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Abstract
Global public health is overwhelmed due to the ongoing Corona Virus Disease (COVID-19). As of 
October 2022, the causative virus SARS-CoV-2 and its multiple variants have infected more than 600 
million confirmed cases and nearly 6.5 million fatalities globally. The main objective of this reported 
study is to understand the COVID-19 infection better from the chest X-ray (CXR) image database of 
COVID-19 cases from the dataset of CXR of normal, pneumonia and COVID-19 patients. Deep learning 
approaches like VGG-16 and LSTM models were used to classify images as normal, pneumonia and 
COVID-19 impacted by extracting the features. It has been observed during the COVID-19 pandemic 
peaks that large number of patients could not avail medical beds and were seen stranded outdoors. To 
address such health emergency situations with limited available bed and scarcity of expert physicians, 
computer-aided analysis could save precious lives through early screening and appropriate care. Such 
computer-based deep-learning strategy could help during future pandemics, especially when the 
available health resources and the need for preventive measures to take do not match the burden of 
a disease.
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INTRODUCTION

 The cont inuously  emerging and 
reemerging SARS-CoV-2 variants have led to a 
huge health crisis worldwide. Besides health crisis, 
the pandemic has significantly affected global 
economy.1 The pathogen grappled the globe with 
multiple waves after originating from Wuhan, 
China, in the late 2019.1-4 This pandemic highly 
transmissible virus in its multiple mutated variant 
forms has killed millions globally, mainly due to 
human-human transmission.5 Initially, the Delta 
variant was most deadly and later the Omicron 
variant and its sub-lineages prevailed as the most 
infective ones. Emerging sub-lineages like BA.1, 
BA.2, BA.3, BA.4/5, BA.2.75, BA.4.6 tremendously 
affected healthcare infrastructure at global-scale.  
The virus reportedly gradually infected the upper 
and lower respiratory system, heart, kidney, liver, 
gut and the nervous system, leading to multiorgan 
damage.6,7 It also causes severe health issues in the 
immunocompromised or comorbid with diabetes, 
obesity, cardiovascular disorder, psychiatric 
disorder, etc.8-10

 The current ly  c i rculat ing  h ighly 
transmissible and immunity-evasive subvariants 
like XBB, BF.7, BQ.1and BQ.1.1.11-14 To contain the 
virus, numerous measures were implemented. 
However, its continuously emerging mutating 
multiple virus variants have tremendously affected 
global healthcare infrastructure. Another major 
challenge that surfaced is the shortage of test kits 
and similar medical gadgets. Also, the seemingly 
low safety and efficacy of the available COVID-19 
vaccines also play a crucial role in the emergence 
of virus variants.15,16 The pandemic continues to 
threaten the global population as a result. In such a 
scenario, early and automatic screening of samples 
may improve healthcare facility worldwide to 
handle the extraordinary health crisis. Various 
AI-based (especially ML and DL) techniques have 
been tried previously, for automatic screening of 
COVID-19 cases.17

 Zhang et al.18 developed CNN architecture 
for early automatic diagnosis of COVID-19 cases. 
They proposed the CNN-based approach for 
prognosis by utilising three different views of the 
CXR image (left lung, right lung and overall view) 
to extract individual features. The proposed model 

