Antibacterial Activities of *Salvia officinalis* and *Opuntia ficus indica* Extracts

Mohamed M. Ibrahim¹,²*, Ibrahim A. Alaraidh¹, Amal A. Hazani¹ and G.A. EL-Gaaly¹

¹Botany and Microbiology Department, Science College, King Saud University, Riyadh- 11451-P.O. Box 2455 KSA.
²Botany and Microbiology department, Faculty of Science, Alexandria University, Alexandria, P. O. Box 21511 Egypt.

(Received: 18 July 2014; accepted:09 September 2014)

The antibacterial activities of 3 plant extracts of were studied. The dried extracts of *Salvia officinalis* (Lamiaceaea) (leaf) and *Opuntia ficus indica* (Cactaceae) (fruit) were tested in vitro against 3 bacterial species named, *Escherichia coli*, *Staphylococcus aureus* and *Pseudomonas aeruginosa* by disk diffusion and micro-dilution. The patterns of inhibition varied with the plant extract and the organism tested. *Staphylococcus aureus* and *Escherichia coli* were the most inhibited microorganisms. *Salvia officinalis* extract was the most active against *Pseudomonas aeruginosa*. Results of this kind herald the interesting promise of designing a potentially active antibacterial agent of plant origin. It can be suggested that ethanol extracts of these plants are a great potential source of antibacterial compounds that could be used in the formulation of new antimicrobial drugs of natural basis.

Key words: Antibacterial, medicinal plants, Opuntia

There are more than 35,000 plants species being used in various human cultures around the world for medicinal purpose. Biologically active compounds present in medicinal plants have always been of great interest to scientist working in this field (Koshy Philip et al., 2011). Natural products perform various functions and many of them have interesting and useful biological activities.

The global emergence of drug resistant bacteria is increasingly limiting the effectiveness of current drugs and significantly causing treatment failure (Hancock, 2005). Due to the increase of resistance to antibiotics, there is a pressing need to develop new and innovative antimicrobial agents. Among the potential sources of new agents, plants have long been investigated. Because, they contain many bioactive compounds that can be of interest in therpeutic.

The objective of our present work was to investigate the antibacterial potentials of *Salvia officinalis* (Lamiaceaea) (leaf) and *Opuntia ficus indica* (Cactaceae) (fruit) plants against three Gram positive and Gram negative pathogenic bacteria.

MATERIALS AND METHODS

Plant materials and preparation of extracts

The ground dried sample (30 mg) was extracted three times with 1.2 mL MeOH:acetic acid (99:1), sonicated in a water bath at room temperature for 15 min and then centrifuged at 3900 rpm for 15 min (Fish Bioblock Scientific).

The plant materials used in this study consisted of *Salvia officinalis* (leaf) and *Opuntia ficus indica* (Cactaceae) (fruit), which were
collected from Riyadh markets. Opuntia fruits were washed with distilled water, air-dried, and hand-peeled. Both, peel and pulp were freeze-dried and reduced into powders. The leaves of S. officinalis were air-dried and grounded into fine powder. The ground dried sample (30 mg) was extracted three times with 1.2 mL 80% ethanol, sonicated in a water bath at room temperature for 15 min and then centrifuged at 3900 rpm for 15 min (Fish Bioblock Scientific). After filtration of total extracts, the ethanol in each filtrate was evaporated completely to dryness under vacuum, and each extract was weighed and subjected to an antibacterial activity test.

Test Microorganisms

Three clinical strains of bacteria used in the study were obtained from the Microbiology Laboratory, Faculty of Medicine, King Khalid University, Riyadh, Kingdom of Saudi Arabia: Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa.

Antibacterial activity

Antibacterial activity was determined by the well diffusion method according to the NCCLS (1993). 100 µl of standardized inoculum of each test bacterium was spread onto sterile Petri plates containing 20 ml of Mueller Hinton agar medium were seeded with a 24 h culture of the bacterial strains. Wells (6 mm diameter) were cut into the agar using a sterile cork-borer, subsequently each well was filled with 100 µl of the ethanol plant extracts and were tested in a concentration of 100 mg/ml. The inoculum size was adjusted so as to deliver a final inoculum of approximately 10⁸ colony-forming units (CFU)/ml. Incubation was performed at 37 ºC for 24 h. The assessment of antibacterial activity was based on measurement of the diameter of the inhibition zone formed around the well. A standard 30 µg tetracycline disk was used as a positive control.

