In-vitro Antibacterial Activity Screening of Herb Extracts against Foodborne Pathogenic Bacteria from Thailand

Patchanee Yasurin* and Sasiwan Piya-Isarakul

Faculty of Biotechnology; Assumption University; Hua-mak, Bangkok, Thailand.

(Received: 10 February 2015; accepted: 20 April 2015)

Herbs have been used as traditional medicine since the ancient times as primary health care for local people. This experiment was aimed to study the individual antibacterial activity of six Thai local herbs (Tradescantia spathacea, Andrographis paniculata, Eleocharis acicularis, Acacia concinna, Phyllanthus niruri, and Tinospora cordifolia) against six foodborne pathogenic bacteria (Escherichia coli ATCC25822, Samonella enterica Typhimurium U302 (DT1046), S. enterica Enteritidis (human), S. enterica 4,5,12: i-(human) US clone, Bacillus cereus, and Listeria monocytogenes 10403S) under five extractions (95% ethanol, chloroform, hexane, sterile distilled water, and autoclaving at 121°C 15 PSI for 15 minutes). Agar disc diffusion method was used to evaluate antibacterial activity. The results showed that 95% ethanol and chloroform extraction gave the highest antibacterial activity of all herb extracts against all bacteria. The range of antibacterial activity is between 7.0 mm to 10.5 mm. The highest antibacterial activity was chloroform extract of T. cordifolia against S. enterica Typhimurium U302 (DT1046). The range of MIC and MBC is between 32 μ l/ml to 256 μ l/ml. These results showed the promising of antibacterial activity of six Thai local herbs which are stepping stone for further application like food industry, pharmaceutical industry, and cosmetic

Key words: Antibacterial activity, Thai local herb, foodborne pathogenic bacteria.

In recent years, food safety concerns have been focused on pathogens, such as Salmonella which is recognized as a primary cause of food poisoning worldwide and massive outbreaks have been occurred in several parts of the world ¹. It was estimated that globally, around 86% of salmonellosis cases are food-borne ². The *S. enterica* Typhimurium DT104b has a remarkable ability to survive and becomes the major cause of salmonellosis food-borne illness. This is reflected by the fact that 6.6% of food-borne outbreaks were attributable to this serovar in an international study ³. For *S. enterica* 4,5,12:i:- (human) US clone is a serotype that appears to be antigenically similar

and genetically closely related to S. enterica Typhimurium (which has the antigenic formula 4,5,12:i:1,2) but lacks expression of the secondphase flagella antigen, which is 1,2 in S. enterica Typhimurium. The *S. enterica* 4,5,12:i:- (human) US clone was the sixth most common Salmonella serovar among cases of human disease in the United States in 2006 and the fourth most common serovar among human isolates in Spain in 1998. Overall, the prevalence of S. enterica 4,5,12:i:-(human) US clone among human cases has increased considerably in many countries in the world over the last 10 year ^{4,5,6}. While in the last 20 years or so, S. enterica Enteritidis has become the single most common cause of food poisoning. L. monocytogenes is a Gram-positive bacterium, motile by flagella. The 1-10% of population may be intestinal carriers of L. monocytogenes⁷. It is quite hardy and resists the deleterious effects of freezing, drying, and heat ⁷. About 2500 cases of listeriosis

^{*} To whom all correspondence should be addressed. E-mail:

occur each year. Most cases of listeriosis and most deaths occur in adults with weakened immune systems, the elderly, pregnant women, and newborns 7. Outbreaks of listeriosis have been linked to a variety of foods especially processed meats and dairy products made from unpasteurized7. Bacillus cereus is a Gram-positive, may change to Gram-negative when get older, rodshaped with endospore and aerobe8. B. cereus themselves not tolerate to physical condition, basic or acidic, but their spores are heat resistant and active in wide range of pH⁸. B Growth of Bacillus sp. will gives an enterotoxin. Even B. cereus outbreaks is only 2% of all foodborne illness8. Escherichia coli bacteria normally live in the intestines of people and animals9. Most E. coli are harmless and actually are an important part of a healthy human intestinal tract⁹. The types of E. coli that can cause diarrhea can be transmitted through contaminated water or food, or through contact with animals or persons⁹.

