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Abstract
Effluents containing dyes from different industrial sectors pose a serious threat to the environment. 
Different physicochemical strategies are being carried out in industry to reduce the toxicity of dye-
containing waste so that dye-mixed wastewater can be further utilized in agriculture or irrigation 
purposes in water-scarce areas. But those techniques are economically not feasible. There is an 
alternative mechanism present in biological systems that are biocatalysts which is eco-friendly, low 
cost, and sustainable. Lignin peroxidase, Laccase, Manganese peroxidase are oxidoreductase classes of 
enzymes with the ligninolytic ability and are potential biocatalysts for the degradation of environmental 
toxicants like dyes. Besides ligninolytic enzymes, cellulase, pectinase are also powerful candidates 
for dye decolourization. Most interestingly these biocatalysts are found in a variety of microbial 
monoculture as well as in mixed microbial consortia. The consortia are able to reduce the organic load 
of dye-containing industrial effluent at a higher rate rather than the monoculture. This article critically 
reviews the efficacy of lignocellulolytic enzymes in dye decolourization by both monoculture and 
consortia approaches. In addition, this review discusses the genetically and metabolically engineered 
microbial systems that contribute to dye decolourization as well as put forward some future approaches 
for the enhancement of dye removal efficacy. 
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INTRODUCTION

 Globally, large-scale synthetic polymers 
are manufactured from fossil resources. However, 
our fossil resources are depleting, and their 
usage has fatal environmental consequences, 
necessitating a continuous search for alternate and 
viable sources that can replace fossil fuels while 
still delivering useful end goods.1 Lignocellulosic 
biomass is an alternative and is derived from 
agricultural crops and forest leftovers, solid 
municipal wastes, as well as paper-mill sludge, 
bioenergy crops, animal manures, and forest 
products. Dyes are coloured chemicals that are 
commonly used in the printing, textile, rubber, 
plastics, cosmetics, and leather sectors. In our 
daily lives, natural and synthetic dyes play an 
important role. Natural dyes like haematein and 
hematoxylin are derived from logwood that can 
be toxic if inhaled, swallowed, or absorbed via 
the skin. When breathed, bloodroot, the source 
of another natural dye, can cause irritation and 
inflammation.2 Heavy metals with colours and 
cancer-causing synthetic dyes have a high impact 
and are unacceptably harmful. Synthetic dyes can 
cause an allergic reaction, respiratory trouble, 
and skin sensitization in industry workers.3 
In humans, synthetic cationic dyes can cause 
hypertension, shock, vomiting, cyanosis, jaundice, 
quadriplegia, Heinz body development, and 
tissue necrosis. Therefore, decolourization of the 
dye is important for lowering its organic load. 
There are several dye decolourization processes. 
Among them,the lignocellulolytic enzyme is one 
of the best sustainable routes. These enzymes 
are obtained from microorganisms distributed in 
both prokaryotic and eukaryotic domains including 
bacteria, fungi, and actinomycetes. Biological 
pretreatment has various advantages, including 
minimal energy consumption, the absence of 
hazardous chemicals, and reduced pollution. 
Lignocellulolytic enzymes can be characterized as a 
large group of extracellular proteins, which include 
hydrolytic activity such as laccase, lignin peroxidase, 
hemicellulases, cellulases, pectinase, amylase, 
chitinases, proteases, esterases, mannanases, 
which are capable of digesting rigid lignocellulose 
in plant biomass. Lignin and polysaccharides such 
as cellulose, hemicellulose, pectin, ash, minerals, 
and salts make up lignocellulosic biomass. Lignin 

