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Exploration of bacterial community diversity linked with different forest and
farm soil ecosystems is very essential to get information about their role in the maintenance
of respective soil ecosystems. Different parameters associated with ecosystems have
significant effect on inhabitance of diverse bacterial communities. Our study deals with,
unraveling of bacterial community diversity and their composition in two different
kinds of forest and farm soil ecosystems. This was accomplished by using molecular
biology methods such as PCR-DGGE and sequencing of 16S rDNA clone library of
metagenomes extracted from forest and farm soils. Study revealed that there was high
level of similarity (about 77%) in bacterial community among two forest soil and more
than 60% of similarity between forest and organic farm soil. However, less than 38% of
similarity was seen between forest and degraded farm soil bacterial communities. Further
16S rDNA sequencing results were showed bacterial composition in each type of soil
ecosystem. All soil types have shown presence of uncultured microbes with abundance of
y-proteobacterial communities. Apart from y-proteobacteria, other bacterial communities
such as Acidobacteria, Actinobacteria, y-proteobacteria and Plactomycetes were found in
organic farm soil whereas Firmicutes was present in degraded farm soil. The results of
present study demonstrated that, the bacterial diversity observed in this experiment is
very less irrespective of soil ecosystem. This reflects that, those may be intensively
threatened by biotic/abiotic factors and human activities associated with it. Thus, these
forest and farm soils are need to be protected for maintaining ecological balance.
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Soil ecosystems are rich source of
microbia biodiversity. The estimated number is
about 10° to 10* different bacterial ribotypesing*
of soil +2 Composite bacterial communities in
diverse soil ecosystems have very potent role in
maintenance of soil health, soil fertility and
improvement of agro ecosystems?®#4. However, the
understanding of bacterial diversity and their role
in natural ecosystem is limited by culture
dependent methods of bacterial diversity study.

* To whom all correspondence should be addressed.
E-mail: samknw2008@gmail.com

Thislimitation isovercomeby cultureindependent
molecular finger printing methods. Thus, advanced
molecular approaches such as PCR based
denaturing gradient gel electrophoresis (PCR-
DGGE) coupled with cloning and sequencing of
major finger prints are widely used to study the
dynamics and structure of complex bacterial
communities in diverse soil ecosystems ®. These
molecular approaches provide the prospective for
significant progress in our understanding of
bacterial diversity in natural ecosystemsand their
relation with respective soil ecosystems 267,
Different studies have shown that PCR coupled
DGGE iseffective method in studying soil bacterial
diversity under theinfluence of different chemical,
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agronomic practices or seasonal variation 891011,
The current study was mainly focused
on analysis of structural diversity of bacterial
communities in forest and farm soil ecosystems
based on primers specificto 16SrDNA and DGGE.
Further PCR based 16S rDNA library was
constructed to know the composition of bacterial
communitiesin respective soil types.

MATERIALS AND METHOD

Soil sampling

Four soil samples from three different
places of Karnataka state were collected for this
study. Two forest soil (BR hills, Wildlife Sanctuary,
Karnatak and D-Dandeli forest, Karnataka), one
organic farm soil (PCF10- Praful Chandra farm,
privatefarmin Shimogadistrict of Karnataka state)
and one degraded (PCF17) which was not under
cultivation fromlast five years (Fallow Lands other
than Current Fallows) soil adjacent to organic farm
soil was collected. Twenty subsamples from each
place were collected from adepth of approximately
10 cm. These respective sampleswere then pooled
to prepare master sampl e of each soil type. Samples
were brought to the laboratory and immediately
shifted at -80°C for long term storage.
DNA extraction

Triplicates of each soil sample (BR, D,
PCF10 and PCF17) measuring 500 mg wastakenin
the respective microfuge tube. Then 200 pl of FeCl,
(200 mM) was added aschemical flocculent to each
tube and vortexed for 2 minutes to form a
homogenous mixture prior to cell lysis 12, These
homogenous mixtures were used for soil DNA
extraction by using DNA extraction protocol of
Miller et al. (1999)%. Quantification of extracted
soil DNA was done by using NanoDrop
Spectrophotometer (ND-1000, NanoDrop
Technology, Wilmington, DE, USA)
PCR amplification of 16S5r DNA genefrom forest
and far m soil metagenomes