Local herbs become potential natural source of antibiotics and medicinal properties. They have active compound that effective as antimicrobial. This research was aimed to study in vitro the individual antibacterial activity of six Thai local herbs; Tradescantia spathacea (Oyster plant), Andrographis paniculata (Kariyat), Eleocharis acicularis (Needle- Spike Rush), Acacia concinna (Soap pod), Phyllanthus niruri (Stonebreaker), and Tinospora cordifolia (Gulancha), against six foodborne pathogenic bacteria; E. coli ATCC25822, S. enterica Typhimurium U302 (DT1046), S. enterica Enteritidis (human), S. enterica 4,5,12: i-(human) US clone, B. cereus, and L. monocytogenes 10403S under five extraction conditions; 95% ethanol, chloroform, hexane, sterile distilled water, and autoclaving at 121°C 15 PSI for 15 minutes.

MATERIALS AND METHODS

Plant sample preparation

Herb samples; T. spathacea (Oyster plant), A. paniculata (Kariyat), E. acicularis (Needle-Spike Rush), A. concinna (Soap pod), P. niruri (Stonebreaker), and T. cordifolia (Gulancha) were collected locally from Pakthongchai, Nakhonratchasima provience, Thailand. The whole part of fresh herb wwas used. Each herb was clean

using tab water and cut into small pieces. Then, herbs were stored in refrigerator at 6°C until use. Extraction

Each herb was maculated into each solvents: 95% ethanol, chloroform, sterile distilled water, hexane, using ration 1:3 for 48 hours at room temperature and were stirred every 12 hours. For autoclaving, each herb was added into distilled water using ration 1:3 then was autoclaved at 121°C, 15 PSI for 15 minutes. And then, each herb was filtered and centrifuged at 5000 rpm for 5 minutes. All crude extracts were concentrated using water bath at 45°C until became slurry. All crude extracts were kept in freezer at -20°C until use.

Antibacterial Assay

BSAC disc diffusion method for antimicrobial Susceptibility Testing version 8¹⁰ was used for antibacterial activity assay. The 100 µL of bacteria (approximately 1.5×10^8 CFU/ml) was swab on Mueller-Hinton agar (MHA) plate. The 15 µl of 15 mg/ml each crude extracts were used to test antibacterial activity against E. coli ATCC25822, S. enterica Typhimurium U302 (DT1046), S. enterica Enteritidis (human), S. enterica 4,5,12: i-(human) US clone, B. cereus, and L. monocytogenes 10403S.

The 15 µl of each solvents and 100 mg/ml Penicillin-G were used as negative and positive control, respectively. The inhibition zones were measured expressed as cm of inhibition zone to determine the effectiveness of the each crude extracts against each bacterium. The experiment was done in duplicate and three replications independently

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The MIC (Minimum Inhibitory Concentration) method was modified from BSAC disc diffusion method for Antimicrobial Susceptibility Testing version 8¹⁰. Only herb, which showed positive antibacterial activity, was tested for MIC. For MIC test, the herb extracted as following concentration; $0, 32, 64, 128, \text{ and } 256 \,\mu\text{l}$ ml, was added into 1 ml fresh NB. Then 100 µl/ml of culture with OD600 reach 0.1 (early log phase) was inoculated, and incubated at 37°C for 24 hours.

The negative MIC result tubes were chosen for MBC determination by taking 1 loop of negative MIC was streaked on NA then incubated at 37°C 24 hours. The growth of culture in each plate was observed. The experiment was done in duplicate and three replications independently

RESULTS AND DISCUSSION

The results showed that the antibacterial activity was mostly in 95% ethanol and chloroform extraction conditions in all six crude extracts; *T. spathacea*, *A. paniculata*, *E. acicularis*, *A. concinna*, *P. niruri*, and *T. cordifolia* as in Table 1-6.

T. spathacea or Hawaiian Dwarf, or Rhoeo spathacea is a succulent herb in the Family Commelinaceae T. spathacea have been recognized as a functional food particularly in South America ¹¹. In Thai folkmedicine, it is used to relieve fever, cough and bronchitis ¹². Only 95% ethanol and chloroform T. spathacea crude extract showed antibacterial activity against both positive; B. cereus, and L. monocytogenes 10403S, and negative bacterial; S. enterica Typhimurium U302 (DT1046), S. enterica Enteritidis (human),

Table 1. The antibacterial activity (clear zone in mm) of *T. spathacea* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	7.75±0.96	-	-	-	_
S. enterica Typhimurium U302 (DT1046)	9.25 ± 0.50	10.50±1.29	-	-	-
S. enterica Enteritidis (human)	8.75±0.96	8.75 ± 1.71	-	-	-
S. enterica 4,5,12: i-(human) US clone	9.25±1.50	9.25 ± 0.96	-	-	-
B. cereus	8.00 ± 0.82	8.00 ± 0.82	-	-	-
L. monocytogenes 10403S	6.25 ± 0.50	8.75 ± 0.96	-	-	-