is an aromatic polymer, unlike cellulose and 
hemicellulose, which are both carbohydrates. 
Lignocellulose is a valuable source of renewable 
carbon that has been largely underutilized. 
Pretreatment of recalcitrant lignocellulosic 
biomass for biofuel generation, use in the 
paper, textile, and food industries, wastewater 
treatment, bioremediation, organic synthesis, and 
the cosmetic and pharmaceutical sectors are all 
examples of lignin-degrading enzyme applications. 
The peroxidases like lignin peroxidase (LiP), 
manganese peroxidase (MnP), versatile peroxidase 
(VP), and dye-decolourizing peroxidase (DyP) are all 
known for the breakdown of lignin.4 DyP enzymes 
are known originally to oxidize anthraquinone 
dyes with strong redox potential. DyP has a vast 
substrate affinity that can act at lower pH levels. 
Laccases are the second most common type 
of lignin-degrading enzyme. Lignin-degrading 
enzymes are already being used in industries 
including paper and textiles, as well as for 
wastewater treatment and herbicide breakdown.5 
In the delignification and bio-bleaching of wood 
pulp, LiP, MnP, VP, and laccase work to replace 
chlorine-based delignification. They can also be 
used to decolourize dye wastewater from the 
textile industry, as well as decolourize effluent and 
treat effluent in distilleries and waste treatment 
facilities. To this end, the aim of this review is 
to take a look at the role of different types of 
lignocellulolytic microbial systems used in dye 
decolourization along with the critical analysis 
of their efficiencies (Figure) with multiple future 
prospective mechanisms that can become a 
perfect workhorse for future research aspirants. 

Crit ical  Analysis  Of  Dye Decolouriz ing 
Lignocellulolytic Enzyme Producing Microbial 
Systems & Its Significance
 Here we are going to review some 
l ignocellulolytic enzymes that have dye 
decolourizing properties.

Laccase
 Laccase (1,4-benzenediol) oxidizes several 
aromatic substances leading to the simultaneous 
reduction of molecular oxygen to water.6 Laccase 
can also be classified in respect of three different 
kinds of copper prosthetic groups. Though phenolic 
and its relevant compounds act as the main 
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substrate of this enzyme, it is possible to extend the 
range of substrate by adding specific substances 
known as mediators. A mediator is a substance 
that causes the extension of the substrate range 
of any enzyme.7 Laccases have been reported to 
be produced by several gram-positive and gram-
negative bacteria, fungi, and actinomycetes. Both 
Bacterial and fungal laccase require the mediator 
system. There are several mediators like ABTS(2,2'-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), 
HOBt(Hydroxybenzotriazole), and syringaldehyde 
which lead to the enhancement of redox potential 
of prokaryotic laccases.8 Nowadays, laccase has 
been the center of attraction in research fields 
because of its wide range of applications such as 
textile dyes bleaching, detoxification of effluent 
and pollutants, bioremediation of phenolic 
compounds.9 Dye effluents cause harmful impacts 
on the soil and groundwater levels. Laccase can 
play an important role as a biological tool for 
several applications such as decolourization of 
dye effluents of industrial textiles.7 At first, the 
prokaryotic laccase was discovered in the soil 
bacterium named Azospirillum lipoferum. The 
melanogenic bacteria Marinomonas mediterranea 
also has the potential to produce heterologously 
expressed laccase. CotA gene product, one of the 
best laccases, is part of the spore coat of Bacillus 
subtilis.10 Low molecular weight extracellular fungal 
laccases are produced from Volvariella volvacea11 
and Marasmius quercophilus. Extracellular 
laccases are also found in the bacteria B. safensis, 
B. lichiniformis,12 B. atrophaeus, B. pumilis,13 B. 
subtilis, and B. tequileasis. The molecular weight 
of the laccases from these bacteria ranges from 
58kDa to 63kDa. The laccases extracted from fungi 
exhibit activity in acidic pH. Laccase produced by 
B. halodurans is considered as alkaline bacterial 
laccase because it is able to show activity in 
pH optima 7.5-8.0 in presence of substrate i.e., 
syringaldazine. Some of the bacterial laccases 
have the potential to demonstrate activity 
and stability in a wider pH range i.e., 6.0- 9.0 
approximately. In comparison to fungal laccase, 
bacterial laccases can be applied to numerous 
industrial fields like bio-bleaching and processing 
of dyestuffs because of their activity over a wider 
range of pH. Marine Alteromonas sp. possesses 
the ability to produce laccase. Synthetic dyes that 
are released from textile industries pose a huge 