The extracted DNA was 20 fold diluted
and used as a template for polymerase chain
reaction. PCR amplification wasperformed by using
bacteria specific DGGE primer pair PRBA968F
(5 AACGCGAAGAACCTTAC3) and PRBA1406R
(5 ACGGGCGGTGTGTAC3) targeting V6 and V9
variableregionsof 16SrDNA gene. The GC clamp
of 40bp (5 CGC CCG CCG CGC GCGGCGGGC
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GGG GCG GGG GCA CGG GGG G3') wasaddedto
the5' end of the primer PRBA968F . Thereaction
mixture was prepared to a final volume of 20 pl
which contained 0.25 pmol of each forward and
reverseprimers, 0.2 mM of dNTP's, 1X Tagbuffer
B, 1.5 mM of MgCl--, and 1.5 units of Tag DNA
polymerase (Bangalore Genel, India). Thereaction
was performed in automated thermal cycler
(Eppendorf) with initial denaturation of 5 min at
95°C followed by denaturation at 94°C for 45 sec,
annealing at 57.4°C for 45 sec and extension of 1
min 30 sec for 35 cyclesfollowed by 10 min final
extension at 72°C. Thequality and size of amplicon
was confirmed by agarose gel electrophoresis
followed by ethidium bromide staining.
DGGE and cluster analysis of bacterial
communities

DGGE was performed with Ingenyphor U-
2 system (Leiden, The Netherlands) with slight
modification in earlier protocol of Muyzer et al.
(1993) 5. PCR amplified products of expected size
from respective soils were subjected to DGGE
analysis onto 8-10% (w/v) gradient of
polyacrylamide gel containing 30 to 80% of
chemical denaturant (7M ureaand 40% formamide
forms 100% denaturant). Gel was stained by the
silver staining protocol of Gustavo and Peter ¢,
The scoring for presence and absence of band
was done manually. Similarity matrix and cluster
analysis was done using UPGMA by employing
NTSYS software (Version 2.02j; Applied
Biostatistics) v'.
Estimation of Carrying Capacity of Forest and
Farm soil ecosystems

Thebacterial carrying capacity of BR, D,
PCF10 and PCF17 soil ecosystemswere estimated
using Range weighted-richness (Rr) as explained
by Marzorati et al. (2008) 8. The Rr for these soil
samples were determined by using formula Rr =
(N2 xDg). Where N is total number of DGGE
fingerprints on gel and Dg represents the
denaturing gradient comprised between the first
and last band in alane.
Construction of PCR based 16SrDNA Library of
forest and farm soil metagenomes

16S rDNA library was constructed from
BR, PCF10 and PCF17 soil metagenomes only.
Because, as previously reported the soil
environment of these three soils is continuously
getting threatened by human and human
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associated activities % 7, The PCR reaction of
300 ul was performed for all the three soil DNA
using full length universal 16SrDNA primer (27F-
5 AGAGTTTGATCMTGGCTCAG3' and 1492R-
5 GGTTACCTTGTTACGACTT 3') ¥ asexplained
in the above section of polymerase chain reaction
with dight changein thefinal extension of 45 min
at 72 °C to enable T/A cloning. PCR amplified
products of 1.5 kb size (Fig. 6) were gel extracted
and purified using gel extraction and purification
kit (Qiagen, Germany). Thegel purified 16SrDNA
amplicon of all three soilswere used for ligationin
TA cloning vector pTZ57R/T. Theligation reaction
mixturewas prepared as per thedirectionsgivenin
InsTAclone PCR Cloning Kit (Fermentas Life
Sciences, EU). The ligated products were
transformed into E. coli DH5a 2°. Finally
transformed cells were selected on Luria Bertani
agar plates(L.A.) containing Ampicillinin 100 pug
ml! as selection pressure and X-gal, |PTG added
infinal concentration of 38 ug mi-* and 32 ug mi*
respectively.
Sequencing of 16S rDNA clones and sequence
based analysis