Table 2. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *T. spathacea* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	MIC (ul/ml)	MBC (µl/ml)		
	95% Ethanol	Chloroform	95% Ethanol	Chloroform	
E. coli ATCC25822	128	-	128	-	
S. enterica Typhimurium U302 (DT1046)	128	64	128	64	
S. enterica Enteritidis (human)	128	32	128	32	
S. enterica 4,5,12: i-(human) US clone	128	64	128	64	
B. cereus	128	32	256	32	
L. monocytogenes 10403S	128	32	128	64	

Table 3. The antibacterial activity (clear zone in mm) of *A. paniculata* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	7.25±0.50	-	-	-	_
S. enterica Typhimurium U302 (DT1046)	8.25 ± 0.96	9.50 ± 1.73	-	-	-
S. enterica Enteritidis (human)	7.25 ± 0.50	8.50 ± 1.29	-	-	-
S. enterica 4,5,12: i-(human) US clone	9.25 ± 1.26	10.75 ± 0.96	-	-	-
B. cereus	8.00 ± 0.82	8.25 ± 0.50	-	-	-
L. monocytogenes 10403S	6.50 ± 0.58	8.25 ± 2.06	-	-	-

S. enterica 4,5,12: i-(human) US clone, excepted for *E. coli* ATCC25822. The highest antibacterial activity was chloroform extract against *S. enterica* Typhimurium U302 (DT1046) which diameter of clear zone is 10.50±1.29 mm.

Only 95% ethanol and chloroform *T. spathacea* crude extract, which had the antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 2. The MIC of *T. spathacea* crude extracts was

between 32-128 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. *T. spathacea* extract contained phenolic compounds, tannin and flavonoid ¹¹. It was reported to possess antimicrobial, insecticidal, anti-inflammatory, anticancer and anti-fertility activities ¹³. *T. spathacea* have stimulating activity on human lymphocytes¹². The *T. spathacea* aqueous leaf extracts in the forms of decoction and infusion, were found to have flavonoid and antioxidant activity ¹¹. The decoction and infusion also

Table 4. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *A. paniculata* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	MIC (µ	ıl/ml)	MBC (µl/ml)		
	95% Ethanol	Chloroform	95% Ethanol	Chloroform	
E. coli ATCC25822	128	-	128	-	
S. enterica Typhimurium U302 (DT1046)	128	64	128	64	
S. enterica Enteritidis (human)	128	64	128	64	
S. enterica 4,5,12: i-(human) US clone	128	32	128	32	
B. cereus	128	32	256	32	
L. monocytogenes 10403S	128	32	128	32	

Table 5. The antibacterial activity (clear zone in mm) of *E. acicularis* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	8.00± 1.15	-	_	-	-
S. enterica Typhimurium U302 (DT1046)	9.75 ± 2.22	10.50±1.91	-	-	-
S. enterica Enteritidis (human)	-	10.00±1.63	-	-	-
S. enterica 4,5,12: i-(human) US clone	7.75 ± 0.96	8.50 ± 0.58	-	-	-
B. cereus	8.50 ± 0.58	8.00 ± 0.82	-	-	-
L. monocytogenes 10403S	8.50 ± 1.00	9.25 ± 0.96	-	-	-

Table 6. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *E. acicularis* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	MIC (µ	ıl/ml)	MBC (µl/ml)		
-	95% Ethanol	Chloroform	95% Ethanol	Chloroform	
E. coli ATCC25822	64	-	64	-	
S. enterica Typhimurium U302 (DT1046)	64	64	32	32	
S. enterica Enteritidis (human)	-	-	32	32	
S. enterica 4,5,12: i-(human) US clone	128	128	64	64	
B. cereus	128	256	32	256	
L. monocytogenes 10403S	128	128	32	256	

exhibited antibacterial activity against six species of Gram positive and four species of Gram negative bacteria, notably methicillin-resistant *Staphylococcus aureus* and *Neisseria gonorrhoeae* ¹¹. The primary anthocyanin in *T. spathacea* leaves was isolated and identified by NMR to be rhoeonin which contribute as color ¹⁴. For *T. spathacea*, only 95% ethanol and chloroform extracts showed the antibacterial activity against all bacteria, while other three extraction conditions had no antibacterial activity. These reports ^{11,14}

confirm the results in this experiment that photochemical compounds in *T. spathacea* are the active compound which have antibacterial activity.

