper, and making

* To whom all correspondence should be addressed. Tel.: 86-24-88487161; E-mail: yxqsyau@126.com process is different as well, which may be able to induce some major different culture of lactic acid bacteria (LAB).

In traditional fermented food, LAB always play a crucial role in forming the key flavour, texture and preservative qualities. Some studies have analyzed the population of LAB in suan-cai using culture dependent methods in China. Zhang et al. (2009) isolated 97 Lactobacillus strains and 2 exopolysaccharide (EPS)-producing strains Lactobacillus casei and Lactobacillus plantarum were selected². Three high-acid-yield strains, Lactobacillus brevis, Lactobacillus plantarum and Leuconostoc mesenteroides, were separated from the juice of suan-cai fermented naturally and were identified bacterially using the classical classification³. But there was little study of bacteria involved in the fermentation of la-baicai in China. The production of *la-baicai* is similar as the kimchi,

a traditional fermented cabbage food in Korea, for *la-baicai* is mainly made and consumed by Chinese Korean. Previous studies have reported that the population dynamics of LAB in kimchi⁴. Hence, more researches are needed to identify LAB in *suan-cai* and *la-baicai*.

Since it is difficult to culture most bacteria in samples from the environment, using only culturing methods is inadequate to evaluate the structure of bacterial communities⁵. Denaturing gradient gel electrophoresis (DGGE) is one of powerful culture-independent tools for analysis microbial biota in complex environment, including traditional fermented foods⁶. The present study aims to identify the bacteria community involved in traditional fermented suan-cai and la-baicai collected from Yanbian in Jilin province of China using culture-independent DGGE, which analyze 16S rRNA gene marker. For the best of our knowledge, it is the first report to reveal the diversity of LAB in suan-cai and la-baicai using DGGE.

MATERIALS AND METHODS

Sample collection

In this study, a total of 6 samples of *suancai* (3 samples) and *la-baicai* (3 samples) souse were collected from families of Yanbian in Jilin province. Yanbian is the colony of Chinese Korean people which located in the northeast of China, and *suan-cai* and *la-baicai* are both important food for local people. Samples were aseptically collected and then frozen immediately until getting to the laboratory for microbiological analysis.

DNA extraction using bead beating

The community DNA was extracted separately from 1mL volume of each sample of *suan-cai* souse using the bead-beating method with some improvements⁷. Sample of *suan-cai* souse was mixed with 5 mL PBS, after vortex for 30 s, sample was centrifuged at 12000 g for 5min. The suspension was removed to an 1.5 mL eppendorf tube with 0.5 g glass beads, following blended in a Bead-Beater (FastPrep-24, MP Biomedicals, Ohio, USA) for 3 times, and 30s for every time at the speed 6.0. SDS of 50µLwas added to the sample for incubation on ice bath for 10min. The supernatant was collected by centrifugation at 14,000 g for 10 min. Then 180 µLCTAB/NaCl were

J PURE APPL MICROBIO, 8(SPL. EDN.), MAY 2014.

added, and also the same volume of phenol/ chloroform/isoamyl alcohol (25:24:1, v/v) was added, following mixed for 1 min, centrifugation was performed at 12,000 g for 10min. The DNA was precipitated with ice-cold isopropanol, and washed with ethanol by centrifugation (8000 g, 3min), then resuspended in TE. The concentration was measured by optical density at 260 nm (OD_{260nm}). **Polymerase chain reaction and DGGE analysis**

DGGE analysis was performed using DCode universal mutation detection system (Bio-Rad, Hercules, USA) in $16 \text{ cm} \times 16 \text{ cm} \times 1 \text{ mm}$ of 8% (w/v) polyacrylamide gel acrylamide-bisacrylamide (37.5:1). The denaturing gradient ranged from 35 to 55% using urea plus formamide. The electrophoresis was performed at 120 V for 8 h in 0.5 × TAE buffer maintained at 60°C. Gels were stained with silver (9).

