# Nocardiopsis synnemasporogenes sp. nov., NEAE-85, a Novel L-Asparaginase Producing Actinomycete Isolated from Soil in Egypt

## Noura El-Ahmady El-Naggar

Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.

#### (Received: 03 August 2014; accepted: 27 October 2014)

A novel actinomycete, strain NEAE 85, was isolated from a soil sample collected from Alwaraq, Egypt. This strain shows high L-asparaginase activity and subjected to taxonomic analyses. It showed a range of chemical and morphological properties consistent with its classification in the genus Nocardiopsis. The strain formed well developed substrate mycelium, aerial hyphae are long, moderately branched, straight to flexuous, or irregularly zigzagged or spiral forms, different spirals are wrapped together to form synnemata. The mycelia of a synnema fragment in later stages to form bacillary spores of various lengths. Phylogenetic analysis using 16S rRNA gene sequences showed that the isolate was closely related to Nocardiopsis baichengensis strain YIM 90130 (87% 16S rRNA gene sequence similarity) and Nocardiopsis trehalosi strain VKM Ac-942 (88%). However, a comparative study between strain NEAE-85 and its closest phylogenetic neighbours of the genus Nocardiopsis revealed significant differences between them in morphological, cultural, and physiological characteristics. It is evident that strain NEAE-85 clearly represents a novel species of the genus Nocardiopsis, for which the name Nocardiopsis synnemasporogenes NEAE-85 sp. nov. is proposed and sequencing product was deposited in the GenBank database under accession number KJ200340.

Key words: Nocardiopsis sp. NEAE-85, 16S rRNA sequences analysis, Scanning electron microscope, phenotypic properties.

The demand for L-asparaginase is expected to increase several fold in coming years due to its potential industrial applications as food processing aid besides its clinical applications<sup>1</sup>. Use of L-asparaginase has revolutionised the antileukaemia therapy in acute lymphoblastic leukemia<sup>2</sup>. Its antitumor effect results from the depletion of asparagine, an amino acid essential to leukemia cells, and subsequent inhibition of protein synthesis leading to cytotoxicity. However, its use has been limited by a high rate of hypersensitivity in the long-term used<sup>3</sup> and development of antiasparaginase antibodies, which causes an anaphylactic shock or neutralization of the drug effect. Therefore there is a continuing need to screen soil samples from various sources for isolation of potential microbes in order to obtain strains capable of producing new and high yield of L-asparaginase with less adverse effects.

Actinomycetes are also a good source for the production of L-asparaginase<sup>4</sup>. The genus *Nocardiopsis* is a member of the family Nocardiopsaceae including actinomycetes showing fragmenting mycelium and a cell wall containing *meso*-diaminopimelic acid, but no diagnostically important carbohydrates<sup>5</sup>. The genera classified in the family Nocardiopsaceae can be distinguished by using a combination of

<sup>\*</sup> To whom all correspondence should be addressed. Tel.: (002)01003738444; Fax.: (002)03 4593423; E-mail: nouraelahmady@yahoo.com

chemotaxonomic, morphological and physiological criteria, by 16S rRNA gene signature nucleotides<sup>6</sup> and by comparisons of 16S rRNA gene sequenced data. Standard chemotaxonomic procedures can be used for the detection of diagnostic amino acids and sugars in whole-cell hydrolysates<sup>7</sup>.

Nocardiopsis strains are Gram positive, aerobic, chemo-organotrophic, nonacid fast, nonmotile filamentous actinomycetes. Growth temperature range is 10-45°C. Widely distributed in saline and alkaline soils, and found in compost, vegetable matter, indoor environments, and clinical material of animal and human origin<sup>8</sup>. Substrate mycelium is well developed and hyphae are long and densely branched. Fragmentation into coccoid and bacillary elements may occur. Aerial mycelium is well developed and sparse to abundant; aerial hyphae are either long and moderately branched, straight to flexuous, or irregularly zigzagged, completely fragmenting into oval to elongated, rodshaped smooth-surfaced spores<sup>9; 10</sup>. Initiation of sporulation is often characterized by twisted hyphae, which by examination at higher magnification, reveal a zigzag arrangement of the developing spores. The elongated spores are smooth and can divide subsequently into smaller spores of irregular size by cross-wall formation. Spores are enclosed within a fibrillar sheath and have thickened polar walls<sup>11</sup>. Nocardiopsis synnemataformans is the only species known to form synnemata from spiral aerial hyphae that wrap together to form long ropes that subsequently fragment into small rod-shaped elements<sup>12</sup>. Nocardiopsis strains do not produce sporangia, sclerotia, or motile elements .