A. paniculata or Kariyat or Creat, or Chuanxinlian is a seasonal plant in the Family of Acanthaceae ¹⁵. The whole plant has bitter taste. A. paniculata also contained many of flavanoids and polyphenol as their active compounds ¹⁵. In this experiment, only 95% ethanol and chloroform A. paniculata crude extracts showed the

Table 7. The antibacterial activity (clear zone in mm) of *A. concinna* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	7.25±0.50	7.25±0.50	-	_	-
S. enterica Typhimurium U302 (DT1046)	8.75 ± 2.06	10.00 ± 0.82	-	-	-
S. enterica Enteritidis (human)	-	8.25±0.50	-	-	-
S. enterica 4,5,12: i-(human) US clone	10.50±1.29	9.25±0.96	-	-	-
B. cereus	7.25 ± 0.50	7.50 ± 0.58	-	-	-
L. monocytogenes 10403S	7.25±0.96	9.25±0.96	-	-	-

Table 8. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *A. concinna* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	MIC (µ	ul/ml)	MBC (µl/ml)		
	95% Ethanol	Chloroform	95% Ethanol	Chloroform	
E. coli ATCC25822	64	32	64	32	
S. enterica Typhimurium U302 (DT1046) 256	64	256	32	
S. enterica Enteritidis (human)	-	-	32	32	
S. enterica 4,5,12: i-(human) US clone	128	64	128	64	
B. cereus	128	32	256	256	
L. monocytogenes 10403S	128	32	128	256	

Table 9. The antibacterial activity (clear zone in mm) of *P. niruri* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	8.25±0.50	-	-	-	-
S. enterica Typhimurium U302 (DT1046)	7.50 ± 0.58	10.25 ± 1.50	-	7.75 ± 0.50	-
S. enterica Enteritidis (human)	-	9.25 ± 1.71	-	-	-
S. enterica 4,5,12: i-(human) US clone	8.75 ± 0.96	9.75 ± 0.96	-	-	-
B. cereus	7.50 ± 0.58	8.25 ± 0.50	-	-	-
L. monocytogenes 10403S	8.25±1.50	10.00±1.41	-	-	-

antibacterial activity against both gram positive and negative bacteria, while other three extraction conditions had the antibacterial activity. The highest antibacterial activity was chloroform extract against *S. enterica* 4,5,12: i-(human) US clone which diameter of clear zone is 10.75±0.96 mm as showed in table 3.

Only 95% ethanol and chloroform A. paniculata crude extract, which had the

antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 4. The MIC of *A. paniculata* crude extracts was between 32-128 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. The major active compound of *A. paniculata* are lactone group; andrographolide, deoxy-andrographolide, neoandrographolide, dehydroandrographolide ¹⁶.

Table 10. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *P. niruri* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism		MIC (µl/ml)		MBC (µl/ml)			
	95% Ethanol	Chloroform	Sterile distilled water	95% Ethanol	Chloroform	Sterile distilled water	
E. coli ATCC25822	64	-		64	-	_	
S. enterica Typhimurium U302 (DT1046)) 64	64	256	64	64	>256	
S. enterica Enteritidis (human)	-	32	-	-	32	-	
S. enterica 4,5,12: i-(human) US clone	128	32	-	128	32	-	
B. cereus	128	32	-	256	256	-	
L. monocytogenes 10403S	128	32	-	128	256	-	

Table 11. The antibacterial activity (clear zone in mm) of *T. cordifolia* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism	95% Ethanol	Chloroform	Hexane	Sterile distilled water	Autoclave at 121°C 15 PSI for 15 minutes
E. coli ATCC25822	7.75±0.96	7.25±0.50	_	-	-
S. enterica Typhimurium U302 (DT1046)	9.00 ± 1.41	10.50 ± 2.08	-	7.75±0.96	-
S. enterica Enteritidis (human)	-	9.25 ± 2.06	-	-	-
S. enterica 4,5,12: i-(human) US clone	8.25 ± 0.50	9.25 ± 1.26	-	-	-
B. cereus	7.25 ± 0.50	8.75 ± 1.26	-	-	-
L. monocytogenes 10403S	7.00 ± 0.82	8.75±0.96	-	-	-

Table 12. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of *T. cordifolia* crude extracts under five different extractions condition against six foodborne pathogenic bacteria