is effective for binary classification of healthy 
and COVID-19 cases. Haque and Abdelgawad19 
reported a custom convolutional neural network 
model to detect COVID-19 with 98.3% accuracy. A 
major issue of this model is, it cannot differentiate 
COVID-19 cases from other non-COVID cases 
(like pneumonia). Ghoshal and Tucker20 applied 
a Bayesian convolutional neural network (BCNN) 
on publicly available COVID-19 CXR images. 
Results demonstrated an improved (85.2–92.9%) 
detection accuracy using VGG-16 model. Islam 
et al.21 proposed DL technique to automatically 
detect COVID-19 from CXR images by combining 
CNN and LSTM. This model achieved 99.4% 
accuracy with high degree of sensitivity and 
specificity. Narin et al.22 used InceptionV3, 
ResNet50 and InceptionResNetV2 models to 
categorise CXR images into COVID-19 and normal. 
With the small dataset for binary classification, 
they achieved highest accuracy (98%) using 
ResNet50. Shorfuzzaman et al.23 proposed a novel 
CNN based DL fusion framework using transfer 
learning concept to detect COVID-19 from CXR 
images with 95.49% classification accuracy. The 
performance of the proposed models was assessed 
with CXR image dataset of the healthy, COVID-19 
and the pneumonia infected. This research work 
presents two deep learning approaches using CXR 
images for early automatic prognosis of COVID-19.

MATERIALS AND METHODS

Methodology
 The COVID-19 CXR image dataset was 
used to perform COVID-19 prognosis. Dataset 
used for the work was sourced from https://
github.com/ieee8023/covid-chestxray-dataset.24 
It contained 5863 images collected from hospitals, 
public sources and directly from physicians. It had 
94 normal CXR images, 506 of COVID-19 and 46 
of pneumonia. Two deep learning models, VGG16 
and LSTM, were implemented to study the normal, 
COVID and pneumonia cases from the images. 
The study plan is schematically presented in 
Figure 1. The COVID-19 CXR image database was 
considered first. Then the features from the images 
were extracted. Then, deep learning models with 
200 epochs were implemented on the database. 
80% data were considered for training and 20% 
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data for the run. The performance accuracy, the 
ROC (receiver operating characteristics curve), 
precision, recall and F1 score of each model were 
ascertained. SoftMax classifier was used to classify 
images into normal, COVID-19 and pneumonia.

Dataset
 As indicated, the dataset for the study 
was accessed from the publicly available resources 
(at https://github.com/ieee8023/covid-chestxray-
dataset). Dataset was processed in Python 
open-source software. TensorFlow environment 
was used to process. Keras, Pandas, NumPy, and 

matplotlib packages were used. The data were 
contained in two folders, one to train and the 
other for test, and both train and test folders 
contained three subfolders (normal, COVID-19 
and pneumonia; In Figure 2, the normal CXR 
image depicted clear lungs without any abnormal 
opacity, COVID-19 image exhibited a focal lobar 
consolidation, and pneumonia image had a more 
diffuse interstitial pattern in both the lungs. The 
dataset contained 6432 X-ray images in all and 
20% of the images were considered as test data. 
All CXR images were curated for consistency and 
quality by removing all low quality or unreadable 

Figure 1. CXR images classification for diagnosis-based COVID-19 transmission probability

Figure 2. Sample CXR images from curated dataset: a) normal; b) COVID-19; c) pneumonia
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Figure 3. Structure of VGG16 model (created with Image online.co; ref. 25)

Figure 4. Block diagram for LSTM architecture (tanh lied between -1 and 1; σ between 0 and 1)

scans before clearing for training the AI system.
No. of training images of Normal CXR: 1266
No. of training images of COVID CXR: 460
No. of training images of pneumonia CXR: 3418
Total: 5144
No. of test images of Normal CXR: 317
No. of test images of COVID CXR: 116
No. of test images of pneumonia CXR: 855
Number of test images: 1288

Data preprocessing
 Image preprocessing and augmentation 
API of Keras (known as ImageDataGenerator) was 
used during the training. Following operations 

were performed by the API on the data:
Rescaling: Performed for min-max scaling for pixels 
of each channel.
Rotation: Images were rotated within -10 to +10° 
range.
Lateral shift (width shift): Images were shifted 
laterally in either direction by 10%.
Vertical shift (height shift): Images were shifted 
vertically in top-down direction by 10%.
Horizontal flip: Mirrored image of the original X-ray 
scan were taken across the vertical axis.
 The Rectified Linear Unit activation 
function triggered activation of each hidden layer. 
The form of the input image was [224, 224, 3]. 
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Each model was trained for 200 epochs. The batch 
size was 32, the learning rate was set to 0.0001, 
and ADAM was used as the loss function. It was 
decided to train a cross-entropy loss function on 
all models.