environmental threat to the human race and the 
environment due to their carcinogenic properties. 
Microbial decolourization methods render a less 
costly and eco-friendly alternative to the current 
physicochemical process such as adsorption, 
chemical transformation. Decolourization with the 
help of laccase is performed on numerous types 
of dyes that include indigoid, azo, triarylmethane, 
and anthraquinone dyes. As the current methods 
are unable to degrade dye mixture while treating 
wastewater mixed with azo dye, the utilization of 
a laccase mediated system represents a feasible 
solution to this alarming issue. The production 
of laccase can be influenced by the presence of 
several dye-containing media.7 The first case of 
degrading dyes has been reported by the laccase 
from Gamma-proteobacterium JB. The laccase 
extracted from this microorganism is alkali tolerant 
and possesses the capability to cause degradation 
of the dye named indigo carmine at 55°C in pH 
9.0. The increase in the rate of breakdown has 
been found in the presence of syringaldehyde, 
vanillin, and p-hydroxybenzoic acid. The fungal 
laccase purified from Trametes hirsuta (pH 0.5) and 
Sclerotium rolfsii (pH 5.5) had shown results on this 
dye. Ganoderma lucidum has the potential to cause 
the production of laccase that contributes to the 
decolourization of acid orange dye. Streptomyces 
ipomoeae causes the production of laccase SilA 
that remains active in neutral to alkaline pH in 
textile wastewaters.14 It has been checked that the 
azo dyes are generally degraded by Streptomyces 
species. But S. psammoticus demonstrates very 
limited activity towards decolourization. Double 
mutant K316N/D500G of the Bacillus licheniformis 
CotA reported in the research by Koschorreck 
et al. in 2009 exhibits a significant role in the 
decolourization of dyes such as Remazol Brilliant 
Blue R (RBBR), Alizarin red S, and indigo carmine 
(indigo dye).7 Extracted laccase from Streptomyces 
coelicolour also contains the ability to decolourize 
the indigo dye in presence of syringaldehyde that 
acts as a redox mediator.15

Lignin Peroxidase
 Lignin is basically a complex aromatic 
polymer and the most important renewable 
carbon source on Earth just after cellulose, 
which consists of about 30% non-fossil organic 
carbon. Around 60% of lignin is wasted by 
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combustion because of the lack of methods to 
convert it into valuable end products. For the 
competitiveness of biofuel vs fossil gasoline, lignin 
degradation represents the major hindrance. 
Enzymes like lignin peroxidase (LiP) play an 
important role in dye – decolourization. Plant cell 
walls have lignocellulosic biomass as a structural 
component that mainly comprises cellulose, 
hemicelluloses, and lignin. In the case of plant 
lignin-carbohydrate complexes formed with 
cellulose and hemicelluloses. Wood–decaying 
fungi, typically classified as white rot-fungi have 
their extracellular ligninolytic enzymes, basically 
secreted from fungal class II peroxidase, such as 
lignin peroxidase (LiP). Lignin has been marked as a 
complex aromatic structure that is harder to attack 
and has been considered by most biorefineries 
to be a low-cost product. Lignin cross-linking is 
obtained through the oxidative coupling of the 
various small units such as  sinapyl, Coniferyl, 
and p-coumaryl alcohol. Given the composition 
of these compounds, lignin is an excellent source 
of potentially fine chemicals and their evolution 
through a manufacturing process. Currently, 
ligninolytic enzymes have many applications like 
the removal of dye from industrial and bioleaching 
effluents and the treatment of wastewater. Both 
phenolic and non-phenolic compounds can be 
oxidized by lignin peroxidase that can cleave aryl 
Ca bond, Ca–Cb bond, phenolic oxidation by 
aromatic ring opening, and finally demethylation.16 
Lignin is a major contaminant in the textile, dye 
industry and is responsible for its intense unwanted 
dark-brown colour. Due to recalcitrant composition 
and corrosion resistance property, the non-
hydrolysable bonds of lignin and some non-lignin 
dyes are resistant to degradation. The potential use 
of lignin-degrading bacteria and lignin peroxidase 
has become interesting because they can provide 
environment-friendly methods for dye-containing 
wastewater treatment of various industries. Here 
we will focus on some bacteria, fungi, or other 
microbes that can produce the lignin peroxidase 
enzyme and has dye decolourizing efficiency  
(Table 1).

