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Abstract
Bacteria belonging to the genus Methylobacterium, popularly known as pink pigmented facultative 
methylotrophic (PPFM) bacteria, are well known for their distinct ability to use single-carbon compounds 
like methanol, formate and formaldehyde, and also a variety of multi-carbon substrates lacking 
carbon-carbon bonds. These bacterial groups are ubiquitously distributed, especially in phyllosphere 
and rhizosphere, and their occurrence have been reported in more than 100 species of plants so far. 
PPFMs have profound influence on soil fertility, crop growth and yield. The ability for phosphate 
acquisition, nitrogen fixation, iron chelation and phytohormone production indicate the possibility of 
developing them as promising biofertilizer candidates. In addition, many of them possess biocontrol 
activity against several phytopathogens. PPFMs induce several physiological changes in plants, making 
the plants more resistant to biotic and abiotic stress. They can therefore be promising alternatives to 
conventional chemical inputs in sustainable agricultural systems.
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INTRODUCTION

 Phyllosphere harbours large, complex 
and dynamic communities of microorganisms, 
where bacteria constitute the dominant microbial 
inhabitants. It forms a significant microbial habitat 
that supports organisms of diverse nutritional 
and physiological requirements. The leaf surface 
area of terrestrial plants possibly be occupied 
by microbes is reported to be around 6.4 × 108 
km2, that would harbour bacterial populations 
of about 1026 cells. Plants are potential reservoir 
of structurally and functionally diverse natural 
compounds ranging from quite simple esters 
to more complex molecules like carbohydrates, 
polyketides, flavanoids, lignans, terpenoids, 
alkaloids, and tannins.
 Of the diverse natural  products, 
methanol, a simple organic molecule, formed 
as a by-product of pectin demethylation during 
cell wall metabolism is released from plants 
via epidermal stomatal pores. Pectin, a major 
plant cell wall component, is structurally a  
heteropolysaccharide enriched with α-D-
galacturonate residues, and a number of sugars 
such as α-L-arabinose, α-L-rhamnose and β-D-
galactose in smaller amounts. Galacturonate 
methyl esters that are present in the cell wall helps 
in the transport of compounds through it during 
cell wall expansion. Demethylation of these methyl 
esters by methylesterase produces methanol as 
a by-product.1 Emission of methanol through 
stomata by the transpiration stream leads to the 
enrichment of plant surfaces with methanol.2,3

 Several microorganisms have evolved the 
interesting characteristic to utilize mono carbon 
(C1) compounds like methanol and methane or 
complex carbon compounds lacking carbon-carbon 
bonds (dimethyl ether and dimethylamine) as the 
carbon source. These bacteria are commonly 
referred to as methylotrophs and the ability of an 
organism to utilize single carbon compounds as 
the exclusive energy source for its growth is known 
as methylotrophy.4 Among the methylotrophic 
organisms, facultative methylotrophic (FM) 
bacteria of the genus Methylobacterium and 
Methylorubrum have been widely studied and 
are generally known by the term pink pigmented 
facultative methylotrophic (PPFM) bacteria. 
These facultative methylotrophic bacteria with 

unique physiological characteristics are distributed 
ubiquitously in/on plants. 
 PPFMs have been studied widely for their 
plant growth promoting ability by a plethora of 
mechanisms. Important modes of action include 
secretion of plant growth stimulating compounds 
like indole-3-acetic acid (IAA), cytokinin, Gibberellic 
acid (GA), 1-aminocyclopropane-1-carboxylate 
deaminase (ACC) and increasing the availability 
of essential nutrients. These mechanisms alone 
or in combination positively influences the growth 
and development of the host plant. Moreover, 
biocontrol ability of PPFMs is considered another 
noticeable beneficial trait which lessen the 
detrimental effect of various phytopathogens. 
Thus, plant beneficial PPFMs can play a significant 
role in crop cultivation and many researches 
suggest the possibility of their application in 
agriculture as an excellent bioresource to reduce 
the detrimental impacts of chemical inputs. 
Keeping in view of all the beneficial attributes 
of PPFMs, this review aims to provide a concise 
summary of the findings from various relevant 
studies describing the potential of pink pigmented 
facultative methylotrophs as promising alternative 
to conventional hazardous chemical inputs for 
eco-friendly and sustainable crop production.