The aim of the present study was to identify the strain NEAE-85 by using a combination of chemotaxonomic, morphological, physiological criteria and 16S rRNA gene sequence.

#### MATERIALS AND METHODS

#### Microorganisms and cultural conditions

Actinomycetes from the soil had been isolated using standard dilution plate method procedure on Petri plates containing starch nitrate agar medium of the following composition (g/L): Starch, 20; KNO<sub>3</sub>, 2; K<sub>2</sub>HPO<sub>4</sub>, 1; MgSO<sub>4</sub>.7H<sub>2</sub>O, 0.5; NaCl, 0.5; CaCO<sub>3</sub>, 3; FeSO<sub>4</sub>.7H<sub>2</sub>O, 0.01; agar, 20 and distilled water up to 1 L; then plates were incubated

J PURE APPL MICROBIO, 8(6), DECEMBER 2014.

for a period of 7 days at 30°C. Actinomycete isolates were purified and maintained as spore suspensions in 20 % (v/v) glycerol at -20 °C for subsequent investigation.

#### Morphology and cultural characteristics

The morphology of the spore chain and the spore surface ornamentation of strain NEAE-85 were examined on starch nitrate agar medium after 14 days at 30°C. The gold-coated dehydrated specimen was examined at different magnifications with Analytical Scanning Electron Microscope Jeol JSM-6360 LA operating at 20 Kv at the Central Laboratory, City of Scientific Research and Technological Applications, Alexandria, Egypt. Aerial spore-mass color, substrate mycelial pigmentation and the production of diffusible pigments were observed on tryptone-yeast extract agar (ISP medium 1), yeast extract-malt extract agar (ISP medium 2), oatmeal agar (ISP medium 3), inorganic salt starch agar (ISP medium 4), glycerolasparagine agar (ISP medium 5) peptone-yeast extract iron agar (ISP medium 6) and tyrosine agar (ISP medium 7) as described by Shirling and Gottlieb<sup>13</sup>; all plates were incubated at 30°C for 14 days.

#### Chemotaxonomy

Sugars and diaminopimelic acid (DAP) isomers were identified by the method described by Staneck and Roberts<sup>7</sup>.

#### **Physiological characteristics**

Carbon source utilization was tested on plates containing ISP basal medium 9<sup>13</sup> supplemented with a final concentration of 1% of the tested carbon sources. The plates were incubated at 30°C and read after 14 days. Melanoid pigment production was examined on peptoneyeast extract-iron agar (ISP medium 6), on tyrosine agar (ISP medium 7), and in tryptone-yeast extract broth (ISP medium 1)13. Growth in the presence of sodium chloride was determined according to Tresner et al14. Degradation of casein was tested following the method of Gordon et al.15 and reduction of nitrates to nitrites<sup>16</sup> was examined. Liquefaction of gelatin was evaluated by using the method of Waksman<sup>17</sup>. The ability to coagulate or to peptonize milk and hydrogen sulphide production was determined as described by Cowan and Steel<sup>18</sup>. Lecithinase activity was conducted on egg-yolk medium according to the method of Nitsch and Kützner<sup>19</sup> and the capacity to decompose cellulose was tested following the method of Ariffin et al.,<sup>20</sup>. The ability of strain to produce  $\alpha$ -amylase was determined; the isolate was streaked onto starch nitrate medium plates containing 2% soluble starch and incubated at 30°C for 7 days. After incubation, the plate is flooded with Gram's iodine solution and zone of clearance was observed<sup>21</sup>. The ability of the organism to inhibit the growth of five bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella), five fungal strains (Rhizoctonia solani, Fusarium oxysporum, Alternaria solani, Bipolaris oryzae, Aspergillus niger) and two yeast (Sacchromyces cerevisiae, Candida albicans) was determined. Some additional tests can be considered to be useful in completing the description of a strain or species, even if they are not very significant or indicative on their own, The ability of strain NEAE-85 to produce uricase<sup>22</sup>; asparaginase<sup>23</sup> and chitosanase activity<sup>24</sup> were tested.