Manganese Peroxidase
 Various unmodified microbial MnPs helps 
to breakdown approximately 60-99% dye by its 
decolourizing mechanism. Here are some examples 

that come from a different study. Microbial 
consortium SR can decolourise three different 
colours like Crystal Violet (63%) Cresol Red(93%), 
CBB G250(96%) within 6days with a minimum of 
20 mg/L, 100 mg/L, 100 mg/L initial concentration 
of Dyes respectively.31 Trametes pubescens strain 
i8 can decolourise Acid Blue 158(95%), Poly R-478 
(88%), Remazol Brilliant Violet 5R(76%), Direct 
Red 5B (66%), Indigo Carmine (64%), Methyl 
Green (50%), Cibacet Brilliant Blue BG (46%), 
Remazol Brilliant Blue (48%) with only 50 µM initial 
concentration in 24hours.32 Aspergillus terreus 
GS28 decolourise Direct Blue-1(98.4%) with 100 
mg/L concentration within 168 hours.33 In the 
case of Bjerkandera adusta strain CX-9, Acid Blue 
158(91%), Poly R-478(80%), Cibacet Brilliant Blue 
BG (77%), Remazol Brilliant Violet 5R (70%) at 50 
µM initial concentration has been decolourised 
within 12 hours.34 Trametes sp. 48424 can 
decolourise 100 mg/L of Indigo Carmine(94.6%), 
Remazol Brilliant Blue R (85%), Remazol Brilliant 
Violet 5R (88.4%), Methyl Green (93.1%) within 
18 hours.35 Microbial consortium ZSY can degrade 
the colour of the dye Metanil Yellow G(93.39%) at 
a minimum concentration of 100 mg/L within 48 
hours.36 Microbial Consortium ZW1 decolourise 
the dye Methanil Yellow G(93.3%) with 100 mg/L 
in 16 hours37. Trichoderma harzianumcan break 
the colour of Blue-Black B(92.34%) at 0.03% 
initial concentration in 14 days.38 Phanerochaete 
chrysosporium CDBB 686 can decolourise with a 
50-ppm concentration of Congo Red(41.84%), Poly 
R-478 (56.86%), Methyl Green (69.79%) within 
36 hours39.Bjerkandera adusta CCBAS 930 can 
do the breakdown with a 0.01% concentration 
of Alizarin Blue Black B(86.5%), Acid Blue 129 
(89.22%) by 20 days.40 white-rot fungus Cerrena 
unicolor BBP6 helps to break down six colours 
with 100 mg/L concentration. These are Congo 
Red (53.9% in 12 hours), Methyl Orange (77.6%in 
12hours), Remazol Brilliant Blue R (81% in 5 hours), 
Bromophenol Blue (62.2% in 12 hours), Crystal 
Violet (80.9% in 12 hours), Azure Blue (63.1% 
within 24 hours).41 Phanerochaete chrysosporium 
breakdown 90.18% of Indigo Carmine with 30 mg/L 
initial concentration in 6 hrs.42 Ceriporia lacerata 
ZJSY decolourises 90% of Congo red with 100 mg/L 
concentration within 48 hrs.43 Bacillus cohnni RKS9 
helps to break down 99% of Congo red with 100 
mg/L concentrationin 12 hours.44 Schizophyllum 
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commune IBL-06 decolourise 100% of Solar 
Brilliant Red 80 with 0.01% concentration within 
3 days.45 Irpex lacteus CD2 decolourise different 
dye separately, Remazol Brilliant Violet 5R(92.8% 
in 5 hours), Remazol Brilliant Blue R (87.1% in 5 
hours), Indigo Carmine (91.5% in 5 hours) Direct 
Red 5B (82.4% in 36 hours ) with 50mg/L initial 
concentration.46 On the other hand, Trametes 
versicolor can decolourise dye mixture 80.45% of 
Brilliant Blue FCF and Allura Red AC with an initial 
concentration of 100 mg/L within 14 days. Irpex 
lacteus can do 86.04% of dye decolourization in 
19 days of this same dye mixture and Bjerkandera 
adusta do 82.83% dye degradation within 9 days.47

Cellulase
 Cellulases are the complex group 
of enzymes that are secreted by a range of 
microorganisms which includes fungi, bacteria, 
and actinomycetes. In a natural environment, the 
interactions among the cellulolytic microorganisms 
result in the breakdown of lignocellulosic waste 
polymeric materials.48 Cellulase catalyzes the 
decomposition of cellulose by cleaving beta-1,4-
glycosidic bonds. Complete hydrolysis of cellulose 
is mediated by the three enzymes. They are 
endoglucanase, exoglucanase, beta-glucosidase. 
The exoglucanase attacks the reducing end and 
non-reducing end of cellulose chains and produces 