Microorganism		MIC (µl/ml)		MBC (µl/ml)			
	95% Ethanol	Chloroform	Sterile distilled water	95% Ethanol	Chloroform	Sterile distilled water	
E. coli ATCC25822	128	32	-	128	32	_	
S. enterica Typhimurium U302 (DT1046)	128	64	256	128	64	>256	
S. enterica Enteritidis (human)	-	64	-	-	64	-	
S. enterica 4,5,12: i-(human) US clone	128	64	-	128	64	-	
B. cereus	128	32	-	256	256	-	
L. monocytogenes 10403S	128	32	-	128	128	-	

Diterpenoids, flavanoids and polyphenols are also major active compound in A. Paniculata 15. The other study reported that the water extract of boiling roots have effective against S. aureus 17. For methanol extract of stem have antibacterial activity against Proteus vulgaris, stem and leaves powder extract have antibacterial activity against Shigella bacteria but it is not effective against Cholera 17. The ethanol extract of leaves have antibacterial activity against S. aureus and E. coli ¹⁷. The study of ethanol extract of A. paniculata powder extracted is effective against B. cereus and L. monocytogenes under both normal and osmotic stress 18,19. However, it may be that individual antibacterial flavonoids have multiple cellular targets, rather than one specific site of action; inhibition of nucleic acid synthesis, cytoplasmic membrane function, and energy metabolism 20. There was a study indicated that 2',4'- or 2',6' dihydroxylation of the B ring and 5,7dihydroxylation of the A ring in the flavanone structure was important for anti-methicillinresistant S. aureus activity 21. The former study investigated that no antibacterial activity of andrographolide against any of E. coli, Shigella sonnei, S. aureus, P. aeroginosa, S. pneumoniae, S. pyogenes, Legionella pneumophila, and Bordetella pertusis 22. These reports 15,16,17,18,19,20,21 confirm the results in this experiment that photochemical compounds in A. paniculata are the active compound which have antibacterial

E. acicularis or needle spikerush or dwarf hairgrass is in family Cyperaceae. In this experiment, only 95% ethanol and chloroform E. acicularis crude extracts showed the antibacterial activity against both gram positive and negative bacteria, while other three extraction conditions had the antibacterial activity. The highest antibacterial activity was chloroform extract against S. enterica Typhimurium U302 (DT1046) which diameter of clear zone is 10.50±1.91mm as showed in table 5. E. acicularis crude extract showed antimicrobial activity against S. aureus with inhibition zone 10±0.7 mm. and also had antioxidant activity (DPPH-IC50) more than 20 ìg/mL²³. E. acicularis's seed crude extract also had antioxidant activity 24.

Only 95% ethanol and chloroform *E. acicularis*' crude extract, which had the

antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 6. The MIC of *E. acicularis*' crude extracts was between 32-256 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. *Eleocharis* sp. contained "a high concentration of â-sitosterol and lupeol but the most dominant component was â-sitostanol (24-ethylcholestan-3â-ol) ²⁵. This plant have no report on antibacterial activity. It means that â-sitosterol and lupeol have antibacterial capacity to against most of bacteria that used in this experiment.

A. concinna or som-poi is important medicinal plant belonging to family Acaciaceae ²⁶. The bark contains high levels of saponins, which are foaming agents that are found in several other plant species ²⁷. In this experiment, A. concinna's leaf was used. It was found out that only 95% ethanol and chloroform A. concinna crude extracts showed the antibacterial activity against both gram positive and negative bacteria, while other three extraction conditions had the antibacterial activity. The highest antibacterial activity was 95% ethanol extract against S. enterica 4,5,12: i-(human) US clone which diameter of clear zone is 10.50±1.29 mm as showed in table 7.

Only 95% ethanol and chloroform A. concinna crude extract, which had the antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 8. The MIC of E. acicularis' crude extracts was between 32-256 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. In previous study, the crude extracted of A. concinna pod can inhibit B. subtilis, E.coli, S. aureus, P.aeruginosa, and K. pneumonia ²⁸. The other study of bark extract is effective against S.typhi, P.nirabilis, S.aureus, Yersinia, S.epidermis, K. pnemonia, P. aerogenosa, E.coli, and B. subtilis under methanol, ethanol, and chloroform extraction condition. These extraction can extracted active compounds included Phenol, Tannin, fat and fixed oil, Flavanoids, Saponin, and quinine 29. The benzene, methanol and aqueous extracts of fresh pods of A. concinna showed maximum activity against K. pneumoniae, B. subtilis, E. coli, followed by P. aeruginosa and S. aureus 30. Phytochemical study showed that the crude extract of A. concinna pod consisted of alkaloids, flavonoids, saponin and tannin but none of antraquinone and cyanotic glycosides 31. It means that all these compounds have antibacterial activity against most bacteria used in this experiment.