DGGE band sequencing

DGGE bands on gel were extracted and transferred to 100 ìL sterile water for washing 3 times by centrifugation. 50ìL sterile water was added before incubation the sample at 50°C for 2~3 h, and then maintained at 4°C for overnight (10). 1ìL supernatant containing DNA was reamplified and sequenced by Shanghai Sangni Biosciences Corporation. The identification of sequences was performed by BLAST search of DNA Databank at Genbank.

RESULTS AND DISCUSSION

Sample collection

The present study collected 6 souse samples of home-made *suan-cai* (3 samples) and *la-baicai* (3 samples) from Yanbian province in the northeast of China. All the chosen families have rich experience in making suan-cai and la-baicai, and living in house is able to keep a lower fermented temperature than in apartment with heater. The temperatures of samples were ranged from 10.3 to 14.9°C. The pH values of samples were also detected. As all of suan-cai and la-baicai samples were made for over 1 month, the pH values were ranged from 3.5 to 4.1. The decrease of pH value is probably due to the growth of LAB. In modern society, environmental pollution and urbanization promoting may influence the growth of LAB in nature. The high pH can induce the growth of pathogenic or spoilage bacteria in suan-cai. Recently, some LAB agents have been used in families in city to ferment suan-cai with good flavor and quality. Therefore, it is one of the reasons to identify LAB in naturally fermented suan-cai products.

DGGE fingerprinting

DGGE is a useful tool for revealing the microbial biota in foods because it allows the rapid detection of species and changes in the compositions based on the direct amplification of bacterial DNA involved¹¹. The DGGE fingerprint of LAB in 6 samples of *suan-cai* and *la-baicai* souse are shown in Figure 1 and bacteria identification is listed in Table 1. Generally, although the sample is collected from same families, the DGGE fingerprint of bacteria community is different. Based on the analysis, nine bands in average were obtained from *suan-cai* sample, while

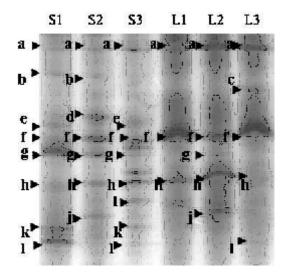
six bands were found from *la-baicai* sample on gel. There were 3 common bands were identified in all of samples, and confirmed to correspond to Weissella sp. (band a), Lactobacillus sakei (band f) and uncultured Leuconostoc gasicomitatum (band h). However, bands b, d, e, i and k were only observed in *suan-cai* sample, whereas band c was found only in *la-baicai* sample. Among the special bands, bands b, d, e and k were identified as Lactobacillus plantarum (band b), Lactobacillus *brevis* (band d and e), uncultured bacterium clone (band k) and Pseudoalteromonas sp. (band c), respectively. Moreover, Lactobacillus curvatus (band g) was found in all *suan-cai* samples and on la-baicai sample. Band 1 was identified as Lactococcus lactis in two suan-cai samples and on la-baicai sample, and uncultured bacterium clone (band j) was also found in one suan-cai sample and one *la-baicai* sample.

Bands indicative of *Weissella* sp., *Lactobacillus sakei* and uncultured *Leuconostoc gasicomitatum* present in the fermentation process of all *suan-cai* and *la-baicai*, indicating their importance roles.

Weissella sp. would appear to be widely distributed and play an important role in fermented foods prepared from plants¹². In kimich, *Weissella confusa* strains have been detected¹³, and also in sugar caneÿcarrot juice¹⁴, and a traditional Chinese vinegar "Shanxi aged vinegar"¹⁵.