Figure. Multiple functions of lignocellulolytic enzymes   
Here, the use and application of lignocellulolytic enzymes in different industries have been illustrated.
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glucose and cellobiose. The endoglucanase works 
against crystalline cellulose substrates such as 
cello-oligosaccharides, and beta-glucosidase 
hydrolyses cellobiose to glucose from the non-
reducing ends.49 In fungi, the fungal Cellulases 
are secreted by Trichoderma reesei. In the case 
of actinomycetes, the genera produce cellulases 
are Streptomyces and Thermobifida, and for 
bacteria, it is Pseudomonas and Sphinomonas  that 
produce cellulases. These are some important 
sources of enzymes that are used for textile dyes 
remediation. In the textile industry, cellulases are 
used as dye decolourization enzymes. Currently, in 
the textile industry cellulases are best applicable 
in the bio-stoning and biopolishing process.50 
Microbial cellulases are an alternative to the 
traditional method of bio-stoning. Cellulases act 
on cotton of denim fabric. The indigo dye is used 
for the colouration of the denim fabric. The dye 
is trapped inside the cellulose fibre in the cotton 
material. The dye is mostly attached to the surface 
of the yarn and most exterior of short cotton 
fibres. Cellulases hydrolyze and breaks the small 
fibres of fabric by breaking the beta-1,4- linkages 
of the cellulose. This hydrolysis process removes 
the fibres which trap indigo dye. The dye is easily 
removed from the fabric after this process.48,51 
Trichoderma reesei endoglucanase II is the best 
suitable candidate for bio-stoning. Cellulases 
have several advantages and disadvantages over 
the conventional approach which is a stonewash 
with a pumice stone. The advantages of using 
cellulases are: it gives high productivity, less work 
intensiveness, are safer for the environment, it 
takes short time than the conventional method. 
There are several disadvantages also. The major 
disadvantage of cellulase is back staining which is 

the redeposition of dye on the fabric and losses 
of the shade look given by the treatment.51 The 
latest trend of bio stone washing is using an 
enzyme mixture composed of amylase, cellulases, 
lactase.52 Cellulases also play a critical role in 
biopolishing where they remove excess stain from 
the denim fabric. Apart from indigo dye, cellulases 
are involved in various dye decolourizations  
(Table 2). Dye like methylene blue, malachite 
green, Congo red, methyl orange dye, grams 
iodine dye is decolourized by Cellulase enzymes 
under optimum conditions like temperature, pH, 
and time.53

Pectinase
 Pectinase enzymes act on pectin by 
cleaving the glycosidic bond of galacturonic 
acid.57 Pectins are the chain molecules with a 
rhamnogalacturonan backbone associated with 
other polymers and carbohydrates.58 Pectins 
are heteropolysaccharide structures made up of 
alpha (1,4) linked D-galacturonic acid residues.59 
Pectinase enzymes depolymerize pectin through 
hydrolysis, trans-elimination, and de-esterification 
mechanisms. These reactions hydrolyze the 
ester bond of pectin.58 Pectinase enzymes are 
classified according to their mode of action like  
1:  Methylesterases, remove methoxy groups from 
esterified galacturonan. 2: Polygalacturonases, 
that is subdivided into endopolygalacturonase 
(catalyzes the hydrolysis of the glycosidic bond 
randomly), and exopolygalacturonase, which 
releases galacturonic acid residues from the 
non-reducing ends of homogalacturonan.59 
Pectinase has an important role in the food 
industry and is commercially used for juice 
extraction, wine clarification, and decolourization 

Table 2. Dye decolourization by cellulase enzyme

Dyes The optimum  Time taken   Optimum pH   Cellulases  Ref.
 temp.  for dye for dye  for dye  Producing 
 decolouri-  decolouri- decolouri- Bacteria/ Fungi
 zation zation zation

Congo red 26°C 2 – 5 days pH 4.5 Trichoderma reesei [54]
Malachite green 40°C 1200 min pH 11 Bacillus cereus [53]
Grams Iodine 28°C 30 – 40 min pH 7.0 Bacillus sp., Pseudomonas sp. [55]
Drimarene dye 28°C 25 min pH 2.0 Trichoderma reesei,  [56]
    Streptomyces and 
    Thermobifida
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of both.60 The microbial sources of pectinase 
enzymes are Aspergillus niger, Aspergillus oryzae, 
Penicillium restrictum, Trichoderma viridae, 
Bacillus subtilis, and Bacillus cereus.61 Pectins 
and various polysaccharides are the substances 
present in fruit, they lead to colloid formation 
and fouling, also reduce the commercial value 
of juices.62 Pectinase degrades the pectin by 
cleaving beta-1,4-glycosidic bonds present in 
pectin. It reduces viscosity and cluster formation 
in juices that enhance the clarity of juices.63 The 
decolourization process is important to give a 
pleasant colour of fruit juices.64 Pectinase enzyme 
helps in the decolourization of Congo red dye. This 
decolourization occurs under certain conditions 
like at pH 6 – 6.5, temperature 28°C, and it 
takes 5 days to decolourize the congored by the 
microorganism Aspergillus oryzae by forming a 
zone on congo red-agar medium.65