# 16S rRNA sequencing

The preparation of genomic DNA of the strain was conducted in accordance with the methods described by Sambrook et al.25. The PCR amplification reaction was performed in a total volume of 100 µl, which contained 1 µl DNA, 10 µl of 250 mM deoxyribonucleotide 5'-triphosphate (dNTP's); 10 µl PCR buffer, 3.5 µl 25 mM MgCl, and 0.5 µl Taq polymerase, 4 µl of 10 pmol (each) forward 16s rRNA primer 27f (5'-AGAGTTTGATCMTGCCTCAG-3') and reverse 16s rRNA primer 1492 r (5'-TACGGYTACCTT GTTACGACTT-3') and water was added up to 100 µl. The PCR-apparatus was programmed as follows: 5 min denaturation at 94°C, followed by 35 amplification cycles of 1 min at 94°C, 1 min of annealing at 55°C, and 2 min of extension at 72°C, followed by a 10 min final extension at 72°C. The PCR reaction mixture was then analyzed via agarose gel electrophoresis, and the remaining mixture was purified using QIA quick PCR purification reagents (Qiagen, USA). The purified PCR product of approximately 1400 bp was sequenced by using two primers, 518F; 5'-CCAGCAGCC GCG GTAATA CG-3' and 800R; 5'-TAC CAG GGT ATC TAA TCC-3'. Sequencing was performed by using Big Dye terminator cycle sequencing kit (Applied BioSystems, USA). Sequencing product was resolved on an Applied Biosystems model 3730XL automated DNA sequencing system (Applied BioSystems, USA) and deposited in the GenBank database under accession number KJ200340. Sequence alignment and phylogenetic analysis

The 16S rRNA gene sequence of strain NEAE-85 was aligned with the corresponding 16S rRNA sequences of the type strains of representative members of the genus *Nocardiopsis* retrieved from the GenBank, EMBL, DDBJ and PDB databases by using BLAST program (www.ncbi.nlm.nih. gov/blst)<sup>26</sup> and the software package MEGA4 version 2.1 <sup>27</sup> was used for multiple alignment and phylogenetic analysis. The phylogenetic tree was constructed via the bootstrap test of neighbor-joining algorithm<sup>28</sup> based on the 16S rRNA gene sequences of strain NEAE-85 and related organisms.

#### **RESULTS AND DISCUSSION**

# Morphology and cultural characteristics of the isolate no. NEAE-85

Substrate mycelium is well developed. Aerial mycelium is well developed and abundant. Cultural characteristics of strain NEAE-85 are shown in Table 1. Aerial mycelium is white, beige, grey to olive grey (Fig. 1) and the substrate mycelium is brown, white to brownish grey. Faint brown diffusible pigments are produced on ISP 2 medium (Yeast extract -malt extract agar) and ISP 6 medium (Peptone-yeast extract iron agar). This pigment is not pH-sensitive when tested with 0.05 M NaOH or HCl. Vegetative hyphae are well developed and fragmented (Fig. 2). Strain NEAE-85 grew well on all tested media (Table 1). Aerial hyphae are long, moderately branched, straight to flexuous, or irregularly zigzagged (Fig. 2) or spiral forms, different spirals are wrapped together to form synnemata. The mycelia of a synnema fragment in later stages to form bacillary spores (0.58-0.0.82 µm in width and 1.83-2.43 µm in length ) of various lengths. Initiation of sporulation is often characterized by twisted hyphae, which by examination at higher magnification; reveal a zigzag arrangement of the developing spores. The elongated spore surface is smooth and can divide subsequently into smaller spores of irregular size by cross-wall formation. Spores are enclosed within a fibrillar sheath and have thickened walls.