Minimum inhibitory concentration (MIC) was determined by the micro-dilution method using serially diluted (2-fold) plant extracts according to the NCCLS (2000). A final concentration from 5.20 to 0.642 mg/ml was used for each plant sample. The following ethanol extracts were tested: S. officinalis and Opuntia ficus indica were adjusted to contain approximately 10⁵ CFU/ml. The test plates were incubated at 37 ºC for 18 h.

RESULTS

From the screening of antimicrobial activity of the plant extracts by disc diffusion method, it was observed that both plant extract have antibacterial activities towards Staphylococcus aureus, Pseudomonas aeruginosa.

<table>
<thead>
<tr>
<th>Bacterial Sp.</th>
<th>Salvia officinalis (Leaves) MIC</th>
<th>Opuntia ficus indica (Fruits) MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 mg/ml 12.5 mg/ml</td>
<td>23 mg/ml 11.5 mg/ml</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>9.11(7.11-11.12) 7.48(6.33-8.63)</td>
<td>17.35(13.92-20.15) 14.10(10.11-18.02)</td>
</tr>
</tbody>
</table>

Table 1. Inhibitory properties (inhibition zone diameter in mm) and minimum inhibition concentration (MIC) of plant extracts on different bacteria

![Fig:1 Antimicrobial activities of ethanolic extract of Salvia officinalis (leaf) and Opuntia ficus indica (Cactaceae) (fruit) on 3 types of pathogenic bacteria.](image_url)

aeruginosa and Escherichia coli bacteria. The zone of inhibitions were observed in both plants and ranged from 8.5 to 12 mm.

The results of antibacterial activities of the ethanol plant extracts obtained from the leaves of Salvia officinalis and fresh fruits of O. ficus indica by agar diffusion method are shown in Table 1. The ethanol extracts of the plants screened showed various inhibitory effects (9-15 mm/100 µl inhibition zone) against bacteria (Table 1).

The ethanolic extract of the leaves of Salvia officinalis exhibited moderate antibacterial activity with respective means between 10.99 - 25 mm inhibition zone at 12.5 mg/ml concentration and MIC value of 7.74 mg/ml. It showed highest inhibitory activity against Pseudomonas aeruginosa, and moderate activity against Escherichia coli, and least activity against Staphylococcus pneumoniae (Table 1). On the other hand, the ethanol extract of the fresh fruits of O. ficus indica have a slightly lower antibacterial activity with a zone of inhibition ranging from 13.83 to 18.36 mm at 23 mg/ml concentration and MIC value of 13.36 mg/ml. It was found to be active against Staphylococcus aureus and less active against Pseudomonas aeruginosa, while it exhibited much less activity against Escherichia coli.

DISCUSSION

Medicinal plants play a crucial role in the search for alternative antimicrobial components. According to the World Health Organization, it is estimated that around 80% of the earth’s population use some form of herbal medicine in their health care, whereas natural products are a preferable option than synthetic ones (Madhuri and Pandey, 2009). The results obtained in the present study indicate that the ethanol extract of leaves of Salvia officinalis and fresh fruits of O. ficus indica have a higher antibacterial activity with a zone of inhibition ranging from 10.99 - 25 mm at 12.5 mg/ml concentration and MIC value of 7.74 mg/ml. It was found to be active against Pseudomonas aeruginosa, and moderate activity against Escherichia coli, and least activity against Staphylococcus pneumoniae (Table 1). On the other hand, the ethanol extract of the fresh fruits of O. ficus indica have a slightly lower antibacterial activity with a zone of inhibition ranging from 13.83 to 18.36 mm at 23 mg/ml concentration and MIC value of 13.36 mg/ml. It was found to be active against Staphylococcus aureus and less active against Pseudomonas aeruginosa, while it exhibited much less activity against Escherichia coli.

CONCLUSION

It can be suggested that ethanol extracts of these plants are a great potential source of antibacterial compounds that could be used in the formulation of new antimicrobial drugs of natural basis.

ACKNOWLEDGEMENTS

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

REFERENCES
