Prevalence and Seroprevalence of *Listeria monocytogenes* among Slaughtered Food Animals and Human Cancer Patients

Nitin Dudhe1*, Sandip Chaudhary1, Pranita Pantawane2, Thadiyam Puram Ramees3, Archana Patil1, Shilpashree Shinde1 and Himani Dhanze3

1Department of Veterinary Public Health & Epidemiology, Nagpur Veterinary College, Seminary hills, Nagpur 440006, India
2Department of Veterinary Public Health, Bombay Veterinary College, Parel, Mumbai, 400012, India.
3Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.) – 243122, India.

(Received: 12 June 2014; accepted: 08 August 2014)

The present study was aimed to study the seroprevalence of *Listeria monocytogenes* amongst the food animals and cancer patients in and around Nagpur Region, Maharashtra, India. A total of 750 samples comprising of 600 samples from food animals and 150 samples from cancer patients were collected from various slaughter houses and Government Hospital Nagpur, respectively. 50 samples of each meat, blood and serum was collected from 50 slaughtered goat, male cattle, buffaloes and pigs. From 50 cancer patient, each of stool, blood and serum samples were gained. Out of total sample processed 23 were found positive for Listeria spp. biochemical characterization leads 12 isolates turned out as *L. monocytogenes*, 01 *L. seeligiri*, 01 *L. innocua*, 01 *L. grayi*, 05 *L. welshimeri*. Human, buffalo and all blood samples except pig were found nil for the listeria while remaining showed positivity for the same. *L. monocytogenes* was recovered from (two isolates) beef, (four isolates) chevon and (six isolates) pig. In serodiagnosis highest seroprevalence was noted in goats (80%), followed by cattle (44%), pigs (42%) and buffalos (26%) and 26% in human cancer patients. From the research findings study focuses the prevalence of *L. monocytogenes* among food animals in Nagpur region of Maharashtra, India. It can be concluded that high seroprevalence is an indication for the persistence of organism in geographical area.

Key words: Food animal, Human cancer patient, *Listeria monocytogenes*, Prevalence, Seroprevalence.

Meat and meat products are important source of high quality nourishment for ever increasing human population in world. Though meat is good source of nutrient; it may act as potential source of infection. In recent years zoonotic diseases including those of food borne origin have gained more importance and food chain has been recognized as one of the main route of transmission. Listeria is important food borne pathogen between human and animal1 and various studies confirm the view that Listeria as a frequent contaminant in food products, and India is no exception2. Among microorganisms, *Listeria monocytogenes* is one of the most important emerging zoonotic public health hazards causing a food borne disease listeriosis. Listeriosis has increased manifold during past two decades3, responsible for 30% of food borne deaths from 1996 to 2005 in the United States and had a high fatality rate of 16.9%2. Food borne outbreaks of
listeriosis are also reported from Europe and America. In India, reports of outbreaks of listeriosis in animal populations are reviewed by many workers as Phadke et al., Rahman et al., Malik et al. L. monocytogenes have been isolated from the meat of goats, sheep and buffaloes and raw meat has been linked for the listeriosis. L. monocytogenes is a ubiquitous organism occurring in both terrestrial and aquatic habitats. It is a group of Gram-positive, facultatively anaerobic, non-spor-forming bacteria. The genus comprises ten species as Listeria monocytogenes, Listeria ivanovii, Listeria seeligeri, Listeria innocua, Listeria welshimeri, Listeria grayi, Listeria marthii, Listeria rocourtiae, Listeria fleischmannii, and Listeria weihenstephanensis. Of these, L. monocytogenes is an opportunistic pathogen of zoonotic significance responsible for 85% of animal cases and about 98% of human cases with a very high mortality rate of 20 to 30% associated with neural, visceral and reproductive clinical entities leading to septicemia, abortions and stillbirth whereas L. ivanovii is considered a pathogenic species for animals.

In case of human beings pregnant women, new-born babies, elderly people and immunocompromised individuals are grouped as high risk for listeriosis. In pregnant women and newborn babies organism is considered as the third-most-common cause of meningitis and meningoencephalitis, the prognosis is very poor in immunocompromised patients. Virulence factor of L. monocytogenes not found in other Listeria species called as LLO is stated as an appropriate test antigen and thus has been identified as a candidate antigen for a serological assay. All virulent strains of intracellular pathogenic L. monocytogenes elaborate an extra-cellular hemolysin, listeriolysin O (LLO) which is a pore-forming toxin of the cholesterol-dependent cytolysin family shown to be an essential virulence factor. It helps in the escape of the L. monocytogenes into the cytoplasm of the host cell during infection. Serodiagnosis is being taken as quick method of detection, ELISA-based formats designed to detect its major virulence factor listeriolysin (LLO), have been developed for diagnosis of listeriosis in animals and human beings which can be detected soon after clinical onset of listeriosis and antibodies persist for at least several months.