L. sakei and *L. curvatus* were both identified in the study, but only *L. sakei* was

Bands	Species	Identification %	Closest relative (NCBI accession no.)
a	<i>Weissella</i> sp.	98	HQ452826.1
b	Lactobacillus plantarum	100	JN786879.1
с	Pseudoalteromonas sp.	88	HQ201959.1
d	Lactobacillus brevis	100	JN792500.1
e	Lactobacillus brevis	98	JN792500.1
f	Lactobacillus sakei	100	JN673548.1
g	Lactobacillus curvatus	100	JN673549.1
h	Uncultured Leuconostoc gasicomitatum	100	JF756325.1
i	Unidentified	-	-
j	Uncultured bacterium clone	97	GU548708.1
k	Uncultured bacterium clone	97	FJ370774.1
1	Lactococcus lactis	95	EU337106.2


 Table 1. Identification of bands obtained from DGGE analysis

 of bacterial community in *suan-cai* and *la-baicai* samples

identified in all collected samples. In the previous study of kimchi showed that L. sakei dominated the microbial population throughout kimchi fermentation perhaps for the consuming sucrose involved16, which corresponding the present result that L. sakei was the major bacteria in la-baicai, indicating the similar between la-baicai and kimchi. Xiang Yang and Xiangchen Meng (2009) also found 10 Lactobacilli strains in suan-cai, including L. sakei¹⁷. Lactobacillus sakei and Lactobacillus curvatus have always been found to be the main microbial flora in the later phase of the fermentation process when most fermented food turn sour for the ripening process¹⁸. Besides, although L. sakei and L. curvatus are closely related species, it is easy to separate using DGGE.

The specie of *Leuconostoc* sp. were always observed in the fermentation of food, e.g., *da-jiang* made in the northeast of China¹⁹, kimichi in Korea¹³, and meat products in India²⁰, etc.. In *suan-cai*, the isolation of *Leu. mesenteroides* has been reported³. *Leuconostoc gelidum* and *Leuconostoc gasicomitatum* were also identified in kimich through Amplified ribosomal DNA restriction analysis (ARDRA)²¹. Hence, *Leuconostoc* spp. would also seem to play an important role in plant food fermentations.

Furthermore, *Lactobacillus plantarum* and *Lactobacillus brevis* were only observed in

Fig. 1. DGGE proûles of PCR-ampliûed DNA from the bacterial population in *suan-cai* and *la-baicai* samples

J PURE APPL MICROBIO, 8(SPL. EDN.), MAY 2014.

suan-cai samples. The two species were widely distributed in fermented food in China, such as koumiss, fermented rice noodle, and fermented camel milk, and etc.^{22,23,24}. In the previous study, Lactobacillus plantarum and Lactobacillus brevis have been found in suan-cai, accompanied with Lactobacillus casei, Lactobacillus coryniformis, Lactobacillus sakei¹⁷. In the study of Chao et al. (2009),Lactobacillus plantarum and Lactobacillus brevis were found became dominant in the suan-tsai, a traditional fermented mustard product in Taiwan²⁵. Besides, Lactobacillus brevis has also been identified in wine and sourdough fermentation^{26, 27}. The result is corresponding to the previous findings using traditional culturedependent method.

The closest match to band l was indicated for *Lactococcus lactis*. *Lactococcus lactis* has not been identified in *suan-cai* and *la-baicai*. But in another traditional fermentation food made by Chinese cabbage, sichuan pickles, *L. lactis* was found with rapid growth²⁸. Sichuan pickles is popular in the province of Sichuan in the Southwest of China. Because of the gentle temperature all the year, the production of sichuan pickles do not limited by seasons. Based on the previous analysis, *Leuconostoc mesenteroi*, *L. plantarum*, *Lactobacillus casei*, *Lactobacillus brevis*, and *Lacotococcus lactis* were the major LAB involved²⁹.

In addition, it is interesting to identify the *Pseudoalteromonas* sp. (band c) in *la-baicai* sample 3 which needed further study. Currently, the genus *Pseudoalteromonas* comprises 35 recognized species, with *Pseudoalteromonas haloplanktis* as the type species³⁰. Many *Pseudoalteromonas* species have been isolated from the marine environment, and novel *Pseudoalteromonas* strain has been reported recently.