4338

#### **Physiological characteristics**

The physiological and biochemical reactions of strain NEAE-85 are shown in Table 2. Milk coagulation, milk peptonization, starch hydrolysis, gelatin liquefaction, protease, cellulase, uricase, chitosanase and asparaginase are positive, but H<sub>a</sub>S production, nitrate reduction and lecithinase activity are negative. Optimum growth is at 30-37°C and pH 7 with NaCl tolerance 4% (w/v) NaCl. D-fructose, D-xylose, D-galactose, Dglucose, L-arabinose, rhamnose, ribose, Dmannose and cellulose are utilized for growth as carbon sources but not sucrose, trehalose and raffinose. Only trace of growth on maltose. It exhibited no antimicrobial activity against Sacchromyces cerevisiae, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Rhizoctonia solani, Fusarium oxysporum, Alternaria solani, Bipolaris oryzae, Aspergillus niger, Klebsiella pneumoniae.

#### Chemotaxonomy

Chemotaxonomic tests showed that the cell wall is chemotype III (meso isomer of diaminopimelic acid and no characteristic sugars in whole-cell hydrolysates)<sup>29</sup>

# 16S rRNA gene sequence comparisons and phylogenetic analysis

The 16S r RNA gene sequence (1538bp) was determined for strain NEAE-85. A BLAST search<sup>26</sup> of the GenBank database using this

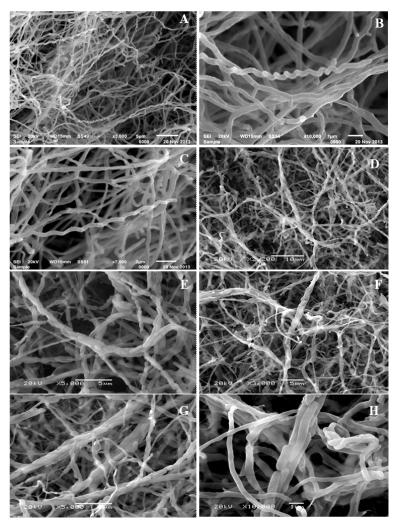
sequence showed its similarity to that of many species of the genus *Nocardiopsis*. A phylogenetic tree (Fig. 3) based on 16S rRNA gene sequences of members of the genus Nocardiopsis was constructed according to the neighbour-joining method of Saitou and Nei<sup>28</sup> with MEGA4<sup>27</sup>. Phylogenetic analysis indicated that the strain NEAE-85 falls into a clade together with Nocardiopsis trehalosi strain VKM Ac-942 (GenBank/EMBL/ DDBJ accession No. NR\_024958.1) and Nocardiopsis baichengensis strain YIM 90130(GenBank/EMBL/DDBJ accession No. NR 043033.1). A combination of morphological, cultural, and physiological characteristics showed that strain NEAE-85 could be differentiated from its closest phylogenetic relatives. It is evident; therefore, that strain NEAE-85 be classified as a representative of a novel species of the genus Nocardiopsis.

### **Taxonomic conclusions**

Strain NEAE-85 was grown on standard ISP media<sup>13</sup> for 14 days at 30 °C, and was examined for pigmentation, aerial mycelium and other morphological features. The organism exhibited phenotypic properties typical of members of the genus *Nocardiopsis*<sup>30</sup>. It was an aerobic, nonmotile, Gram-positive actinomycete and formed long, well-developed and branched substrate mycelium. The colour of the substrate mycelium was not sensitive to changes in pH. Aerial mycelium is well developed and abundant aerial hyphae are

| Medium                                            |                    | Color of              |                       |           |
|---------------------------------------------------|--------------------|-----------------------|-----------------------|-----------|
|                                                   | Aerial<br>mycelium | Substrate<br>mycelium | Diffusible<br>pigment | Growth    |
| Tryptone-yeast extract agar<br>(ISP medium 1)     | Whitish grey       | brownish grey         | Non-pigmented         | Excellent |
| Yeast extract -malt extract agar (ISP medium 2)   | Olive grey         | Dark brownish         | Faint brown           | Excellent |
| Oatmeal agar(ISP medium 3)                        | Beige              | Faint brown           | Non-pigmented         | Excellent |
| Inorganic salt-starch agar<br>(ISP medium 4)      | Beige              | Faint brown           | Non-pigmented         | Excellent |
| Glycerol asparagines agar<br>(ISP medium 5)       | White              | White                 | Non-pigmented         | Good      |
| Peptone-yeast extract iron agar<br>(ISP medium 6) | Creamy beige       | Brown                 | Faint brown           | Excellent |
| Tyrosine agar(ISP medium 7)                       | Grey               | Brown                 | Non-pigmented         | Good      |

