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An important problem in brain signal processing is the presence of noise and
artifacts in neural recordings A systematic method of recognition, identification and
artifact removal of Electroencephalography (EEG) waves is essential to reduce the
probability of misinterpretation of brain waves and to limit its consequences.
Electrophysiological signals produced by eye movement, eye blinks, head movement and
muscle noise are typical causes of artifacts. So this paper mainly concentrates on removal
of these artifacts from the recorded data using Independent component analysis (ICA)
approach. ICA is a statistical method to extract independent source signals from the
multivariate data. This paper uses orthogonal property of matrices to reduce the number
of calculations and complexity of the 2-channel ICA algorithm. Using this property, the
artifacts are removed with reduced area and power consumption. Simulation is also
carried out for 9-channel EEG using Fast Confluence Adaptive ICA (FCAICA) algorithm.
High convergence speed is also achieved by this adaptive method. Signal to Interference
Ratio (SIR) is improved using IEEE single precision floating-point arithmetic.

Key words: Contrast function optimization; Convergence speed;
EEG Artifact Removal;  Independent component analysis.

Biomedical signals such as EEG
(Electroencephalogram), ECG (Electrocardiogram)
measured by clinical sensors are contaminated by
artifacts and other noises e.g. muscle noise,
instrumental power noise etc1. EEG recordings are
mandatory for finding the mental wellbeing which
is increasingly becoming one of the most important
aspects in healthcare arena. EEG recording is a
long standing procedure for recording the electrical
activity generated by populations of neurons of
the cerebral cortex.  One of the many technical
challenges of using EEG-based monitoring systems
is the contamination due to EEG artifacts that
includes muscle noise, eye activity, blink artifacts,
head movement and instrumental noises such as
line noise, electronic interference etc. Major

artifacts can come from a variety of sources
including cardiac rhythm, outside sources and even
neural processes other than the one of interest,
this way affecting the clinical interpretation of
traces. During EEG acquisition phase,
contamination and distortion are introduced in the
recorded data by eye movements and eye blinks.
Both of these environmental factors produce large
electrical potentials around the eyes, called ocular
artifacts (OAs). An eye blink produces signal with
amplitudes ten times more than that of the EEG
signal. Eye movements are recorded during EEG
acquisition, even when the subjects are posed to
close their eyes. Due to the presence of both of
these Ocular artifacts, it is difficult to differentiate
between normal and abnormal brain activity2.
Artifact rejection is thus a key analysis for both
visual inspection and digital processing of EEG. In
this paper, FCAICA algorithm presented in3 is
improved in terms of convergence speed and
proposed for EEG artifact rejection.

SPECIAL ISSUE ON RECENT RESEARCH CHALLENGES IN BIO-MEDICAL APPLICATIONS
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In recent years, many methods have been
developed to solve the problem of EEG artifact
rejection. The most widely used methods for
attenuating the ocular artifacts are based on time-
domain4 or frequency-domain5 techniques. Ting et
al. developed a semi-automated algorithm to
separate the multichannel EEG into source
components by estimating the correlation matrices
of the data6. Principal component analysis (PCA)
technique was used to eliminate artifacts from the
recorded EEG signals7. As, sometimes the OAs are
smaller in amplitude with respect to the EEG, PCA
cannot remove the artifacts from EEG absolutely.
Later, independent component analysis (ICA)
approach based on blind source separation was
proposed to obtain components that are
approximately independent8,9.Then, automatic EEG
artifact removal methods are proposed based on
regression analysis for reducing Electro-oculogram
(EOG) artifacts10 and based on weighted support
vector machine. The advantages are demonstrated
with real-life EEG recordings and comparisons are
made with several benchmark methods11. The
performance of AMUSE, SOBI, Infomax, and JADE
algorithms is assessed to separate myogenic
activity from EEG during sleep12. James and Gibson
applied constrained-ICA (cICA) technique for
automatic artifact extraction in EEG and MEG13.
Another automatic procedure of Blind Source
Separation (BSS) based on logical rules related to
spectral and topographical information is
introduced in order to identify the components
related to ocular interference by Barbanoj et al14.
Implementation of ICA algorithms is not successful
for real-time applications such as essential features
extraction for brain computer interface (BCI)15,16.
In order to realize the real-time signal processing,
the ICA algorithms are implemented in VLSI
Technology which further speeds up the
computations involving vector and matrix
manipulations.  Fixed-point VLSI architecture was
proposed for 2-Dimensional Kurtosis optimization
based FastICA with reduced and optimized
arithmetic units17. Due to the computational
complexities and convergence rates, ICA
consumes much more time for high density
applications like hyperspectral images.  So Parallel
ICA (pICA) was developed to provide an optimal
parallelism background with potentially faster and
real-time solution18. ICA algorithm is designed with