CONCLUSION

After all, compared the LAB species involved in *suan-cai* and *la-baicai*, rod-shaped LAB of *Lactobacillus plantarum*, *Lactobacillus brevis*, *Lactobacillus sakei* and *Lactobacillus curvatus*, and cocci-shaped LAB of *Weissella* sp., uncultured *Leuconostoc gasicomitatum* and *Lactococcus lactis* were dominate in *suan-cai*, whereas rod shaped of LAB of *Lactobacillus sakei* and *Lactobacillus curvatus*, and cocci shaped LAB of *Weissella* sp. and uncultured *Leuconostoc gasicomitatum* were the main fermented culture in *la-baicai*. DGGE is suitable for analysis of LAB community in traditional fermented food like *suancai* and *la-baicai*.

ACKNOWLEDGEMENTS

This research was supported by Natural Science Foundation of China (Grant No. 31370502 and 31000805), Scientific Research fund of Liaoning Provincial Education Department (Grant No. L2012249), Program for Liaoning Excellent Talents in University (Grant No. LJQ 2011071), and Tianzhushan Talent Program of Shenyang Agricultural University.

REFERENCES

- 1. Liu, S., Han, Y., Zhou, Z., Lactic acid bacteria in traditional fermented Chinese foods. *Food Res. Int.*, 2011; **44**: 643–651.
- Zhang, T., Zhang, X., Kong, B., Eine, H., Yang, Z. Isolation and screening of exopolysaccharideproducing from northeast sauerkraut and their applications in yoghurt (in Chinese). *China Dairy Indus.*, 2009; **37**: 8-11.
- Liu, X., Chen, S., Gao, X., Zhang, Y., Cai, Y. Isolation and identification of lactic acid bacteria in pickled cabbage (in Chinese). *China Brewing*, 2009; 2: 62-64.
- Cho, J., Lee, D., Jeon, J., Kim, J., Han, H.. Microbial population dynamics of kimchi, a fermented cabbage product. *FEMS Microbiol. Lett.*, 2006; 257: 262-267.
- Sekiguchi, H., Tomioka, N., Nakahara, T., Uchiyama, H. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. *Biotechnol. Lett.*, 2001; 23: 1205–1208.
- Miyamoto, M., Seto, Y., Nakajima, H., Burenjargal, S., Gombojav, A, Demberel, S., Miyamoto, T. Denaturing gradient gel electrophoresis analysis of lactic acid bacteria and yeasts in traditional Mongolian fermented milk. *Food Sci. Technol. Res.*, 2010; 16: 319– 326 ().
- De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., Lionetti, P. Impact of diet in shaping gut microbiota revealed by a

comparative study in children from Europe and rural Africa. *Proc. Natl. Acad. Sci. U. S. A.*, 2010; **107**: 14691-14696.

- Tanasupawat, S., Ezaki, T., Suzuki, K., Okada, S., Komagata, K., Kozaki, M. Characterization and identiûcation of *Lactobacillus pentosus* and *Lactobacillus plantarum* strains from fermented food in Thailand. *J Gen. Appl. Microbiol.*, 1992; 38: 121-134.
- Katano, T., Fukui, M. Molecular inference of dominant picocyanobacterial populations by denaturing gradient gel electrophoresis of PCR amplified 16S rRNA gene fragments. *Phycol. Res.*, 2003; **51**; 71-76.
- Iacumin, L., Cecchini, F., Manzano, M., Osualdini, M., Boscolo, D., Orlic, S., Comi, G. Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. *Food Microbiol.*, 2009; 26: 128-135.
- Water, J., Tannock, G.W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D.M., Munro, K., Alatossava, T. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species specific PCR primer. *Appl. Environ. Microbiol.*, 2000; 66: 297–303.
- Bjorkroth, K.J., Schillinger, U., Geisen, R., Weiss, N., Hoste, B., Holzapfel, W.H., Korkeala, H.J., Vandamme, P. Taxonomic study of *Weissella confusa* and description of *Weissella cibaria* sp. nov., detected in food and clinical samples. *Int. J Syst. Evol. Microbiol.*, 2002; **52**: 141–148.
- Lee, J.S., Heo, G.Y., Lee, J.W, Oh, Y.J., Park, J.A., Park, Y.H., Pyun, Y.R., Ahn, J.S. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. *Int. J Food Microbiol.*, **102**: 2005; 143–150.
- Hammes, W.P., Vogel, R.F. (ed.): The genera of lactic acid bacteria. Glasgow: Blackie Academic & Professional, 1995; pp19– 54.
- 15. Wu, J., Ma, Y., Zhang, F., Chen, F. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar. *Food Microbiol.*, 2012; **30**: 289-297.
- Lee, D., Kim, S., Cho, J., Kim, J. Microbial population dynamics and temperature changes during fermentation of kimjang kimchi. J *Microbiol.*, 2008; 46: 590-593.
- Zhang, Y., Meng, X. Isolation, identification and genetic diversity analysis of lactobacilli from naturally fermented northeast sauerkraut (in Chinese). *China Dairy Indus.*, 2009; **37**: 19-22.
- 18. Myungjin, J.C. Bacterial community structure