P. niruri or dukong anak or stonebreaker's leaf crude extract only 95% ethanol, chloroform, and sterile distilled water crude extracts showed the antibacterial activity against both gram positive and negative bacteria, while other three extraction conditions had the antibacterial activity. The highest antibacterial activity was chloroform extract against S. enterica Typhimurium U302 (DT1046) which diameter of clear zone is 10.25±1.50 mm as showed in table 9. The antimicrobial mechanism showed that the bacterial cells, after exposure to the P. niruri extract, showed complete alteration in their morphology, followed by collapse of the cells beyond repair 32 . The study revealed that the P. niruri methanolic extract may be an effective antibacterial agent to treat bacterial infections since the extract exhibited significant antimicrobial potency, comparable with that of the standard antibiotic chloramphenicol ³².

95% ethanol, chloroform and sterile distilled water P. niruri crude extract, which had the antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 8. The MIC of *P. niruri* crude extracts was between 32-128 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. P. niruri contained flavonoids, alkaloids, terpenoids, lignans, polyphenols, tannins, coumarins and saponins, have been identified from various parts have effect to against the Hepatitis B and other viral infections ³³. The other study report that this plant extract is effective against Staphylococcus, Micrococcus, and Pasteurella bacteria under methanol, DCM with methanol (1:1), and aqueous extraction ³⁴. These are some active compounds that can extract from P. niruri, Alkaloids, astragalin, brevifolin, carboxylic acids, corilagin, cymene, ellagic acid, ellagitannins, gallocatechins, geraniin, hypophyllanthin, lignans, lintetralins, and lupeols ³⁴. The *P. niruni* extracte had antibacterial activity Candida albicans, B. pumilus, against Micrococcus luteus, K. pneumonia, S. aureus, B. subtilis, and E. coli under mathanol extraction condition. These are the active compounds that can extract from this plant flavonoids, alkaloids, terpenoids, lignans, polyphenols, tannins, coumarins and saponins 35. These active compounds had been report as for their antimicrobial activity.

T. cordifolia or guduchi crude extract only 95% ethanol, chloroform, and sterile distilled water crude extracts showed the antibacterial activity against both gram positive and negative bacteria, while other three extraction conditions had the antibacterial activity. The highest antibacterial activity was chloroform extract against S. enterica Typhimurium U302 (DT1046) which diameter of clear zone is 10.50±2.08mm as showed in table 11. T. cordifolia composed of difference active compounds, for example, alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoid, aliphatic ^{36,37}. These active compounds had been report as for their antimicrobial activity.

95% ethanol, chloroform and sterile distilled water T. cordifolia crude extract, which had the antibacterial activity, were assayed for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as shown in table 8. The MIC of T. cordifolia crude extracts was between 32-128 µl/ml against six bacteria while the MBC was between 32-256 µl/ml. T. cordifolia ether extract of stem (aerial part) is effective against Mycobacterium tuberculosis and aqueous extract is effective against E. coli and S. aureus with active compounds included alkaloids, diterpenoid lactones, glycosides, steroids, sesquiterpenoids, phenolics, aliphatic compounds, and polysaccharides ³⁸.

aqueous, ethanol, methanol, and acetone T. cordifolia crude extracts had antibacterial activity against E. coli, S. aureus, K. pneumoniae, P. vulgaris, S. typhi, S. flexneri, S. paratyphi, S. typhimurium, P. aeruginosa, E. aerogene, and Serratia marcesensesi with active compounds included â-sitosterol, hydroxy ecdysone, ecdysterone, and giloinsterol ^{39,40}.

CONCLUSION

The six Thai local herbs; T. spathacea, A. paniculata, E. acicularis, A. concinna, P. niruri, and T. cordifolia) showed the antibacterial activity against foodborne pathogenic bacteria. This is the stepping stone for further application in food safety, cosmetic industry, and pharmaceutical industry.