VGG16
 VGG16 (Figure 3) is an advanced version 
of CNN architecture with distinct feature. The 
architecture consists of convolutional layer, 
pooling layer and two fully connected layer. The 
last layer of the architecture is soft max classifier. 
It has less number of hyper parameters. Relu 
activation function is used for triggering the hidden 
layer units of CNN. The convolution and max pool 
layers are arranged in same fashion throughout 
the architecture. VGG16 contains differentially 
weighed 16 layers, a huge network with 138 million 
trainable parameters.
Total parameters: 134,272,835
Trainable parameters: 134,272,835
Non-trainable parameters: 0
{‘COVID-19’: 0, ‘NORMAL’: 1, ‘PNEUMONIA’: 2}

Long short-term memory (LSTM)
 Long short-term memory (LSTM) is a DL 
(RNN) architecture developed by Hochreiter and 
Schmidhuber.26 LSTM has the ability to handle total 

data points instead of single data points. It contains 
memory elements and consists of input gate, 
forget gate and output gate which control the flow 
of information through LSTM architecture. LSTMs 
is a type of RNN used for eliminating the long 
term dependency problem and can remember 
information for longer duration due to its feedback 
connection.27 Sigmoid gate is known as forget gate 
which helps in selection of data passing though 
LSTM architecture. The sigmoid function forms 
the input layer which takes the output of the last 
LSTM unit (ht1) at time t=1 and the current input 
(xt) at time t, which determines the process of 
detecting and excluding data. The sigmoid function 
also determines which aspect of the earlier output 
could be removed. Tanh layer is an added new 
vector (ĉ) to update state value. ht-1 and xt form 
the forget gate (Figure 4) and returns 0 and 1 as 
the value, 1 representing storing the information 
and 0 representing removing the information from 
the cell.
The output of forget gate from Figure 2 is:
ft = σ(Wf.[ht-1Xt] + bf) ...(1)
it = (Wt.[ht-1,Xt]+bt  ...(2)
ĉt = tanh (Wc. [ht-1,Xt] + bc ...(3)
Ct = ft X Ct-1 + it X Ct ...(4)
Ot = (W0.[ht-1, Xt]+bo) ...(5)
ht = Ot X tanh(Ct)  ...(6)

Figure 5. Confusion matrix of LSTM model
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Figure 7. ROC curve of LSTM model

Figure 6. Confusion matrix of VGG16 model
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 where, Ct-1 = old cell state, Ct = new cell 
state, σ = sigmoid layer, tanh = tan hyperbolic layer

RESULTS AND DISCUSSION

 CXR image database accessed from the 
GitHub site containing three groups of RGB images, 
normal CXR, COVID CXR and Pneumonia CXR was 
used for the study. LSTM and VGG16 models 
were implemented to classify the images. The 
performance of each model in terms of confusion 
matrix, receiver operating characteristics curve 
(ROC), training and validation accuracy loss curve 
are explained below.

Performance measure in terms of confusion 
matrix
 The confusion matrix of each model 
was assessed (Table 1 and 2). It is a matrix that 
measures the ability of a deep learning model 
to classify images (as normal, COVID-19, and 
pneumonia in this case). Being a three-class 
problem a 3*3 confusion matrix where the first 
cell represented the true positive samples was 
implemented. The confusion matrix contained four 
parameters as True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN) 
as detailed below:

Table 1. Confusion matrix report of LSTM model

X-Ray image type TP FN FP TN

COVID-19 111 05 01 1171
Normal 287 30 35 936
Pneumonia 820 35 34 399

Table 2. Confusion matrix report of VGG16 model

Types of X-ray image TP FN FP TN

COVID-19 110 05 05 1165
Normal 277 39 31 938
Pneumonia 820 34 42 389

Figure 8. ROC of VGG16 model
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Figure 9. Accuracy and loss curve of LSTM model

Figure 10. Accuracy and loss curve of VGG16 model

TP
 A true positive value had the actual and 
anticipated values as same. It represented the 
actual number of disease cases.