Collectively 66 randomly selected,
restriction confirmed clonesfrom BR, PCF10 and
PCF17 soils were sequenced from Ocimum
Biosolution Laboratory, Hyderabad, India.
Sequences were assembled by using cap contig
assembly program from BioEdit software (Version
7.0.9.0) 2. Further sequences were checked for
presence of chimera using Decipher program
(Version 1.8.0) #. Bacterial composition and
taxonomic affiliation of all the sequenced clones
of forest and farm was determined by using
sequence match program from Ribosomal Database
Project 10 (RDP10) (http:// rdp.cme.msu.edu) %,

RESULTS

DNA extraction and PCR amplification

Our protocol used for DNA isolation
resulted into extraction of high molecular weight
DNA. DNA vyield varied with respect to soil type
(Fig. 1). It was found in between 8 to 16 g gof
soil withpurity A, ,inbetween 1.44t0 1.67 (Table
1). All four soil DNA templates (BR, D, PCF10 and
PCF17) showed effective PCR amplification with
DGGE specific primer set PRBA968F-PRBA1406R
at 1:20 dilution. Single amplicons of 480 bp size
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were observed in each type of soil DNA on
ethidium bromide stained agarose gel (Fig. 2).
DGGE and cluster analysis of bacterial
communities

The DGGE fingerprints obtained using
primer pair (PRBA968F PRBA 1406R) showed the
presenceof 28, 21, 26 and 27 operational taxonomic
units (OTUs) in BR, D, PCF10 and PCF17 soil
samples, respectively (Fig. 3). Structural similarity
and variation among forest and farm soil bacterial
communities was assessed by using similarity
matrix values (Table 2). The soil bacterial
community composition shared by similar
ecosystem shows greater degree of similarity than
that of similarities shared by different ecosystem.
Similarity matrix based on DGGE fingerprints
indicated that bacterial community compositions
of forest soilsare more similar. Both the forest soil
share 77% of bacterial specieswhereastheorganic
farm soil shareonly 62% and 68.7% bacterial species
with BR hillsand Dandeli forest soil respectively.
However, the organic farm soil and its adjacent
degraded soil share 43.7% of the bacterial species
based on DGGE profile (Fig. 4).
Carrying Capacity of Forest and Farm soil
samples

Range weighted richness values for all
forest and farm soil sampleswerefound to be above
70 (Table 3) indicating that all the soilsare habitable
for bacterial microfloraand carry large number of
species belonging to different taxa. However, BR
and PCF17 soils are more habitable than D and
PCF10 soil.
Taxonomic affiliationsof 16Sr DNA clones

Sequence analysis of 16S rDNA clones
reveal that forest and farm soils were dominated
by uncultured bacteria belonging to class
y-proteobacteria. However, the BR soil showed
complete dominance of different candidatus
uncultured bacteria belonging to class
y-protecbacteria. On the other hand slightly
different results were appeared in case of PCF10
and PCF17 soil. In spite of dominance by different
uncultured bacteria belonging to y-proteobacteria
group, four of twenty six clones of organic farm
soil belongsto different classesviz; Acidobacteria
[PCF10(9)], y-proteobacteria [PCF10(12)],
Actinobacteria [PCF10(26)] and Planctomycetes
[PCF10(35)]. Furthermore, one of twenty one
sequenced clones of degraded farm soil evidently

J PURE APPL MICROBIO, 9(2), JUNE 2015.



1200

visualized presence of uncultured bacteria
belonging to class to Firmicutes [PCF17 (55)]
(Table4).