Due to global increase in reported incidence of listeriosis from foods, many countries have established a “zero tolerance” policy towards L. monocytogenes in ready to eat foods. Reports of listeriosis from humans in India are scanty, either because of failure to identify the isolate, its rarity, low incidence rate or lack of awareness. In Nagpur region, large mass of consumers prefer chevon, beef, buffalo meat and pork, where goats, cattle, buffalo and pigs are being slaughtered at four major slaughter houses in addition at many door-steps of butchers’ houses. Nevertheless, the disease largely remains undiagnosed and under reported, epidemiological data available on listeriosis in India to date is not adequate for assessing the extent of infection in human beings and animals. Therefore study was planned to detect the prevalence and seropositivity of Listeria monocytogenes in Nagpur region of Maharashtra, India.

MATERIAL AND METHODS

Biologicals and Laboratory animals

The standard bacterial strains of Listeria monocytogenes (MTCC 1143), Staphylococcus aureus (MTCC 3160) and Rhodococcus equi (MTCC 1135) were obtained from Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Chandigarh, India. Chemicals/conjugates required for the study were procured from Sigma Aldrich (US) and Merk/Gene bank, India.

For raising antisera against L.monocytogenes, adult healthy rabbits of New Zealand white breed weighing 2.5 to 3 kg were chosen and maintained in strict hygienic conditions with proper supply of ad-libitum feed and water throughout the study period.

Sample collection

A total of 750 samples were randomly collected, of which 600 from food animal comprising of meat, blood and serum from 50 each of goat, male cattle, buffaloes and pigs slaughtered at slaughter houses in and around Nagpur region and 150 samples from 50 human cancer patients comprising of blood, stool and serum from each one attending Government Medical College and
Hospital (GMCH), Nagpur. All samples were sealed, packed and transported in an ice box to the laboratory and processed immediately. The locations of samples collected were shown in Table 1 and Table 2.

Isolation of L. monocytogenes

The isolation of the *Listeria* species from meat and clotted blood were carried out as per the standard protocol described by USDA. Further identification was carried out by subjecting to gram staining, motility tests, biochemical characterization (Catalase test, Oxidase test, Methyl Red and Voges-Proskauer (MR-VP) tests, Nitrate reduction test) and sugar fermentation tests (D-mannopyranoside, L-rhamnose and D-xylose) as per the method described by Bergey’s Manual of Systematic Bacteriology.

Purification of the virulence factor Listeriolysin-O (LLO)

Listeriolysin O (LLO), a virulence factor of *L. monocytogenes* was purified from standard strain of *L. monocytogenes* (MTCC 1143) as per the method suggested by Lhopital et al. by using diethylaminoethyl (DEAE) cellulose (Sigma, Aldrich, US) chromatography. The pooled fractions (protein) were concentrated using polyethylene glycol (PEG-20,000) at 4°C. Obtained protein was estimated by using the method suggested by Lowry et al. The characterization of purified protein was done by subjecting to Sodium-dodecyl sulphate poly acrylamide gel electrophoresis (SDS-PAGE) for estimation of molecular weight as per Lammeli. The protein was visualized by employing silver staining technique as per method of Rosenberg.

Rising of antiserum against purified LLO

Hyper immune serum was raised against purified LLO in adult healthy rabbit as per the method of Barbuddhe. Briefly, 100 µg of purified LLO was dissolved in one ml of Normal saline solution (NSS) and one ml of Freund's complete adjuvant, mixed properly with needle until become viscous and completely blocks the gauge of needle. The mixture injected Intracutaneously on back at multiple sites with a distance of 1-2 cm. Rabbit was test bled at 14th and 21st days after first injection for checking the titer. The anti-LLO serum (Hyper immune serum) was separated and stored at -20°C after addition of thiomersal @ 0.01 per cent as preservative.