Characteristics of PPFMs
 PPFMs are obligate aerobic Gram-
negative rods, which can grow on single-carbon 
substrates especially methanol and methylamine 
and also on an array of multicarbon containing 
compounds.3,4 The average cell size of the 
bacterium is approximately 1.0 µm long by 0.5 
µm wide. The major bacterial storage compound, 
poly-β-hydroxy butyrate (PHB) granules were 
identified in cells of Methylobacterium spp. 
using PHB granule staining.5 Most studies have 
shown that Methylobacterium are Gram negative; 
however, some reports observed them to be 
Gram variable.6 Many studies documented the 
ubiquitous presence of PPFM in soil, freshwater, 
lake sediments, leaf surface, nodules and dust. 
Bassalik7 described the first Methylobacterium 
strain isolated from earth worm casts and called 
it as Bacillus extorquens. Later, Kuono and Ozaki8 
isolated 59 PPFM strains from many soil and 
water samples. Patt et al.9 isolated and reported 
the first PPFM strain with methane utilization 
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ability. The ubiquitous nature of PPFM was first 
described by Green and Bousefeild.10 Considering 
the methanol utilization ability, PPFMs are usually 
isolated on Ammonium Mineral Salt (AMS) 
agar medium amended with methanol as the 
exclusive carbon source. They utilize methanol 
by oxidizing it to formaldehyde by means of 
pyrroloquinoline quinone (PQQ)-dependent 
methanol dehydrogenases (MDHs).11 There are 
two paralogous MDH enzymes present in PPFMs, 
viz. a Ca2+-dependent MxaFI and lanthanide (Ln3+)-
dependent XoxF.12 Lanthanide (Ln3+)-dependent 
XoxF is highly conserved in Methylobacterium 
species than Ca2+-dependent MxaFI.13 

PPFM as plant associated bacteria
 Presence of Methylobacterium has been 
described on a wide array of sources like root of 
rice,14 leaves of rice,15,16 stem of rice,17 root nodule 
of crotalaria,18 South African legumes,19 stem 
nodule of Sesbania rostrata,20 soil,21-27 soyabean,28 
vegetables,29 Cucurbita pepo,30 seeds of rice,31 
brassica,32 Combretum erythrophyllum,33 potato,34 
banana,35 palm oil tree,36 palm oil,37 siam squash 
and corn,38 and soyabean39 by various workers. All 
these evidences helped gaining insights into the 
distribution of PPFMs in nature especially on plants. 
Plant-Methylobacteria beneficial communication 
could be considered as a best model for symbiotic 
association between plants and microbes. Host 
plants release metabolic by-products including 
carbon source majorly in the form of methanol 
which are utilized by associated Methylobacteria. 
In turn, bacteria offer phytohormones needed 
for the growth and metabolism of the host. Such 
mutually beneficial relations generally indicate 
the chance of coevolution of symbiotic bacterial 
partner.40 Generally, Methylobacterium spp. are 
present throughout the plant, especially the leaf 
surfaces, stem, flowers and roots. Austin et al.41 
first described the diversity of Methylobacterium in 
the phyllosphere region of Lollium perenne. Later, 
they have been reported as the most dominant 
phyllosphere population from more than seventy 
plant species tested and are mostly found as 
common prokaryotic epiphytes.42-45 However, 
they can colonize plants as endosymbionts46 
and a few members can reside in intracellular 
spaces of meristematic cells.47 Endophytic and 
intercellular colonization of bacteria supports 

active interaction of bacterial symbionts with 
host plant. Colonization of Methylobacterium 
spp. in intercellular spaces of tomato were 
observed by Poonguzhali et al.48 Undoubtedly, all 
these previous reports establish the ubiquitous 
presence of PPFM bacteria in the nature. Almost 
all the information pertaining to colonization of 
Methylobacterium in plants imply their active cross 
talk with host plants. Besides, a few researchers 
have made attempts to understand and elucidate 
the biology of Methylobacterium spp. found in 
untapped habitats such as biological soil crusts,49 
Lichen like Lepraria sp.,50 spores of the mycorrhizal 
fungus Glomus iranicum var. tenuihypharum,51 
tungsten mine tailings52 and Philippine fermented 
food.53