modularity concept for FPGA implementation19 and
then with systolic architecture20. A mixed-signal
VLSI system was developed to separate and localize
mixtures of traveling wave sources. It operates on
spatial and temporal differences in the acoustic
field at extremely small aperture21. FPGA
implementation of 32-channel convolutive ICA chip
was demonstrated with real world signals22.
Pipelined FastICA, which can process the real time
sequential mixed signal, was also developed for
FPGA implementation23.Various analog VLSI
implementations of ICA algorithm also available.
As digital implementation offers the flexibility of
reconfigurable ICA, they are most common in signal
processing.

This paper presents an improved FCAICA
technique for 2-channels and also presents
Multichannel FCAICA for EEG artifact rejection.
The algorithm is developed with reduced
algorithmic complexity and implemented in VLSI.
The developed algorithm has been applied to EEG
mixtures. The commonly used Fast ICA algorithm
is also developed for comparison . With the
intention of real-time ICA processing in VLSI, to
improve the precision24 and to speed up the
computations, the ICA algorithms are written in
hand coding HDL code in floating point arithmetic.

This paper is organized as follows.
Section 2 describes the background of ICA. Section
3 explains improved FCAICA algorithm and Section
4 demonstrates the simulation, synthesis and
backend analysis results. Finally, conclusions are
drawn in Section 5.
ICA Background

ICA is a signal processing technique
used for extraction of independent sources from
their mixtures.EEG mixtures are separated into their
individual components by looking for independent
time-varying signals within these mixtures. Before
applying these mixtures to ICA block,
preprocessing is done on these signals to reduce
the process complexity. The original source signal
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 ) are related by the expression (1)

M = XS ... (1)
where N is the number of s o u r c e s /

mixtures and X is a full rank matrix that is called
mixing matrix.  Under the assumptions of
independency of EEG sources, ICA is performed
to solve the problem by finding inverse matrix. The
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Inverse linear transformation  matrix W, which is
the inverse of mixing matrix X  is then used in
estimation of sources(Sest)  as in (2)
Sest = WM =S ...(2)

i.e when a mixed signal(M) is multiplied
with inverse of mixing matrix , estimate of the
original signal (Sest) can be found .

Fig 1 shows the overall framework of EEG
processing system with proposed ICA
algorithm.EEG signal is first acquired from the
human using brainwave sensors. The acquired
signal contains artifacts like ocular artifacts, ECG
artifacts, muscle noise etc. The power line noise
can be removed with filters during preprocessing
and then the preprocessed EEG is sent for
Digitization. The digitized EEG data is sent to ICA
block where the required features or EEG
components are extracted.
Improved ICA algorithm

The algorithm presented in this paper,
performs adaptive optimization of kurtosis based
contrast function using improved FCAICA
algorithm to find the independent components. The
main aim of this algorithm development is to
improve the convergence performance of the
algorithm , to reduce the resources used and to
improve the operating frequency. The convergence
speed of the algorithm is improved by reducing
the number of iterations. The adaptive optimization
unit of the FCAICA algorithm presented in3,
updates the weight values based on the kurtosis

function. The adaptive optimization unit contains
a subtractor and a comparator unit that requires
fewer resources when evaluated with conventional
ICA methods. In this algorithm, initial weight
vectors to estimate the demixing matrix W in (2),
are assumed as w

i
’s. This algorithm computes new

weights from the initial weights in an adaptive
manner based on the fitness function’s absolute
value.
Contrast function

The effectiveness of EEG extraction
depends on the contrast function optimization. The
basic idea behind the ICA algorithm is Central limit
theorem which states that, the sum of even two
sources or random variables which are independent
and distributed identically is more Gaussian than
its original form. Hence non-gaussianity is a
measure of independence. For the given EEG data
x, the fourth order moment in kurtosis is specified
in (3).
kurt(x) = E {x4} - 3(E{x2})2 ...(3)

where E{ } is the statistical expectation
operator. If signal is Gaussian, the fourth moment
E {X4} equals to 3 (E{X2})2 and hence kurtosis is
zero. For normalized x,variance is unity and so the
kurtosis is simply given by (4).
kurt(x) = E{x4}-3 ...(4)