 Table 1. Culture properties of the Nocardiopsis sp. strain NEAE- 85

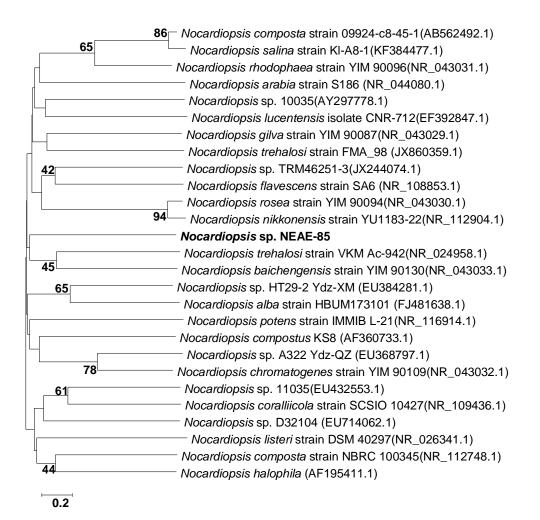

The substrate mycelium pigment was not pH sensitive when tested with 0.05 N NaOH or 0.05 N HCl. The diffusible pigment was not pH sensitive when tested with 0.05 N NaOH or 0.05 N HCl.

|                                                                     | Nocardiopsis sp.NEAE-85                                                         | Nocardiopsis baichengensis             | Nocardiopsis trehalosi                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|
| Aerial mycelium on ISP<br>mdeium 2                                  | Olive grey                                                                      | White to yellow-white                  | White to cream or yellowish gray             |
| Synnemata                                                           | + 2                                                                             |                                        | -<br>1.11:t                                  |
| ouosuate inycentum on tor<br>medium 7                               | Datk DIOWIIISII                                                                 | LIGHT YELLOW TO UCEP                   | rate onive-brownish to pare<br>orange-vellow |
| Vegetative hyphae                                                   | Well developed and abundant                                                     | Well developed and fragmented          | Zigzag or twisted-ribbon-like at the         |
| Production of diffusible                                            | Faint brownw                                                                    | No diffusible pigments                 | A light yellow-brownish or light             |
| proment<br>Spore chain morphology                                   | The mycelia of a synnema fragment                                               | Long spore chains                      | orange-yenow                                 |
| Spore surface<br>Spore shape                                        | to totti bactuary spores of various renguis<br>Smooth<br>Cylindrical, elongated | Smooth                                 | Smooth<br>Irregularly sized (mostly          |
| Sensitivity of diffusible<br>pigment to pH                          | This pigment is not pH-sensitive                                                | No diffusible pigments<br>are produced | ciongaicu)                                   |
| Melanin production on ISP medium 6<br>Decradation of                | +1                                                                              |                                        | -                                            |
| Lecithin                                                            |                                                                                 |                                        |                                              |
| Casein                                                              | + -                                                                             | _                                      | +                                            |
| Max. NaCl tolerance (%, w/v)                                        | + 7                                                                             | 18                                     | 5                                            |
| Optimum growth temperature range (°C)                               | 30–37°C                                                                         | 37-40°C                                | 28–37°C                                      |
| D(-) Fructose                                                       | +                                                                               | +                                      | +                                            |
| D(+) Xylose                                                         | +                                                                               | +                                      | +                                            |
| D(+) Galactose                                                      | + -                                                                             | + +                                    | + +                                          |
| L-arabinose                                                         | + +                                                                             | + +                                    | + +                                          |
| Ribose                                                              | +                                                                               | +                                      |                                              |
| D(+) Mannose                                                        | +                                                                               | + -                                    | +                                            |
| Sucrose<br>Maltose                                                  | . +                                                                             | + +                                    | . +                                          |
| Rhamose                                                             | 1 +                                                                             | - +                                    | - +                                          |
| Cellulose                                                           | +                                                                               |                                        | +                                            |
| L'rehalose                                                          | 1 -                                                                             |                                        | -                                            |
| D-lactose<br>Raffinose                                              | + .                                                                             |                                        | + ,                                          |
| Growth of pH                                                        | 5-9                                                                             |                                        | 6-9                                          |
| Enzymes                                                             |                                                                                 |                                        |                                              |
| α –amylase (Starch hydrolysis)<br>Gelatinase (Gelatin Timification) | + +                                                                             | . +                                    |                                              |
| Reduction of nitrates to nitrite                                    | - 1                                                                             | - 1                                    |                                              |
| H.S. production                                                     | +                                                                               | +                                      | +                                            |
| Coaggulation of milk                                                | +                                                                               |                                        |                                              |
| Peptonization of milk<br>Antimicrohial activities                   | + ,                                                                             |                                        | -+                                           |
|                                                                     |                                                                                 |                                        | ÷                                            |