DISCUSSION

Soil DNA extraction and PCR amplification

The major endeavor of this study wasto
understand the structural diversity of bacterial
communities among forest and farm soil
ecosystems. Soil sampling sites selectedin current
metagenomic study hastheir own significance. Two
forest soils BR and D represent largest wildlife
sanctuariesin Karnataka State (India) and aremajor
hotspots of biodiversity. Among farm soils, PCF10
was under organic farming practices from last 30
years while PCF17 was degraded (Fallow Lands
other than Current Fallows) land just adjacent to
organic farm soil, sharing similar edaphic and
environmental conditions. Different biotic and
abiotic factors linked with these soil ecosystems
have strong influence on inhabitance of diverse
bacterial phylotypes. To get an insight about their
structural diversity, metagenomic approach was
employed. Success of soil metagenomic study
relies on recovery of high quality DNA from soil.
Method of DNA extraction developed by Miller et
al. (1999)  was used for current metagenomic
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study because; DNA extraction buffer used in
protocol lacks EDTA. Absence of EDTA in buffer
indirectly contributestoward the achieving relative
purification of DNA from humic acid and its
derivatives. Since, EDTA is co-extractor of humic
acid from soil 2+ 2, For further reduction in
coextraction of humic acid along with DNA
preparations was achieved by FeCl, added as
chemical flocculent during sample preparation but
prior to cell lysesto reduce loss of DNA 12,
Average DNA yield obtained by our
protocol in respective soil type varies between 8
to 16 ug g* of soil and purity varies between 1.44
t0 1.67 at A, /A, (Fig. 1; Table 1). The present
DNA extraction method provided relatively pure
DNA ascompared to previously reported purity of
metagenomic DNA extracted by using CTAB and
PVPP(ratioof 1.25t0o 1.41atA ./ A,,) " *. The
relative purity of soil DNA was demonstrated by
effective PCR amplification of 16SrDNA geneat
20 fold dilution as compared to previous studies
whichrequired harsh purification and 1000 to 10000
fold dilutionsfor effective PCR amplification 271>
29
DGGE and diver sity of soil bacterial communities
The DGGE profilesobtained using primer
set PRBA968F-PRBA1406R indicated multiple
bandsin forest and farm soil sample. Thismay be

Table 1. Forest and farm soil DNA quantification

Sr.No Soil SampleName *Concentration (ng/ ul) A o280

1 BR 408.33 (+12.04) 1.44 (+0.09)
2 D 304.66 (+10.58) 1.58 (+0.08)
3 PCF10 257.28 (+08.25) 1.63 (+0.18)
4 PCF17 202.24 (+05.63) 1.67 (+0.05)

* Average concentration of DNA taken from triplicates of each soil DNA and values
in the parenthesis indicates the standard deviation

Table 2. Similarity matrix of forest and farm soil
(BR, D, PCF10 AND PCF17) obtained by using
DGGE profiling (968F-1406R)

Table 3. Range-weighted richness (Rr) of
forest and farm soils

S. Nameof Soil N N2 Dg Rr=(N2xDg)

ROW/COL. BR D PCF10 PCF17 No. Ecosystem

BR 1.000 1 BR 28 784 0.16 125.44
D 0.770  1.000 2 D 21 441 016 70.56
PCF10 0620 0.687  1.000 3 PCF10 26 676 0.12 81.12
PCF17 0350 0375 0437 1.000 4 PCF17 27 729 0.16 116.64
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DNA; Lane 3: D soil DNA; Lane 5: PCF10 soil

Lane 1: A Hind Ill digest ladder; Lane 2: BR soil
DNA; Lane5. PCF17 soil DNA

Fig. 1. Genomic DNA of forest and farm soil

Lane 1: BR soil; Lane 2: D soil; Lane 3: PCF10 soil;

Lane 4: PCF17 soil; Lane 5: 100 bp ladder
Fig. 2. PCR amplification of 16SrRNA genefrom
forest and farm soil using primer 968F and 1406R
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due to the efficient amplification of different
bacterial 16SrDNA nucleotide sequencesfromall
four soil types. Also, the amplicons obtained using
this primer pair covers V6 to V9 variable regions
which contributestoward the discrimination among
fingerprints on gel. It is interesting to note that,
another possible reason may be the coverage rate
of Primer set PRBA 968F - PRBA 1406R.
Fascinatingly, coverage range for the primer set
estimated by using probe match program from RDP
database showed that primer pair PRBA968F and

Lane 1: BR soil DNA; Lane 2: D soil DNA; Lane 3:
PCF10 soil DNA; Lane 4:PCF17 soil DNA

Fig. 3. Denaturing gradient gel electrophoresis finger
prints of forest and farm soil obtained using primer pair
968F-1406R