in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. *Int. J Food Microbiol.*, 2005; **103**: 91- 96.

- Wu, J.R., Zhang, J.C., Shi, P., Wu, R., Yue, X.Q., Zhang, H.P. Bacterial community involved in traditional fermented soybean paste *dajiang* made in northeast China. *Ann. Microbiol.*, 2013; 63:1417–1421.
- 20. Oki, K., Rai, A.K., Sato, S., Watanabe, K., Tamang, J.P. Lactic acid bacteria isolated from ethnic preserved meat products of the Western Himalayas. *Food Microbiol.*, 2011; **28**: 1308-1315.
- Kim, M., Chun, J. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. *Int. J. Food Microbiol.*, 2005; 103: 91–96.
- Wu, R., Wang, L., Wang, J., Li, H., Menghe, B., Wu, J., Guo, M., Zhang, H. Isolation and preliminary probiotic selection of Lactobacilli from koumiss in Inner Mongolia. *J. Basic Microbiol.*, 2009; 49: 318-326.
- Lu, Z.H., Peng, H.H., Cao, W., Tatsumi, E., Li, L.T. Isolation, characterization and identification of lactic acid bacteria and yeasts from sour Mifen, a traditional fermented rice noodle from China. J. Appl. Microbiol., 2008; 105: 893"903.
- Sun, T.S., Liu, H.X., Ni, H.J., Jin, Y., Zhang, H. Isolation and identification of lactic acid bacteria in Hogormag—A traditional fermented camel milk product (in Chinese). *China Dairy Indus.*, 2006; 34: 4"7.
- 25. Chao, S.H., Wu, R.J., Watanabe, K., Tsai, Y.C.

Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. *Int. J. Food Microbiol.*, 2009; **135**: 203–210.

- 26. Van Beek, S., Priest, F.G. Evolution of the lactic acid bacterial community during malt whisky fermentation, a Polyphasic Study. *Appl. Environ. Microbiol.*, 2002; **68**: 297-305.
- Van der Meulen, R., Scheirlinck, I., Van Schoor, A., Huys, G., Vancanneyt, M., Vandamme, P., De Vuyst, L. Spesourdoughs laboratory fermentations of wheat and analysis of lactic acid bacteria during population dynamics and metabolite target. *Appl. Environ. Microbiol.*, 2007; 73: 4741-4750.
- Wang, H., Cao, Y., Luo, S., Wu, H., Lu, F., Cao, Y., Qiao, D. Isolation, identification and characteristics of lactic acid bacteria from Sichuan pickles. J. Sichuan University (Nat. Sci. Ed.)., 2008; 45:1509-1512.
- Shan, J.X. Study on the microbial flora in sichuan sauerkraut and starter culture of sauerkraut (in Chinese). Master Dissertation of Southwest University, 2008.
- Nam, Y.D., Chang, H., Park, J.R., Kwon, H.Y., Quan, Z.X., Park, Y.H., Lee, J.S., Yoon, J.H., Bae, J.W. *Pseudoalteromonas marina* sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of *Pseudoalteromonas sagamiensis* as Algicola sagamiensis comb. nov.. *Int. J Syst. Evol. Microbiol.*, 200757: 12–18.