Detection of antibodies against Listeriolysin O (ALLO) by Indirect ELISA

The indirect plate ELISA was performed as per the method of Low et al. and standardized by Checker board analysis. Briefly, polystyrene microtitre plates (Nunc, Denmark) were coated with 100µl/well of coating buffer containing purified LLO as an antigen in a concentration of 1µg and 2µg per well and incubated at 4°C overnight. The coated plates were washed thrice with phosphate buffered saline (PBS), pH 7.2 to remove unadsorbed antigen. The unsaturated sites of the plates were blocked by adding 5 per cent skimmed milk powder prepared in PBS-T (PBS containing 0.05 per cent Tween-20) @ 200µl/well and incubated at 4°C overnight. The plates were then washed thrice with PBS-T. The hyperimmune serum as well as healthy (zero day) serum was diluted in range of 1:100 to 1:800 and each dilution was added @ 100 µl/well and plates were further incubated at 37°C for 2 h. The plates were then washed thrice with PBS-T and added with anti-species Horseradish peroxidase (HRPO) conjugate (Merck, India) in the range of 1:1000 to 1:4000 (except for anti-porcine HRPO conjugate from Sigma @ 1:20000) at the rate of 100 µl/well and again incubated at 37°C for 1 hr. The plates were then washed thrice with PBS-T and finally added with 1 mg/ml solution of O-phenylene-diamine dihydrochloride (OPD) (Sigma Aldrich, US) as substrate @ 100µl per well. The plates were then incubated for 15 min in dark and the colour developed was measured at 492 nm by ELISA reader (Multiskan Go, Thermofisher Scientific, Finland).

RESULTS

Out of 500 samples (400 Animal and 100 Human samples) 23 samples were found positive for Listeria spp. After biochemical characterization 12 isolates turned out to be *L. monocytogenes*, 01 *L. seeligiri*, 01 *L. innocua*, 01 *L. grayi*, 05 *L. welshimeri* (Table 3). Human samples, buffalo samples and blood from all animals were found negative while remaining all other samples showed positivity. Two isolates of *L. monocytogenes* were recovered from beef, four from chevon and six from pork. Three isolates of *L. seeligiri* isolated one from each beef, chevon and pork. Two isolates of *L. innocua* was isolated one each from chevon
and pork whereas, one *L. grayi* and five *L. welshimeri* were isolated from pork and beef respectively.

Purified protein/LLO was characterized with respect to its molecular weight 58.86 kDa by employing SDS-PAGE showed a final purified band of 57.92 kDa. Overloading of the gel with purified LLO did not reveal any contaminating bands in subsequent trials.

The standardization of indirect ELISA could be achieved as antigen (LLO) at concentration of 0.5µg/ well, serum dilution at 1:200 and anti-species HRPO conjugate at 1:2000 (except for anti-porcine HRPO conjugate from Sigma @ 1:20000) for final screening of test sera samples as the combination had Positive to Negative (P/N) ratio of 2.0 when compared with healthy serum. The serum samples with a P/N ratio of 1.5 to 2.0 was taken as suspected for listeriosis.

Seropositivity was revealed among all food animals and human patients. Among the four food animals tested, highest seroprevalence was noted in goats (80%), followed by cattle (44%), pigs (42%) and buffalos (26%). In human cancer patients 26% of seropositivity was obtained (Table 4).

Table 1. Details of samples collected from Slaughterhouses

<table>
<thead>
<tr>
<th>Food animals</th>
<th>Type and number of sample</th>
<th>Place of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meat</td>
<td>Blood</td>
</tr>
<tr>
<td>Cattle</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Buffalo</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Goat</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Pig</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Grand total = 600

Table 2. Samples collected from Human cancer patients

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Type and number of samples</th>
<th>Place of Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer patients Nagpur</td>
<td>Stool</td>
<td>Blood</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Grand Total = 150

Table 3. Prevalence of *Listeria* spp. among food animals and Human cancer patients

<table>
<thead>
<tr>
<th>Sample (No=50)</th>
<th>Listeria spp.</th>
<th>No. of positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lm</td>
<td>Ls</td>
</tr>
<tr>
<td>Cattle Beef</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>Blood</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buffalo Canabeef</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blood</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Goat Chevon</td>
<td>04</td>
<td>01</td>
</tr>
<tr>
<td>Blood</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pig Pork</td>
<td>04</td>
<td>01</td>
</tr>
<tr>
<td>Blood</td>
<td>02</td>
<td>0</td>
</tr>
<tr>
<td>Human Faecal</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blood</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>12</td>
</tr>
</tbody>
</table>