1203

PRBA 1406R targets 35 different bacteria phylawith
variable coverage rate in each phylum when two
mismatches were allowed. The per cent coverage
of this primer pair for five mgjor bacterial phyla
appearing in soilswere shownin figure5*. These
result conciseto results of Nakatsu et al. (2000) 4.
Each band on the DGGE gel is considered as one
bacterial genus/species or defines one OTU 3%,
Thus, DGGE fingerprinting pattern obtained using
this primer (PRBA968F-PRBA 1406R) showed
existence of 28, 21, 26 and 27 OTUs in BR, D,
PCF10 and PCF17 soil samples, respectively.
Variable abundance of soil bacterial communities
was indicated by differential pattern of DGGE
fingerprints and their intensity *.

Similarity matrix values based on DGGE
fingerprint with PRBA968FPRBA 1406R primer pair
indicated that microfloraof similar soil ecosystem
shared maximum similarity. Both forest soil bacteria
communities showed closer similarity with the
bacterial microfloraof organic farm soil but lesser
extent with degraded farm soil bacterial microflora.
This may be due to the variability in soil health
conditions, natural environmental factors and
bi otic/abiotic factors or organic farming practices
associated with respective soil ecosystem. These
listed factors one or the other way may leads to
increase/decrease or static nature of soil microflora.
Several studies in the last decade have provided
strong evidences for such changes in bacterial

[
L

Fig. 4. Phylogenetic tree of forest and farm soil constructed using NTSY S software (Version 2.02j;
Applied Biostatistics) based on manual scoring of presence and absence of bands

J PURE APPL MICROBIO, 9(2), JUNE 2015.
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community diversity with respect to different
factors associated with soil 34 35 36,37, 7, 38,39, 11,40, 41,
Carrying capacity of forest and farm soil samples

We addressed that, irrespective to soil
typethe bacterial carrying capacity for all selected
forest and farm soil samples were above 70. This
clearly indicates the richness of bacterial
community diversity in respective soil ecosystems.
However, in case of PCF17 soil the Rr value was
116.64. But, this is not necessary that, degraded

Bactenaidetes
Acid shacteria

Firricures

Phylum

Proteshacterin

Artinobacteria
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farm soil should show less number of DGGE finger
prints of bacterial communities. Because, adverse
environmental conditions may leads to depletion
of the one or more bacterial communities in soil
but at the same time one or severa other kinds of
bacterial communities may increase in number to
cope up with the surrounding conditions 742 4344,
Head et al. (1998) % showed that number and
intensity of DGGE finger prints on gel not
necessarily represents the accurate picture of

0 -]

14 15 i) 25

Primer palr S5AF-1406/ - % Total coverage
= Primer pair 966F-1406R - % Coverage within phylum

[Total % coverage = (No. sequence matches found for given phyla / Total no. sequences of 5 major phyla in database)

x100]

[% coverage within the phylum is = (No. Of sequence matches found for given phyla / total number of sequences of

given phylum in database) x 100]

Fig. 5. Per cent coverage rates of primer pair 968F-1406R for five major soil bacterial phyla

Lane 1: BR soil DNA; Lane 2: PCF10 soil DNA; Lane 3:
PCF17 soil DNA; Lane 4: A EcoRI , Hind |1l double
digest ladder

Fig. 6. PCR amplification of full length 16SrRNA gene
from forest and farm soil using primer pair 27F-1492R

J PURE APPL MICROBIO, 9(2), JUNE 2015.

bacterial communities as one organism may
produce more than one band as result of multiple
copiesand heterogeneous nature of rRNA operons.
Thereare several other possiblereasonsfor getting
less or more DGGE profileson gel irrespectiveto
nature of soil samples such as, concentration of
16S rDNA targets in sample under investigation,
in case of partial 16S rRNA gene seguences one
band may represent more than one bacterial species
and also PCR artifacts occurred during PCR
amplification process 8. The range weighted
richness is based on number of bands (OTU’S)
observed in a range of denaturant. Increase in
either the number of bands or the denaturant range
or bothwill increasein the rangeweighted richness.
Inthisstudy, thedifferencein thenumber of OTU'’s
observed between the samples is not much, but
the range of denaturant in which the OTU’s got
separated leads to large carrying capacity in case
of degraded soil. Irrespective of taxonomical
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correlation, several studiesin thelast decade have
shown that per cent GC content can be used to
study diversity and dynamics of microbial
communities 4647, Even different environmental
factor seems to influence the GC content of
complex microbial communities. Thus, GC content
of bacterial communities may make them to adopt
the adverse conditions in soil like degraded farm
soil 8,
Soil bacterial communitiesand their interaction
with soil ecosystems