Kurtosis value is non-zero for non-
gaussian random variables or signals. The weight
vector is updated in ICA by the learning rule with

Fig. 1. Proposed algorithm with Overall Framework

Fig. 2. Architecture for finding w(k+1) of  FCAICA algorithm
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nonlinear function  g(x)=x3

... (5)
This is used in the main iteration of the

proposed algorithm for weight updation. The Fig 2
shows the architecture of iteration process defined
in (5) for 2 sources.
Prposed ICA Algorithm  for 2 units

Having obtained the low complexity EEG
signal, this algorithm finds the columns of unmixing
matrix to extract the signal without artifacts.
Weights are updated continuously in an iterative
and adaptive manner till convergence is achieved.
Once convergence is achieved, the corresponding
weight vectors are the columns of demixing
matrix.i.e this process gets evaluated to w1= [w

11

w
12

]. The detailed steps are given below.
1) Create a weight matrix W by assuming Y
sub matrices or column vectors where Y defines
the size of the search space .
2) Calculate the norm of each vector and
divide by corresponding norms

3) Find the updated weight vector Wnew
for all the weights  in W using

4) Determine the fitness cost  fi of all weights
:   fi= wi(k+1)-wi(k)
5) For k from 1 to M vectors, store the lowest
obtainable fitness value as reference vector and
test for convergence.

If  fi (k)< fi (k+1) then  refi(k)= fi (k);
If convergence is achieved, the

corresponding vector is one of the columns of
demixing matrix. If it is not converged go to the
next step.
6) If refi (k) is positive, reduce the weight
vector by an amount of C.
7) For negative value of refi (k), increment
the weight vector by an amount of C. Where C is a
random nonnegative floating point number
between ‘0’ and ‘1’.
8) Repeat from step 3 until both vectors
point at same direction or until convergence is
achieved.

If the convergence is accomplished, the
best fitness vector is selected for a column (w1) of
demixing matrix B where B= [w1  w2]. To find the
second independent component or the second
column [w2] of B, orthogonal property of matrix is
used. Since estimated columns of demixing matrix
W are mutually orthonormal, only one vector is
possible, which is orthonormal to w

1.
So without

any loss of generality w
2
 is found from w1

 w
2
= ... (6)

This w1 and w
2
 are then used to find the

estimate of source signals. This one-step method
of finding the w2 removes the iterations needed
while number of sources to be extracted is two.
While finding more than two independent
components, deflationary othogonalization should
be made to ensure that the same independent
components are not estimated more than once. The
detailed flow and steps to be followed are given in
Fig 3.
Deflationary Orthogonalization for more than two
independent components

While finding more than two independent
components, deflationary orthogonalization is
done to prevent that the algorithm estimates the
same independent component more than once.

... (7)
This is done after every iteration step by

subtracting the projections of all previously
estimated vectors from the current estimate before
normalization as in (7)
Improved FCAICA -Architecture

Proposed area efficient and cost-effective
architecture for 2 channel and multichannelFig. 3. Improved FCAICA -Architecture
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FCAICA is shown in Fig. 3. The signals acquired
from the brain consist of EEG waves with artifacts.
The architecture for removal of these artifacts
mainly comprises iteration unit. In FCAICA,
initially assumed weights are updated after
normalization. Then convergence is checked
through the convergence checking unit. On
satisfying the convergence threshold or reaching
the maximum iteration, the iteration process is
terminated and the data are sent for independent
component extraction. Otherwise FCAICA
adaptive optimization unit checks the fitness
parameter for having a positive or negative value.
If the difference value is positive, then a non-
negative floating point number is subtracted from
the assumed weight vector to get new weight.

If the difference value is negative, then a
nonnegative floating point number is added to the
assumed weight vector to get new weight. This
iteration process is repeated until convergence is
reached or maximum iteration limit is reached. The
resulting weight vectors form one column of the
demixing matrix (W).The demixing matrix is
multiplied with the mixture input to get estimates
of the source signal (Sest).