 The genetic diversity of these pink 
microbial community has been studied by 
different techniques such as Restriction fragment 
length polymorphism, Restriction analysis of 
polymorphic DNA and Amplified ribosomal 
DNA restriction analysis. These finger printing 
techniques could discriminate distinct microbial 
communities amongst PPFMs. For the first time, 
PPFMs inhabiting maize, cotton, and sunflower 
phyllosphere were detailed based on utilization 
profile of carbon source and RAPD data by 
Balachander et al.54 It revealed the presence of six 
diversified groups of PPFM, wherein four different 
groups were found harbouring the phyllosphere 
of sunflower and maize and only two groups on 
cotton phyllosphere. 
 Genetic diversity of PPFM assessed using 
molecular tools and differential carbon source 
utilization profile identified Methylobacterium 
populi, M. thiocyanatum, M. suomiense, M. 
aminovorans, and M. fujisawaense  as the 
predominant colonizers in the phyllosphere of 
crop plants like cotton, sunflower, maize, soybean 
and mentha.55 Further, the genetic diversity of 
the heavy metal tolerant Methylobacterium 
spp. community in a mangrove forest has been 
unveiled with the help of in vitro assays.56 Kaur 
et al.57 assessed the diversity and heterogeneity 
of PPFM bacteria from the leaves of five kharif 
crops viz., rice, maize, millet, mung bean and urad 
bean through plant growth promotion screening 
and ARDRA profiling and noticed the prevalence 
of four distinct groups of PPFMs in these plants. 
Based on 16S rRNA phylogenetic gene sequencing, 
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a high abundance of sequences closely related to 
Methylobacterium radiotolerans was reported on 
sugarcane plants.58 
 Assessment of the influence on the 
diversity and community changes of PPFM 
in transgenic Bt-cotton compared with the 
conventional cotton plants by means of a polyphasic 
approach that included differential carbon source 
utilization profiling and DNA based techniques 
showed that diversity richness of PPFMs in the 
phyllosphere, rhizoplane and internal tissues 
has not differed among Bt and non-Bt-cotton 
plants.59 Although much remains to be explored, 
the documented data pertaining to the genetic 
diversity of Methylobacterium might give a crucial 
insight to select potential plant associated bacteria 
with plant growth-promoting characteristics for 
utilization in sustainable agriculture. 

Carotenoid Pigment Production: A major 
characteristic of PPFM
 Carotenoids are a group of yellow, orange, 
or red-colored lipophilic isoprenoid molecules 
present in all kingdoms of life. These natural 
pigments play diverse functional roles such as 
capturing and processing of light, photoprotection, 
specific coloration across genera and species, 
and pollinator attraction in both photosynthetic 
and non-photosynthetic biological systems.60,61 
Approximately, 1100 different carotenoids 
compounds have been identified so far from varied 
sources with diverse colours and they provide 
attractive colours to its source of origin.62 Bacteria 
belong to the genus Methylobacterium possess a 
characteristic pinkish colour due to the presence 
of non-diffusible and non-fluorescent carotenoids, 
mainly xanthophylls63,64 and hence named as pink-
pigmented facultative methylotrophs. 
 Generally, accessory light-harvesting 
carotenoid complexes are found with chlorophyll 
molecules in green plants. In photosynthetic 
organisms, these light capturing complexes protects 
the chlorophyll molecules from photooxidation 
by absorbing and transferring light energy to 
chlorophyll molecules. More importantly, its 
anti-oxidant or oxygen free radical quenching 
activity protect the cell in both phototrophic and 
non-phototrophic organisms, usually under biotic 
and abiotic stress conditions. The production of 
carotenoid pigments makes the producer bacteria 