4339



**Fig. 1.** Color of the aerial mycelium of *Nocardiopsis* sp. NEAE -85 grown on starch -nitrate agar medium for 7-14 days of incubation at 30°C




**Fig. 2.** Scanning electron micrograph of strain *Nocardiopsis* sp.NEAE-85, showing zigzag hyphae(A, B), initiation of sporulation (C), spores enclosed within a fibrillar sheath and spore chains with a smooth surface (E, H). The culture was grown on on starch nitrate agar medium for 14 days at 30  $^{\circ}$ C

J PURE APPL MICROBIO, 8(6), DECEMBER 2014.

long, moderately branched, straight to flexuous, or irregularly zigzagged or spiral forms, different spirals are wrapped together to form synnemata. Phylogenetic analysis using 16S rRNA gene sequences showed that the isolate was closely related to *Nocardiopsis baichengensis* strain YIM 90130 (87% 16S rRNA gene sequence similarity) and *Nocardiopsis trehalosi* strain VKM Ac-942 (88%). A comparative study between strain NEAE-85 and its closest phylogenetic neighbours of the genus *Nocardiopsis* revealed significant differences in morphological, cultural, and physiological characteristics as summarized in Table 2. Strain NEAE-85 could be differentiated from its closest phylogenetic neighbour, *Nocardiopsis baichengensis* and *Nocardiopsis trehalosi* in that its aerial hyphae form synnemata, the mycelia of a synnema fragment to form bacillary spores of various lengths while the two its closest phylogenetic neighbor don't form synnemata.

The isolate also could be differentiated from its closest phylogenetic neighbours by its olive grey aerial mycelium, dark brown substrate mycelium and faint brown diffusible pigment on yeast extract -malt extract agar while the two phylogenetic neighbours produced white to



**Fig. 3.** Bootstrap neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, showing the relationships between strain NEAE-85 and related species of the genus *Nocardiopsis*. Only bootstrap values above 40 %, expressed as percentages of 1000 replications, are shown at the branch points. GenBank sequence accession numbers are indicated in parentheses after the strain names. Phylogenetic analyses were conducted in the software package MEGA4. Bar, 0.2 substitution per nucleotide position.

J PURE APPL MICROBIO, 8(6), DECEMBER 2014.

yellow-white(*N. baichengensis*) or white to cream or yellowish gray(*N. trehalosi*) aerial mycelium . *N. baichengensis* produced light yellow to deep orange-yellow and no diffusible pigments are produced while *N. trehalosi* produced pale olivebrownish to pale orange-yellow and a light yellowbrownish or light orange-yellow is produced on some media. The isolate also could be differentiated from its closest phylogenetic neighbours by its ability to to coaggulate and peptonize milk.

In conclusion, It is evident from the genotypic and phenotypic data that the asparaginase producing strain NEAE-85, isolated from a soil sample collected from Alwaraq, Egypt, represents a novel species of the genus *Nocardiopsis*, for which the name *Nocardiopsis* synnemasporogenes NEAE-85 sp. nov. is proposed and sequencing product was deposited in the GenBank database under accession number KJ200340.