Dye Decolourization By Microbial Consortia
 Microbial consortia meaning is when 
two or more microbial groups live together 
symbiotically. Microbial consortia can be 
ectosymbiotic or endosymbiotic or sometimes 
maybe both. The evolution of land plants and 
their transition from algal communities in the 
sea to land microbial consortia suggest symbiotic 
evidence between their necessary precursors. 
Microbial consortia can decolourize dyes  
(Table 3); mostly the synthetic dye(azo dyes) 
that are present in the industrial effluents. Azo 
dyes contain one or more –N=N- groups which 
are commonly found in synthetic group release 
in nature. Azo bond is metabolized by reductive 
cleavage while the consequent aromatic amines 
are metabolized under gaseous conditions. 
Hence, the microbial population of the treatment 
system should work under both anaerobic/ 
anoxic and gaseous conditions to gain complete 
mineralization of dye molecules. By using microbial 
consortia, the azo dye decolourization occurs 
faster. Dye contaminated soil has been isolated 
from textile wastewater of Orissa, India, that 
contains the pure culture of bacterial consortium-
BP of Bacillus flexus TS8(BF), Proteus mirabilis 
PMS(PM), and Pseudomonas aeruginosa NCH (PA). 
Physico-chemical parameters have been optimized 
to gain maximum discolouration efficiency. 
The formation of metabolites by degradation 

of Indanthrene Blue RS has been confirmed 
through UV-Vis spectroscopy, FT-IR, and GC-MS 
analysis. When the agricultural residual wastes 
have been supplemented, it shows an enhanced 
decolourization efficiency of consortium-BP. 
Mineralization of Indanthrene Blue RS has 
determined the higher reduction in TOC(Total 
Organic Carbon). COD(Chemical Oxygen Demand) 
has been removed by consortium-BP. Bacillus 
flexus, Proteus mirabilis, and Pseudomonas 
aeruginosa show a positive result in the catalase 
test. Bacterial consortia of Pseudomonas 
aeruginosa, Rhodobacter sphaeroides, Proteus 
mirabilis, Bacillus circulans have the reaction 
in anoxic-oxic condition to decolourize Renazol 
Black B. They incubate the consortia to observe 
the colour reduction, and they found that 90% 
of colour reduction and a COD reduction of 80% 
occur by using synthetic wastewater with a dye 
concentration of 100mgL-1. For decolourization 
of golden yellow HER dye under aerobic and 
microaerophilic conditions, Microbial consortia 
GG-BL consisting of Galactomyces geotricium 
and Brevibacillus laterosporus NCIM 2298 has 
been developed. They have catalase, reductase 
enzymes. Bacterial consortia Zobellelata iwanensis 
ATI-3 and Bacillus pumilus HKG212 are used under 
static conditions to decolourize Reactive green -19 
dyes. Yeast extract has been added as co-substrate, 
the decolourization efficiency of 97% with initial 
dye concentration has been observed. It is difficult 
to determine the impact of the experimental 
condition and decolourization process together.66 
Textile Acid Orange dye from textile effluent 
contaminated soil of Tanda, Uttar Pradesh (India) 
has been isolated. This dye is decolourized by 
a bacterial strain RMLRT03. Bushnell and Haas 
medium (BHM) amended with Acid Orange dye 
has been used for decolourization studies. 16s 
rRNA sequence of the bacterial strain identifies it 
as Staphylococcus hominis.67 This bacterial strain 
has good decolourization ability with glucose 
and yeast extract supplements as co-substrate in 
static conditions. The optimal conditions of Acid 
Orange dye decolourization are at pH 7.0 and 
35°C in 60 hours incubation by Staphylococcus 
hominis. The textile dyes can be absorbed or 
degraded by many bacterial and fungal species. 
Anthraquinone dye can be decolourized either 
by aerobic or anaerobic conditions. They are 
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Table 4. Genetically engineered microorganisms and their impact on dye decolourization