Lm = *Listeria monocytogenes*, *Ls* = *Listeria seeligeri*, *Lin* = *Listeria innocua*, *Lw* = *Listeria ivanovii*, *Lg* = *Listeria grayi*, *Lw* = *Listeria welshimeri*
DISCUSSION

Listeria can easily enter in food chain on the basis of its ability to survive in harsh conditions and persistence in environment for long period. Several developed countries have enforced strict regulations over occurrence of *L. monocytogenes* in food. To understand the listeriosis in detail, there is a need of systematic and coordinated studies to estimate the prevalence of *L. monocytogenes* in different habitats, occurrence of listeriosis in humans as well as in animals and their concordance of occurrence and actual disease. Prevalence studies will help to understand the epidemiology of disease that could be used to improve management of Listeriosis.

The present study was aimed at detection of prevalence of *L. monocytogenes* in and around Nagpur region, Maharashtra, India. In the region goats, male cattle, buffalo and pigs are being slaughtered at large extent with consumer’s high predilection so contributing large source of meat. Listeria species were identified by 5.75% of all samples from food animals, contributing 10.5% of meat and 1% of blood samples. *L. monocytogenes* (5%), *L. ivanovii* (0.5%), *L. innocua* (0.5%), *L. seeligeri* (0.5%), and *L. welshimeri* (2.5%) were isolated from meat samples and *L. monocytogenes* (1%) from blood samples in the study. The *L. monocytogenes* isolates were mainly recovered from cattle, goats and pigs. The findings are in line with several researchers who reported prevalence of *L. monocytogenes* as 6.4, 7.7 and 2.63% respectively among raw beef samples while none of the buffalo beef samples were found positive. The variation among these isolations can be attributed to the geographical variation of location, environmental factors, host factor, source of samples as well as combination of the media for the isolation followed.

No isolations from blood samples of all food animals except pig (4%) were noted in the present study. However, Chaudhari et al. and Shakuntala et al. reported 1.6% and 4.44% isolations of *L. monocytogenes* from buffalo blood samples collected from slaughter house and clinical samples in Uttar Pradesh (UP) respectively. Similarly, Brahmbhatt and Anjaria cited no recovery from goat blood samples collected from Gujarat and slaughter house Bareilly (UP) but BhanuRekha et al. reported 1.77% positivity of *L. monocytogenes* from goat blood slaughtered at Uttar Pradesh. The negativity among blood samples can be contributed to the fact that septicemia is relatively uncommon in Listeriosis. The variation can be attributed to the place/source of collection of samples as well as the actual bacteremic condition of the animal. Observations on the isolation of *Listeria* spp. other than *L. monocytogenes* viz. *L. welshimeri*, *L. innocua*, *L. seeligeri* and *L. grayi* confirms prevalence of these within the Nagpur region, Maharashtra, India.

Seroprevalence of 44% among cattle in present study is on higher side as compared to Dutta and Malik (2.8%), Nigam et al. (13.8%).

Table 4. Detection of antibodies to Listeriolysin-O (ALLO) among food animals and human cancer patients

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of serum samples analyzed</th>
<th>No. of positive sera samples (ALLO positivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>50</td>
<td>22(44%)</td>
</tr>
<tr>
<td>Buffaloes</td>
<td>50</td>
<td>13(26%)</td>
</tr>
<tr>
<td>Goats</td>
<td>50</td>
<td>40(80%)</td>
</tr>
<tr>
<td>Pigs</td>
<td>50</td>
<td>21(42%)</td>
</tr>
<tr>
<td>Human cancer patients</td>
<td>50</td>
<td>13(26%)</td>
</tr>
</tbody>
</table>

Barbuddhe et al. and Hassan et al. recorded zero prevalence amongst the buffalo meat samples. 8% prevalence of *L. monocytogenes* from goat meat samples was in harmony with the Barbuddhe et al. who reported 6.66% and 7.4% prevalence from the same species. However, Rahimi et al. and Hayat Ennaji et al. reported higher value of 32.7 and 23.3% from Iran and Morocco respectively.