Sequencing of 16SrDNA clonesof forest
and farm soil gave apartial insight about nature of
bacterial communities in respective soil types.
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Irrespective of soil type, y-proteobacteria group
appeared as dominant bacterial population. This
may be due to preferential PCR amplification of
16S rDNA from bacteria belonging to
y-proteobacteria group by primers pairs used.
Hence, thisindicates the primer bias. Hong et al.
(2009) “° used same primer pair for the study of
marinetidal flat bacterial communities. They found
that 25 % clones sequenced from library | and 23
% clones sequenced from library 11 belongsto sub-
phylum y-proteobacteria. There are several other
studies that have reported similar kind of results
due to primer bias 55152,

Also, we have determined the coverage

Primer pair 27F-1492R - % Total coverage
B Primer pair 27F-1452R - W Coverage within pleylum

[Total % coverage = (No. sequence matches found for given phyla / Total no. sequences of 5 major phyla in database)

x100]

[% coverage within the phylum is = (No. of sequence matches found for given phyla / total number of sequences of

given phylum in database) x100]

Fig. 7. Per cent coverage rates of primer pair 27F-1492R for five major soil bacterial phyla

12.000 | ggoy
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Fig. 8. Per cent coverage rates of primer pair 27F-1492R for different Proteobacterial Sub-phyla
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rates of primer used for construction of 16SrDNA
library in RDP database. The primer pair 27F and
1492R covers about 35 different bacterial phyla
with variable number of sequence match in each
phylum when two mismatches were allowed. The
per cent coverage rate of primer pair 27F - 1492R
for five magjor soil bacterial phylawere shownin
figure 7 *. This primer pair has shown maximum
overall per cent sequence coverage in
proteobacterial phylum [more specifically in sub-
phylum y-proteobacteria compared to other
Proteobacterial sub-phyla (Fig. 8) ascompared to
seguence match in other bacterial phyla(Fig. 7) .

Janssen PH. (2006) * reviewed that, major
dominant phylain thein metagenomic 16SrDNA
libraries (Including forest and agricultural farm soil)
are Proteobacteria, Acidobacteria, Actinobacteria,
Verruco-microbia, Bacteroidetes, Chloroflexi,
Planctomycetes, Gemmati- monadetes, and
Firmicutes. He summarized in his survey that, on
an average 92% of 16S rDNA sequences in soil
librarieswere contributed by membersof thesenine
phyla. Among these phyla only Proteobacterial
phylacovers about average 39% of total 16SrDNA
sequences in soil libraries. While among
Proteobacterial phyla, sub-phylum y-
proteobacteria shown third highest abundance of
16S rDNA clones. Surprisingly this is strong
evidence for the sequencing results of BR
soil (forest) which have shown the presence of
complete domninance of bacteirabelonging to sub-
phylum y-proteobacteria.

Furthermore, abundance of
proteobacteria (y-proteobacteria) is probably due
to biotic factors such as interaction among soil
and other animalslike birds, grazing animals and
insects or organic manures added in soil 555657,
However, presences of few clones (Unclassified
Actinobacteria, Uncultured Acidobactria,
Uncultured Acetobacteria, Uncultured
Bradyrhizobium, Uncultured Erwinia, and
Unclassified Planctomycetes) other than y-
proteobacteria are excellent indicator of their
contribution towards respective soil health and
soil environment. Our results are supported by the
results of Zhang et al. (2013) %. Their finding
emphasize that, Proteobacteria were highest in
percentageirrespectiveto thetreatment of organic
matter in soil. Further they found that, most of
Proteobacteria are gram negative and have

J PURE APPL MICROBIO, 9(2), JUNE 2015.
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potential role in maintenance of soil environment
such as nitrogen fixation. Feris et al. (2003) *°
suggested that contaminated soils have
abundance of Proteobacteriaand awide variety of
pathogens such as Agrobacterium, Escherichia,
Salmonella and Helicobacter are also
Proteobacteria. While Urich et al. (2008)
suggested that environmentally protected soils
(Free from human interventions) have lesser
Proteobacterial load.