Gene name Extracted from Expressed in Vector Dye Ref.

azoreductase Rhodobacter sphaeroides Escherichia coli pGEX4T-1 Acid red GR [93]
 AS 1.1737 JM109
azoreductase Rhodobacter sphaeroides Escherichia coli pGEX4T-1 C.I. Direct blue 71 [94]
 AS 1.1737 JM109
azoreductase Rhodobacter sphaeroides Escherichia coli pGEX4T-1 Acid red B [95]
 AS1.1737 JM109
azoreductase Halomonas elongata Escherichia coli pET21a Methyl red and [96]
  DH5  Remazol Black B
azrS Bacillus sp. MR-1/2 Escherichia coli - Congo red And [97]
  DH5a  reactive black 5
sodC Synechococcus sp.  Synechococcus elongatus pSyn_6 Acid black 1 [98]
 PCC 9311 PCC 7942
azoreductase Bacillus latrosporus RRK1 Escherichia coli DH5a pAZR-SS125 Remazol red [99]
laccase Bacillus subtilis CotA Synechococcus elongatus pCV0062 Indigo carmine,  [100]
  PCC 7942  Reactive blue 19,
    Reactive black 5, 
    Reactive blue 4
add Rhodococcus sp. Escherichia coli DH5a pAZRS1 Reactive red 22 [101]
azoG Halomonas sp. Strain GT Escherichia coli DH5a pET30a(+) Azo dye wastewater [102]
cotA Bacillus subtilis 168 Escherichia coli pET-28a(+) Malachite green,  [103]
    Acid blue 62 and 
    Methyl orange
- Pseudomonas sp. SUK1 Escherichia coli - Red BLI, Navy blue- [104]
    HER and Golden 
    yellow-HER 

azoA Enterococcus sp. L2 Escherichia coli pBBR1- Reactive red 97,  [105]
  Pseudomonas MCS2fdh- acid red 119, 
  fluorescens azoA reactive black B5, 
   pBBR1- like azo dyes
   MCS2 azoA  

resistant to corrosion due to their mixed aromatic 
structure. It lasts for a long time and causes 
considerable concern for environmental pollution 
and waste retention. Bioremediation techniques 
have attracted a lot of attention, making microbial 
discolouration and degradation economical 
and environmentally friendly compared to 
various conventional methods. Some potential 
bacteria can fade synthetic/ commercial dyes are 
used in textile dying. Here firstly five bacterial 
consortia have been isolated (Bacillus sp.1, Bacillus 
sp.2, Acinetobacter sp., Citrobacter sp., and  
Klebsiella sp.). Now they are divided into 
three groups; (a) Bacillus sp.1, Bacillus sp.2, 
Acinetobacter sp., Citrobacter sp. (b) Acinetobacter 
sp., Citrobacter sp., Bacillus sp1., (c) five bacterial 
consortia. The results show that a mixture of 

five bacterial consortia has more efficiency to 
decolourize the dye.68 Bacillus cohnii, Aspergillus 
terreus HTCC, Penicillumcitrinum are able to 
decolourize Basic violet dye. Various parameters 
like initial dye density, dye to inoculum ratio, and 
incubation time duration has been studied for 
dye discolouration. The evolving fungal bacterial 
association exhibits the highest percentage of 
discolouration (92%) ability compared to dye 
treatment by the monoculture approach. Fungal 
–Bacterial (Penicillumcitrinum and Bacillus cohnii) 
consortia are more efficiently decolourized 
Basic violet dye. An integrated degradation and 
detoxification of textile dyes may be possible by 
the combination of fungi and bacteria that provide 
a good alternative technology for contaminant 
removal of water. To degrade the textile effluent 
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dyes basically the Acid dyes by bacterial and fungal 
consortia, these isolates have been used to form 
a mixed microbial consortium cell factory that 
could quickly fade and biodegrade the organic load 
on the waste material and be used to develop a 
continuous process for the treatment of a variety 
of textile dyed textile wastes, including reactive 
dyes.