#### Description of Nocardiopsis sp. NEAE-85 sp. nov

Syn.nema. sporo. genes. synnema (pL synnemata; Gr. adv. syn together; nema thread; N.Gr. n. synnema threads wrapping together; spora a spore; N.L. suff. -genes (from Gr. v. gennaô to produce) producing. synnemasporogenes, referring to the ability of the organism to form synnemata producing spore.

Aerobic, nonmotile filamentous actinomycete. Substrate mycelium is well developed. Aerial mycelium is well developed and abundant aerial hyphae are long, moderately branched, straight to flexuous, or irregularly zigzagged or spiral forms, different spirals are wrapped together to form synnemata. The mycelia of a synnema fragment in later stages to form bacillary spores of various lengths. Initiation of sporulation is often characterized by twisted hyphae, which by examination at higher magnification; reveal a zigzag arrangement of the developing spores. The elongated spore surface is smooth and can divide subsequently into smaller spores of irregular size by cross-wall formation. Spores are enclosed within a fibrillar sheath and have thickened polar walls. No diagnostic sugars are found in whole-organism hydrolysates.

No soluble pigment is produced except faint brown pigment found in medium in yeastmalt agar and peptone-yeast extract iron agar. Melanoid pigments are not produced on either ISP media 1 or 7 while it is produced in peptone-yeast extract iron agar (ISP 6 medium). D-fructose, Dxylose, D-galactose, D-glucose, L-arabinose, rhamnose, ribose, D-mannose and cellulose are utilized for growth as carbon sources but not sucrose, trehalose and raffinose. Only trace of growth on maltose. Maximum NaCl tolerance for growth was 4% (w/v). Optimum growth occurs at 30-37°C.

### ACKNOWLEDGMENTS

The author gratefully acknowledges the Science and Technology Development Fund (STDF), Egypt, for their financial support of this paper which is a part of the Grant No. 4943.

#### REFERENCES

- 1. Pedreschi, F., Kaack, K., Granby, K. The effect of Asparaginase on acrylamide formation in French fries. *Food Chem.*, 2008; **109**: 386-392.
- Jain, R., Zaidi, K.U., Verma, Y., Saxena, P. L-Asparaginase: A promising enzyme for treatment of acute lymphoblastic leukiemia. *People's J. Sci. Res. Jan.*, 2012; 5: 1 29-35.
- 3. Reynolds, D.R., Taylor, J.W. The Fungal holomorph: A consideration of mitotic meiotic and pleomorphic speciation, 1993; CAB International, Wallingford, UK.
- Narayana, K.J.P., Kumar, K.G., Vijayalakshmi, M., L-asparaginase production by *Streptomyces albidoflavus. J. Ind. Microbiol.*, 1993; 48: 331-336.
- Meyer, J. Nocardiopsis, a new genus of order Actinomycetales. Int. J. Syst. Bacteriol., 1976; 26: 487–493.
- Tang, S.K., Tian, X.P., Zhi, X.Y., Cai, M., Wu, J.Y., Yang, L.L., Xu, L.H., Li, W.J. *Haloactinospora alba* gen. nov., sp. nov., a halophilic filamentous actinomycete of the family *Nocardiopsaceae*. Int. J. Syst. Evol. *Microbiol.*, 2008; 58: 2075–2080.
- 7. Staneck, J.L., Roberts, G.D. Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. *Appl. Microbiol.*, 1974; **28**: 226–231.
- Goodfellow, M., Kämpfer, P., Busse, H.J., Trujillo, M.E., Suzuki, K.I., Ludwig, W., Whitman, W.B. *Bergey's manual of systematic bacteriology*, second edition, The Actinobacteria Part A, 2012; Second edition. Vol. 5. Springer, New York Dordrecht Heidelberg London.