However, theresultsof Smitetal. (2001) ©
suggested that healthy nutritive soil with areadily
available nutrients favors positive selection for &
and y-proteobacteria. Theratio between the number
of Proteobacteria and Acidobacteria is a good
indicator of nutritional status of soils. Their
findings showed that, this ratio was found to be
highin agricultural soil with high organic content,
medium in agricultural soil with low organicinput
and low in oligotrophic soil. These statements are
found to betruefor our sequencing results of forest
and farm soil which are dominated by bacteria
belonging to sub-phylum y-proteobacteria. This
indicatesthat all soil typesare nutritionally healthy
with high organic content.

Microbial community dynamics during
the composting of organic waste in an aerobic
industrial composting process examined by culture
independent survey through 16S rDNA sequence
analysis demonstrated the predominance of
Enterobacteriaceae family including Escherichia
duringinitial stagesof compost digestion (Alfreider
et al., 2002) &, So there may be possibility that
coincidently the organic matter present in forest
and farm soil samples were in initial stages of
decomposition which might have caused
dominance of bacterial community from
Enterobacteriaceae family. Compared to artificial
process of decomposition natural process of
organic matter decomposition is slow because of
which Escherichia may survive for long time in
soil.

The sequencing results of 16S rDNA
clone library of forest and farm soil ecosystems
have revealed dominance of y-proteobacterial
species belonging to family Enterobacteriaceae
mainly classified into genus Escherichia. However
Escherichia genus is not native soil bacterial
community, but the sequencing of 16S rDNA
showed their dominancein forest and farm soil. It
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ismostly likely that it might have added into soil
asresult of amendment of organic matter (bovine
or dairy manure based compost) through natural
means or by artificial means or a source of
contamination %% % ¢ Since all the soil types
including forest soil used this research
investigation have strong link with organic matter.
Thebirds, animals, wild animals or polluted water
or soil source may be the reason for getting the
Escherichia genus in forest soil (Wildlife
sanctuary).

The reports from Government of
Karnataka (Gol 2003b and 2003c) %% which states
that, 40% of Karnataka state has soil degradation
problem and around 30% forest in Karnataka state
are degraded due to problems like mining,
industrialization, quarrying, livestock grazing, fuel
wood collection, fragmentation of habitats,
unsustainable management practices etc. The
climate change is another threat to Indian forests
which effects into altered forest productivity,
resilience and biodiversity (Gol 2007a). India's
forests are exceedingly pressurized from
population growth, commercial need for forest
products, grazing livestock and fires®. Strangely,
only few species belonging to particular phyla
identified by sequencing of 16SrDNA from forest
soil confirms these reports.

Thus we conclude that, the DGGE is
capable of discriminating bacterial community
diversity among forest and farm soil ecosystems.
However, further sequencing of dominant DGGE
profiles will give more information about the
relation between different factors associated with
forest and farm soil ecosystems and inhabitance
of diverse bacterial communities. Cloning and
sequencing of 16SrDNA clones has given partial
information about the composition and role of
bacterial communitiesin respectiveforest and farm
soil ecosystems. The sequencing results have
shown alarming situation that forest and farm soil
used for current study may be intensively
threatened by climate change and human activities.
So it suggests that care must be taken in order to
conserve natural biodiversity and maintain
environmental/ecological balance. Further
sequencing of more number of 16S rDNA clones
will give us fine idea about diverse bacterial
communities in forest and farm soil ecosystems.
However, the determination of exact composition
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of bacterial communities by culture independent
method will be challenging task due to enormous
diversity of microorganisms. But the
methodological and technical refinement in
experimentation will reduce the bias and help to
give solid inferences about the experiments.
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