REFERENCES

- Immweseel, V.F., De Buck, J., Boyen, F., Pasmans, F., Bertrand, S., Collard, J.K., Saegerman, C., Hooyberhs, J., Haesebrouck, F. and Ducateller, R. Salmonella dans la viande de volaille et les œufs:un danger pour le consommateur qui demande a mise en place d'un programme de lutte efficace. *Ann. Med. Veterin.* 2005; **149**: 237-51.
- Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O'Brien, S.J., Jones, T.F., Fazil, A. and Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. *Clin. Infect. Dis.* 2010; 50(6): 882-9
- Greig, J. and Ravel, A. Analysis of foodborne outbreak data reported internationally for source attribution. *Int J Food Microbiol.*, 2009; **130**(2): 77-87.
- 4 CDC. National Salmonella Surveillance. Access on 12/1/15 http://www.cdc.gov/national surveillance/salmonella-surveillance.html
- Garaizar, J., Porwollik, S., Echeita A., Rementeria, A., Herrera, S., Wong, R. M. Y., Frye, J., sera, M. A. U. and McClelland, M. DNA microarray-based typing of an typical monophasic *Salmonella enterica* serovar. *J. Clin.Microbiol.* 2002; 40(6):2074-2078.
- Switt, A.I., Soyer, Y., Warnick, L.D., and Wiedmann, M. Emergence, distribution and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:I:". Foodborne Pathog. Dis, 2009; 6(4):407-415.
- 7 Chen Y. Listeria monocytogenes, In: K.A. Lampel., S. Al-Khaldi and S.M. Cahill. Bad Bug Book (Second Edition) Foodborne Pathogenic Microorganisms and Natural Toxins Handbook. US Food and Drug Administration (FDA); 2012. pp. 99-103.
- 8 Todar K. 2008 Food Poisoning Access on 12/1/ 15 http://www.textbookofbacteriology.net/B. cereus.html
- 9 CDC. E.coli (Escherichia coli) Access on 12/1/ 15;http://www.cdc.gov/ecoli/general/index.html
- 10 Andrews, J.M. BSAC standardized disc susceptibility testing method (version 8). *J Antimicrob Chemother*, 2009; **64**(3):454–89
- 11 Tan, J. B. L., Lim, Y. Y., and Lee, S. M. Antioxidant and antibacterial activity of *Rhoeo spathacea* (Swartz) Stearn leaves. *J Food Sci and Technol*, 2015; **52**(4): 2394-2400
- 12 Sriwanthana, B., Treesangsri, W.,

- Boriboontrakul, B., Niumsakul, S., and Chavalittumrong, P. In vitro effects of Thai medicinal plants on human lymphocyte activity. *Songklanakarin J. Sci. Technol.*, 2007; **29**(Suppl. 1): 17-28
- 13 Bunyapraphatsara, N. and Chokechaijareonporn, A. Sa-moon-prai: Mai-peun-ban (4), Prachachon Printing, Bangkok 2000.
- Tan, J.B.L., Lim, Y.Y., and Lee, S. M. Rhoeo spathacea (Swartz) Stearn leaves, a potential natural food colorant. J Funct Foods, 2014; 7: 443–451.
- 15 Chao, W.W.,and Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med, 2010; 5(17)
- Singhamutra, S., Properties of 200 herbs. Bangkok: SO Printing House 1992.
- 17 Tipakorn, N. Effects of Andrographis Paniculata (Burm. F.) Nees on Performance, Mortality and Coccidiosis in Broiler Chickens. Instyte of Animal Physiology and Animal Nutrition. Doctoral Dissertation for Doctor Degree of Agricultural Sciences. Faculty of Agricultural Sciences. Georg-August-University, Germany, 2002.
- 18 Utami, V.C., Pitinidhipat, N., and Yasurin, P. Antibacterial Activity of Chrysanthemum indicum, Centella asiatica and Andrographis paniculata on Bacillus cereus and Listeria monocytogenes under Low pH Stress. KMITL Sci. Tech J., 2012; 12(1):49-54.
- 19 Pitinidhipat, N., and Yasurin, P. Antibacterial Activity of *Chrysanthemum indicum, Centella asiatica* and *Andrographis paniculata* on *Bacillus cereus* and *Listeria monocytogenes* under Osmotic Stress. *AU J.T*, 2012; **15**(4): 239-245.
- 20 Cushnie, T.P.T., and Lamb, A.J. Review Antimicrobial activity of flavonoids. *Int. J. Antimicrob. Agents*, 2005; **26**(5): 343-356.
- 21 Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., Tanaka, T., and Iinuma M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant *Staphylococcus aureus. J. Ethnopharmacol.*, 1996; **50**(1): 27-34.
- 22 Xu, Y., Marshall, R.L., and Mukkun, TKS. An investigation on the antimicrobial activity of Andrographis paniculata extracts and andrographolide in vitro. Asian J. Plt. Sci, 2006; (3): 527-530.
- Paudel, B., Bhattarai, H.D., Kim, I.C., Lee, H., Sofronov, R., Ivanova, L., Poryadina, L., Yim, J.H. Estimation of antioxidant, antimicrobial activity and brine shrimp toxicity of plants

J PURE APPL MICROBIO, 9(3), SEPTEMBER 2015.