Library of Congress Control Number: 2012930836

- Chen, Y.G., Cui, X.L., Kroppenstedt, R.M., Stackebrandt, E., Wen, M.L., Xu, L.H., Jiang, C.L. Nocardiopsis quinghaiensis sp. nov., isolated from saline soil in China. Int. J. Syst. Evol. Microbiol., 2008; 58: 699–705.
- Hozzein, W.N., Goodfellow, M. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil. Int. J. Syst. Evol. Microbiol., 2008; 58: 2520–2524.
- Williams, S.T., Sharples, G.P., Bradshaw, R.M. Spore formation in *Actinomadura dassonvillei* (Brocq-Rousseu) Lechevalier and Lechevalier. *J.Gen. Microbiol.*, 1974; 84: 415-419.
- Yassin, A.F., Rainey, F.A., Burghardt, J., Gierth, D., Ungerechts, J., Lux, I., Seifert, P., Bal, C., Schaal, K.P. Description of Nocardiopsis synnemataformans sp. nov., elevation of Nocardiopsis alba subsp. prasina to Nocardiopsis prasina comb. nov., and designation of Nocardiopsis antarctica and Nocardiopsis alborubida as later subjective synonyms of Nocardiopsis dassonvillei. Int. J. Syst. Bacteriol., 1997; 47: 983–988.
- Shirling, E.B., Gottlieb, D. Methods for characterization of *Streptomyces* species. *Int. J. Syst. Bacteriol.*, 1966; 16: 313-340.
- Tresner, H.D., Hayes, J.A., Backus, E.J. Differential tolerance of streptomycetes to sodium chloride as a taxonomic aid. *Appl. Microbiol.*, 1968; 16: 1134-1136.
- Gordon, R.E., Barnett, D.A., Handerhan, J.E., Pang, C.H.N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol., 1974; 24: 54-63.
- Williams, S.T., Goodfellow, M., Alderson, G., Wellington, E.M.H., Sneath, P.H.A., Sackin, M.J. Numerical classification of *Streptomyces* and related genera. *J. Gen. Microbiol.*, 1983; 129: 1743–1813.
- 17. Waksman, S.A. *The actinomycetes, classification, identification and descriptions of genera and species.* Baltimore: The Williams and Wilkins Company, 1961; **2**: 61-292.
- Cowan ST, Steel KL: Cowan and Steel's manual for the identification of medical bacteria, 1974; 2nd. Edition Cambridge: Cambridge Univ. Press.
- Nitsch, B., Kutzner, H.J. Egg-yolk as a diagnostic medium for streptomycetes. *Experientia.*, 1969;

**25**: 113-116.

- Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y., Hassan, M.A. Production and characterization of cellulase by *Bacillus pumilus* EB3. *Int. J. Eng. Technol.*, 2006; 3: 47-53.
- 21. Mishra, S., Behera, N. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. *African J. Biotechnol.*, 2008; **7**(18): 3326-3331.
- Azab, E.A., Ali, M.M., Fareed, M.F. Studies on uricase induction in certain bacteria. *Egyp. J. Biol.*, 2005; 7: 44-54.
- Gulati, R., Saxena, R.K., Gupta, R. A rapid plate assay for screening L-asparaginase producing microorganisms. *Lett. Appl. Microbiol.*, 1997; 124: 23–26.
- Choi, Y.J., Kim, E.J., Piao, Z., Yun, Y.C., Shin, Y.C. Purification and characterization of chitosanase from *Bacillus* sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. *Appl. Envir. Microbiol.*, 2004; **70**(8): 4522–4531.
- Sambrook, J., Fritsch, E.F., Maniaties, T. Molecular cloning, 1989; A laboratory Manual 2<sup>nd</sup> Cold. Spring, Harbor Laboratory press, Cold Spring Harbor, New York, USA.
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Miller, W., Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Res.*, 1997; 25: 3389-3444.
- Tamura, K., Dudley, J., Nei, M., Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol. Biol. Evol.*, 2007; 24:1596-1599.
- Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.*, 1987; 4: 406–425.
- Lechevalier, M.P., Lechevalier, H.A. Chemical composition as a criterion in the classification of aerobic actinomycetes. *Int. J. Syst. Bacteriol.*, 1970; 20: 435–443.
- Meyer, J: The genus *Nocardiopsis* Meyer 1976. In Bergey's Manual of Determinative Bacteriology, 1994; 9th edn, pp. 2562–2568. Edited by J. G. Holt, N. R. Krieg, P. H. A. Sneath, J. T. Staley & S. T. Williams. Baltimore: Williams & Wilkins.

J PURE APPL MICROBIO, 8(6), DECEMBER 2014.