In improved FCAICA method, on
achieving the convergence, the corresponding
weight vectors are taken as one of the columns of
demixing matrix (W). The second column of the
demixing matrix is found by using orthogonal
property of matrices. Without performing any

iterative process or weight vector assumption and
updation, the second column is easily found. For
the case of more than two channels,
orthogonalization should be performed to ensure
that, same components are not estimated again
and again.So, in this improved method, the
reduction in area and improvement in convergence
speed is achieved in 2-channel ICA by eliminating
the orthoganolization and using orthonormality
property of matrices.

RESULTS   AND  DISCUSSION

Simulation results of EEG
The simulation is carried out for the EEG

mixtures acquired with 2-channel as well as 9
channels. Fig 4(a) and Fig 4(b) show the raw EEG
with artifacts acquired from the sensors and their
estimated components respectively.
Convergence Analysis

The convergence analysis is done with
the simulation results obtained from NCsim Tool
v10. Convergence speed represents the time taken
for each of the column weight vectors
corresponding to independent components to be
estimated. It is achieved when a vector w(k) and
its updated vector w(k+1) are pointing in the same
direction. The FCAICA takes 11 iterations and 18
iterations to extract two EEG components. The
improved FCAICA takes 11 iterations to extract 1st

EEG component and no iteration is needed for

Fig. 4(b). Artifacts removed EEG using Improved FCAICA

Fig. 4(a). EEG with artifacts obtained from 2-channel
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Fig. 5(a). 9-Channel EEG with artifacts Fig. 5(b). EEG without artifacts (Corrected by FCA
ICA)

Table 1. Convergence performance

Number of Iterations Fast FCAICA Improved
Taken to extract EEG ICA FCAICA

Component 1 18 11 11
Component 2 11 11  Nil

Fig. 6(a). SIR of 2-channel Estimated EEG signal Fig. 6(b). SIR of Estimated EEG signal for 9-channels

Table 2. Comparison of SIR of ICA algorithms

Mean FCA ICA FCAICA Improved FCAI CA
SIR(dB) (Fixed point) (Floating point) (Floating point)

8.04 10.25 10.68

finding the 2nd EEG component. The Table 1 shows
the number of iterations needed for extraction of 2
EEG components by different algorithms.
SIR Analysis

Signal to Interference Ratio of (SIR) of 2-
channel EEG estimation and 9-channel EEG
estimation is shown in Fig 6(a) and Fig 6(b)
respectively. The SIR of Extracted EEG components
range from 0 to 30dB with mean value 8.65dB.This
is fine enough to acquire the quality of the original
EEG sources. The practice of using floating point

arithmetic operations significantly improve the SIR
of EEG waves.

Table 2 gives the SIR values obtained with
floating point and fixed point arithmetic. These
values show that Floating point FCAICA and
Improved Floating point FCAICA provide better
result compared to fixed point implementation.

Algorithm for extraction of EEG
components is written in VHDL and simulation is
performed using NCSim tool. The physical design
process that involves Floorplanning, Placement,

Routing and Post route simulation are carried out
with “RTL Compiler” and “Encounter” tools after
successful completion of the synthesis process.
Fig 7 provides implementation results of proposed
2-channel ICA obtained from the Cadence Tool
10.1 in comparison with Fast ICA and FCAICA. It
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provides the information about the resources used
and power consumption. Investigation of the
Figure 7 shows that the maximum operating
frequency has been improved in proposed method
.It is 192 KHz, 2.89 MHz, 3.12 MHz for FastICA,
FCAICA and Improved FCAICA respectively.
Power and area is also reduced compared to floating
point Fast ICA implementation. An improvement
of 7.48% and 10.23% is achieved over FCAICA in
terms of area and power respectively.

CONCLUSION

In this paper, an improved time-domain
approach to extract the EEG components from the
added artifacts is presented. This approach is
validated with simulation processes. Algorithms
are synthesized and GDSII file is created by using
Cadence Tool. Use of modularity, hierarchy,
orthonormality of matrices and optimized floating
point arithmetic units simplify the design, reduce
the power .The power is also reduced by
eliminating the iteration process while finding 2nd

independent component in 2-channel ICA. The
usage of optimization algorithm improves the
convergence speed and enables finding the optimal
solution. Floating point manipulations increase
precision and SIR of the signal. The limitation of
this system is that, it occupies more hardware when
compared to its fixed point implementation. This is
not a concern when the quality of the EEG extraction
is prime important. Further research includes the
application of the proposed method for other
signals, such as ECG, fMRI and Spread spectrum
signals.
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