Isolation from 8% pork samples registered in the present study in lined with Autio et al. and Molla et al. who reported 9.33% and 7.54% prevalence in Finland and Addis ababa respectively. Chasseignaux et al., Bonardi et al. and Peccio reported 21, 21.3 and 29.41% prevalence at France, North East Italy among pork samples respectively. However Kanugati et al. stated 50.2% at Nasco, United States; whereas Wesley et al. cited 1.4% at United States and Zhou and Jiao reported 0.95% prevalence in China among pork samples. The variation among these isolations can be attributed to the geographical variation of location, environmental factors, host factor, source of samples as well as combination of the media for the isolation followed.

No isolations from blood samples of all food animals except pig (4%) were noted in the present study. However, Chaudhari et al. and Shakuntala et al. reported 1.6% and 4.44% isolations of *L. monocytogenes* from buffalo blood samples collected from slaughter house and clinical samples in Uttar Pradesh (UP) respectively. Similarly, Brahmbhatt and Anjaria cited no recovery from goat blood samples collected from Gujarat and slaughter house Bareilly (UP) but BhanuRekha et al. reported 1.77% positivity of *L. monocytogenes* from goat blood slaughtered at Uttar Pradesh. The negativity among blood samples can be contributed to the fact that septicemia is relatively uncommon in Listeriosis. The variation can be attributed to the place/source of collection of samples as well as the actual bacteremic condition of the animal. Observations on the isolation of *Listeria* spp. other than *L. monocytogenes* viz. *L. welshimeri*, *L. innocua*, *L. seeligeri* and *L. grayi* confirms prevalence of these within the Nagpur region, Maharashtra, India.

Seroprevalence of 44% among cattle in present study is on higher side as compared to Dutta and Malik (2.8%), Nigam et al. (13.8%).
Kalorey et al.58 reported 5.48\% Seroprevalence from Vidarbha region using Listeriolysin-O as an antigen by indirect ELISA. Among buffalo, 26\% of seroprevalence was comparable with authors31,59 who reported 41.6\% and 52.5\% of seropositivity respectively. Similarly, higher seroprevalence of 80 \% was noticed among goats as compared to those reported by several researchers as 41.1\% by Barbuddhe et al.7 and 21.69\% by Bhanu Rekha et al.54. In case of 42\% prevalence could be compared with 43\% positivity for agglutinin in gaming pigs reported by Hislop60.

The high positivity for ALLO observed in present study might be attributed to variation in the nature and behavior of antigen could not be denied. Perpetuation of the strain in geographical region and possibility of exposure of these animals to low infective doses which has been reported to elicit persistent immune response to LLO equal to those higher infective doses26.

Amongst the human stool and blood samples examined from cancer patients found nil for the presence of listeriosis, the findings are in agreement of Dhanashree et al.16 and Kaur et al.61 whereas, Safdar et al.62 reported 0.47\% of prevalence among cancer patients at New York. Seroprevalence among human cancer patients could be compared with Barbuddhe et al.63 who reported 31.8\% and 32.7\% of seroprevalence among venereal disease persons and farm workers respectively in north India. Present results could not proved and cited necessity of large number of samples from human cancer patients to revalidate the association among immunocompromised cancer patients with seroprevalence against listeriosis.

CONCLUSION

By considering research findings the present study focuses the prevalence of \textit{L. monocytogenes} among food animals in Nagpur region of Maharashtra, India. High seroprevalence indicate the persistence of organism in geographical area. Pathogenesity of 12 \textit{L. monocytogenes} isolates has already been assessed by Dudhe et al.64 indicating high virulence of these species and thus having epidemic potential. It warns the possibility of transfer of this pathogen from animals to foods of animal origin and thereafter the food chain. Therefore, prevalence and seroprevalence of \textit{L. monocytogenes} need to be studied with wide epidemiological investigations specifically in meat bornes implications which will help to prevent this zoonotic significant pathogen.

REFERENCES

11. Halter, E. L., Neuhaus, K., and Scherer, S. \textit{Listeria weihenstephanensis} sp. nov., isolated...

24. USDA. Laboratory Guidebook : Isolation and Identification of Listeria monocytogenes from Red Meat, Poultry and Egg Products, and Environmental Samples. USDA, 2011.

34. CDC: Multistate Outbreak of listeriosis linked to whole cantaloupes from Jensen Farms, Colorado. 2012; Available at: http://www.cdc.gov/listeria/outbreaks

J PURE APPL MICROBIO, 8(5), OCTOBER 2014.

60. Hislop, N.S.G. Epidemiologic and immunologic factors in listeriosis in ‘Problems of listeriosis’. Proceeding 6th International symposium,