Genetically Engineered Microorganisms And 
Their Impact On Dye Decolourization
 Dye is a natural or chemical ingredient 
that imparts colour when applied to something. 
It is of two types, natural and synthetic. Synthetic 
dyes are broadly used in different industries 
like textile, paper, leather, food, pharmaceutical 
industries. These dyes have replaced natural dyes 
over the past few years due to their wide variety 
of colours, low cost, and capacity to withstand 
damage by sunlight, water, and chemicals.88 Dyes 
are categorized into 14 types based on their 
structure. These are Acid dyes, direct dyes, and 
azo dyes, disperse dyes, sulfur dyes, fibre reactive 
dyes, basic dyes, oxidation dyes, mordant dyes, 
developed dyes, vat dyes, pigments, fluorescence 
or optical brighteners, and solvent dyes. Azo dyes 
are the largest group of synthetic dyes with more 
than 2000 different types. These are substantially 
used in the textile industry due to their bright 
colour, water fastness, and simple application 
technique. Although dyes are greatly used in 
industries, the intense usage of synthetic dyes 
has augmented water pollution. Dyes have a great 
solubilizing capability in water, which makes it so 
difficult to be removed from water.89 According 
to WHO, dyeing treatment in the textile industry 
causes 17-20% of the industrial water pollution 
and among these dyes, 80% is azo dyes.90 Synthetic 
nitrogen-based dyes are so toxic that they are 
banned in European Union, China, Japan, India, 
and Vietnam. The toxic effect of the dyes causes 
damage to the flora and fauna including humans. 
Therefore, the degradation and decolourization 
of these dyes are very important. The traditional 
dye decolourization technology involves physical 
(flocculation, coagulation, adsorption etc.), 
chemical (precipitation, oxidation), and biological 
(microbes, enzymes, microbial fuel cells etc.) 
methods.91 Biological methods involve the use of 
microorganisms and their pathways to perform the 

decolourization of dyes. Averse to the physical and 
chemical methods, biological methods are more 
efficient, eco-friendly, and versatile. Biological 
methods using microorganisms are advantageous 
over the others because it is inexpensive, low 
cost and completely mineralize the organic 
pollutants. Microorganisms like bacteria, fungi, 
yeast, algae possess the ability to decolourize 
dyes. Genetic engineering plays a significant 
role in dye decolourization (Table 4). The recent 
advancement in molecular biology and genetic 
engineering has opened a new way to fight the 
pollution problem caused by these dyes. Each 
microorganism has a different capability for dye 
degradation and bioremediation.92 GMOs can 
be made by transferring a specific gene from 
one species to another or by gene modification. 
Genetically engineered microorganisms possess 
enhanced dye decolourization or bioremediation 
capacity. Insertion of various naturally occurring 
genes in a suitable host linked to several enzymatic 
activities resulting in the expression of designed 
pathways leading to the degradation of these dyes 
could be a useful tool for reducing pollution. 

CONCLUSION AND FUTURE PERSPECTIVE

 Enzymes are essential in many biological 
processes, the role of the lignocellulolytic enzyme 
in dye decolourization is very important. Dye 
decolourization is necessary because the dye is 
toxic in nature. The removal of dye contaminants 
from waste effluents using microorganism-derived 
lignocellulolytic enzymes has shown promising 
results with maximum efficiency because they 
show outstanding decolourization capabilities 
for various classes of dyes and could be used 
in place of synthetic dye decolourizing agents. 
Decolourization of the dyes will reduce their 
biological load. In the future, scientists can 
develop a genetically modified consortium that 
will contain all the lignocellulolytic enzymes 
which will help in dye decolourization. This will 
make the job easier and less time-consuming. 
Bio-decolourization has gained importance as an 
alternative, eco-friendly, low-cost, and efficient 
technology for industrial dye removal treatment. 
In addition, genetic, metabolic engineering 
technologies, Omics strategies, and synthetic 
biology approaches have significantly enhanced 
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the stability and capacity of biocatalysts that 
reduce the reaction time. Still, many challenges are 
limiting large-scale commercial production. Future 
research should be carried out to determine (1) 
dye-degradation mechanisms, process parameter 
optimization for microbial growth; (2) Response 
Surface Methodology (RSM) generation for 
consortia parameters to reduce enzyme loss and 
improve enzymes durability; (3) improve catalytic 
domain for enhancement of catalytic performance 
by in-silico protein-ligand interaction model 
generation in the dry laboratory and to achieve 
this, mutagenesis study in the wet laboratory.
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