FN
 Cells 2 and 3 represented false negative 
values. The FN value was the sum of the values 
of corresponding rows except the TP value. It 
accounted for all COVID-19 and pneumonia 
positive cases that were misdiagnosed as negative 
cases.



  www.microbiologyjournal.org927Journal of Pure and Applied Microbiology

Pal et al. | J Pure Appl Microbiol. 2023;17(2):919-930. https://doi.org/10.22207/JPAM.17.2.20

FP
 The false positive value was the sum of 
the values of the corresponding column except 
the TP value. It accounted for all COVID-19 and 
pneumonia negative cases misdiagnosed as 
positive cases.

TN
 The true negative value was the sum of 
all columns and rows excluding the values of the 
class for which the values were being calculated. 
It indicated the number of healthy patients that 
were actually not suffering from either COVID-19 
or pneumonia.
 The confusion matrices of each model 
are presented in Figure 5 and 6.

Model performance in terms of ROC curve
 The graph between true positive (TP) 
and false positive (FP) rates showed the ability of 
deep learning models to classify. More the area 
covered by the curve more shall be the accuracy 
of the prognosis by a model. ROC curves of each 
model are shown in Figure 7 and 8. VGG16 model 
performed better than LSTM in prognosing 
COVID-19 and pneumonia patients with a ROC 
value of 100% and 99%, respectively (Figure 8). 
LSTM model prognosed COVID-19, pneumonia 
and normal patients with 97%, 98% and 96% ROC 
values, respectively. The performance metrics 
formulae of DL models are as bellow:

 
Precision (P) = TP

TP + FP

 
Recall or TP, R = TP

TP + FN

 
F1- score = 2 X P X R

P + R
   

  
FPR = FP

FP + TN

Performance of models in terms of precision, 
recall and F1 score
 Performance parameters of the models 
for the image database are provided in Table 3. 
The precision, recall and F1 score for VGG16 and 
LSTM models were obtained from Table 3. VGG16 
returned reliable precision (0.95), recall (0.95) and 
F1 score (0.95) values for COVID-19 prognosis. For 
normal classification, the values obtained were 
precision: 0.91, recall: 0.95 and F1 score: 0.93. For 
pneumonia prognosis, the values obtained were 
precision: 0.95, recall: 0.90 and F1 score: 0.93. 
Compared to VGG16 the performance of LSTM 
model on precision (0.86), recall (0.82) and F1 
score (0.84) in COVID-19 prognosis was relatively 
low, and the model returned precision, recall and 
F1 score values of 0.95, 0.86 and 0.90 respectively 
for normal classification. The performance of LSTM 
model for pneumonia classification was precision: 
0.79, recall: 0.90 and F1 score: 0.84 values, 
respectively. High recall value indicated lower 
false negative prognosis values. False negative 
prognosis may misdiagnose a patient. Among the 
two test models, VGG16 was suitable for correct 
COVID and pneumonia prognosis as it exhibited 
higher recall value.

Model performance in terms of training and 
validation curve
 LSTM model provided 92% validation 
accuracy and 88% training accuracy after 200 
epochs (Figure 9). Validation loss of 0.01 and 
training loss of 0.001 were obtained at 11 epochs. 
After 11 epochs validation accuracy was superior 
to the training accuracy. Validation accuracy was 
at its maximum value at 35 epochs. At 200 epochs, 
0.2 validation loss and 0.1 training loss were 
obtained.
 VGG16 model returned best performance 
compared to LSTM model (Figure 10). The training 
accuracy showed better performance than 
validation accuracy initially for VGG16 model. 