- collected from Oymyakon region of the Republic of Sakha (Yakutia), *Biol Res*, 2014; **47**:1-6
- 24 Borchardt, J.R., Wyse, D,L., Sheaffer, C,C., Kauppi, K.L., Gary Fulcher, R., Ehlke, N.J., Biesboer, D.D. and Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. J. Med. Plant. Res, 2009; 3(10):707-718
- 25 Koch, B.P., Rullkötter, J. and Lara, R.J. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil. *WETL ECOL MANAG*; 2003; **11**(4): 257–263.
- 26 Nielsen, I.C. Mimosaceae (Leguminosae-Mimosoideae). In: Flora Malesiana, Ser. 1, 11 (part 1), Rijksherbarium/Hortus Botanicus, Leiden 1992.
- 27 Segelman, A.B., and N.R. Farnsworth. Biological and phytochemical screening of plants IV. A new rapid procedure for the simultaneous determination of saponins and tannis. *Loydia*, 1969; **32**(1): 59-65.
- Tambekar, D.H., Khante, B.S., Chandak, B.R., TItare, A.S., Boralkar, S.S., and Aghadte, S.N. Screening of Antibacterial potentials of some medicinal plants from melighat forest in India, *Afr J Tradit Complement Altern Med*; 2009; 6 (3): 228-232.
- 29 Vergeese raja, X., and Sivaraj, R. Antibacterial activity of Bark extract of *Acacia concinna* (L). *IJPSR.*, 2012; 3(10): 487-490
- 30 Todkar, S.S., Chavan, V.V. and Kulkarni, A.S. Screening of secondary metabolites and antibacterial activity of *Acacia concinna*. *Res. J. Microbiol.*, 2010; 5(10): 974-979.
- 31 Wuthi-udomlert, M., and Vallisuta, O. In vitro Effectiveness of *Acacia concinna* Extract against Dermatomycotic Pathogens. *Pharmacogn J.*,

- 2011; **3**(19): 69-73.
- 32 Ibrahim, D., Hong, L.S., and Kuppan, N. Antimicrobial activity of crude methanolic extract from *Phyllanthus niruri*. *Nat Prod Commun*. 2013; **8**(4):493-6.
- Paithankar, V.V., Raut, K. S., Charde, R.M., and Vyas, J.V. *Phyllanthus Niruri:* A magic Herb. *Res Pharmacy*, 2011; **1**(4):1-9.
- 34 Taylor, L. Technical Data Report for Chanca Piedra "Stone Breaker" (*Phyllanthus niruri*), Herbal Secrets of the Rainforest; 2nd edition 2003.
- Njoroge, A.D., Anyango, B., and Dossaji, S.F. Screening of *Phyllanthus* Species for Antimicrobial Properties. *Chem Sci J*, 2012; CSJ-56
- 36 Mittal, J., Sharma, M,M., and Batra, A. *Tinospora cordifolia*: a multipurpose medicinal plant- A review. *J. Med. Plants Stud*, 2014; **2**(2): 32-47
- 37 Sankhala, L.N., Saini, R.K., and Saini, B.S. A review on chemical and biological properties of *Tinospora cordifolia. Int. J. Med. Arom. Plants*, 2012; 2(2):340-344.
- Singh, S.S., Pandey, S.C., Srivastava, S., Gupta V.S., Patro, B., and Ghosh, A.C. Chemistry and Medicinal Properties of *Tinospora cordifolia* (Guduchi). *Indian J. Pharmacol*, 2003; 35:83-91.
- 39 Saha, S., and Ghosh, S. *Tinospora cordifolia*: One plant, many roles. *Anc Sci Life*, 2012; **31**(4): 151–159
- 40 Tambekar, D.H., Khante, B. S., Chandak, B.R., TItare, A.S., Boralkar, S.S., and Aghadte, S.N. Screening of Antibacterial potentials of some medicinal plants from melighat forest in India, *Afr J Tradit Complement Altern Med*, 2009; 6(3): 228-232.