Table 3. Performance parameter values of deep 
learning models

Deep Chest Precision recall F1
learning X-ray   score
model type

VGG16 Normal 0.96 0.96 0.96
 COVID 0.90 0.88 0.89
 Pneumonia 0.95 0.96 0.96
LSTM Normal 0.99 0.96 0.97
 COVID 0.89 0.91 0.90
 Pneumonia 0.96 0.96 0.96
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Validation accuracy improved after 11 epochs 
as compared to training accuracy. It performed 
superior to training accuracy with 100% accuracy 
at 71 epochs and after that it remained constant. 
Validation accuracy remained constant at 97% 
with a loss of 0.05 after 71 epochs, whereas 
training accuracy maximised to 98.94% at 145 
epochs. A validation loss of 0.05 with 11 epochs 
and a training loss of 0.12 after 145 epochs were 
observed. A validation accuracy of 0.97 and a loss 
of 0.07, and training accuracy of 0.95 and a loss 
of 0.13 were obtained at 200 epochs.

Comparative analysis
 The performance and reliability of the 
proposed systems were compared with the state-
of-art COVID-19 probing systems. Outcome of the 
first version of the proposed system is presented 
and compared with conventional methods in  
Table 4. The proposed system demonstrated 
remarkably accurate results compared to 
conventional methods. Also, the proposed 
improved Resnet-50 system is lightweight as 
compared to models like VGG16 or DenseNet. 
The proposed system outperformed the existing 
methods on precision, accuracy, sensitivity and 
F1 score. Table 4 lists the findings of the auto-
prognosis of COVID-19 using CXR images which 
was contrasted with the suggested model. 
Narin et al.22 used 26 million parameters for 
COVID-19 prognosis, the two improved models 
outperformed other models in terms of accuracy 
(Table 4). Proposed VGG16 model used roughly 
five times as many (134 million parameters). This 

model costs more while is marginally higher on 
accuracy (97.5%) compared to other models.

CONCLUSION
 
 This paper demonstrates application of 
VGG16 and LSTM deep learning techniques to 
CXR images for COVID-19 prognosis, using public 
repository dataset for multi-class and binary 
classification tasks. The LSTM model provided 
98% validation accuracy and 92% training accuracy 
while the respective figures were 100% and 
98.94% for VGG16. The validation loss of 0.01 
and training loss of 0.001 were observed at 11 
epochs in LSTM while the respective figures were 
0.05 after 11 epochs and 0.12 after 145 epochs for 
VGG16. Proposed models exhibited higher degree 
of accuracy compared to previously reported 
works. A significant finding of the work was that, 
data fusion models can further increase diagnosis 
and prediction performances and build an effective 
model with larger database. The models would 
assist the clinicians in prognosis of COVID-19 critical 
patients effectively in few minutes that will be very 
helpful to empower the healthcare infrastructure 
especially in overwhelming healthcare emergency 
situation as the ongoing COVID pandemic. Early 
diagnosis could crucially curb viral transmission 
and facilitate in containing the infection. The 
authors plan to work on multi-criteria classification 
as an extended research work to decipher 
images with mixed lung infections due to several 
simultaneous infections like tuberculosis, AIDS, 
COVID-19, etc.

Table 4. Deep learning methods and techniques used in COVID-19 using CXR images

Study Architecture Accuracy (%) References

Apostolopoulos et al. VGG-19 93.48% 28
Narin et al. InceptionV3 97 22
Sahinbas and Catak,  VGG-16, VGG-19, 80 29
 ResNet, DenseNet, 
 InceptionV3
Guefrechi et al.  Resnet50 97.20 30
Jamil and Hussain Deep CNN 93 31
Joaquin ResNet-50 96.2 32
Brunese et al. VGG-16 96 33
Rajaraman and Antani, VGG16 93 34
Proposed model LSTM 92 -
 VGG16 97 -
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