tolerant to extreme light condition and radiation.65 
Abiotic stresses cause accumulation of reactive 
oxygen species, that leads to oxidative injury to 
the organisms. To overcome the lethal effects of 
ROS, many organisms possess an evolved strategy 
viz., accumulation of carotenoid pigment by up-
regulating carotenoid biosynthetic pathway.61 
Carotenoid pigments produced by PPFMs as 
secondary metabolites serve as a reliable and 
useful chemotaxonomic identification marker of 
the genus.66 Biosynthesis of carotenoids makes 
them resistant to extreme light conditions, high 
or low temperatures and freezing conditions and 
also to UV and ionizing radiations.67 
 The colonies formed by Microbacterium 
arborescens-AGSB, a Gram-positive bacterium, 
collected from coastal sand dune vegetation, 
Ipomea pes-caprae were predominantly orange 
pigmented.68 This study revealed the light 
induced biosynthesis of carotenoids pigment in 
Microbacterium arborescens-AGSB helps them 
to survive under stress conditions. Detailed 
chromatographic and spectrophotometric analysis 
of carotenoids in Methylobacterium genus has 
shown that majority belong to oscilloxanthin,64 
C40 carotenoid astaxanthin69 and lycopene type 
carotenoids.68 The ability to produce carotenoid 
pigments by PPFM can be made use of in different 
industries.70-73 Several attempts have been made 
to recover the maximum amount of carotenoid 
pigments from PPFM,74,75 and during recent year, 
the optimum conditions for the extraction when 
bacteria were grown in Ammonium mineral salt 
medium was reported to be at 25˚C, pH of 7.5, 
having 0.5% of methanol as carbon source.76 

Plant Growth Promotion Mediated by PPFMs
 PPFMs promote crop growth through 
multitude of mechanisms like indole-3-acetic acid 
production,77,78 cytokinin production,79 vitamin 
B12 production,80 siderophore production,81 ACC 
deaminase production,82 nitrogen fixation and 
nodule formation83 and phosphorus solubilization.84 
Furthermore, significant biocontrol activity of 
Methylobacterium spp. against phytopathogens 
protects the plants from destructive pathogens 
and thereby improves the health of plants. All 
these characteristics emphasize the potential of 
the PPFMs in crop production. Strikingly, much 
progress has been made over the past few years 
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in understanding the beneficial traits of PPFM. A 
concise information on plant growth promoting 
traits of Methylobacterium is given below (Table 
1; Figure 1).

Phytohormone Production
 Soil and plant-associated bacterial 
groups can synthesize and excrete one or more 
phytohormone. Among the various plant growth 
hormones, Auxins are found to be the most 
essential phytohormone for normal plant growth 
and development and till date, there have been no 
reports on plants lacking auxin synthesizing ability. 
It has been well documented that microbially 
excreted auxins exert positive influence on plant 
growth. Though, plants synthesize various auxins, 
Indole-3-acetic acid (IAA) is the most profound 
auxin as it is directly involved in several crucial 
developmental processes. Hence, IAA producing 
bacteria can potentially involve in increasing the 
plant’s auxin pool.85

 A large number of  reports have 
described indole-3-acetic acid (IAA) production by 

methylotrophs. IAA is synthesized using different 
pathways by the producer organisms. Based 
on the intermediaries formed, these pathways 
are classified into indole-3-acetamide (IAM), 
tryptamine and indole-3-acetonitrile and indole-
3-pyruvic acid (IPyA) pathway.86 Of these, most 
important IAA biosynthetic pathways operating 
in PPFM are the IAM and the IPyA pathways. 
IAA produced by methylotrophic bacteria via, 
IAM and IPyA pathways has significant effects on 
growth of plants.87 Ivanova et al.87 first reported 
the production of significant amount of indole 
acetic acid in culture supernatants of four 
different methylotrophic bacteria. IAA produced 
by Methylobacterium has been found to influence 
seed proliferation and seedling growth of various 
plants. 77, 88-90 Based on colorimetric assay the 
presence of indole compounds was observed in 
PPFM culture supernatants also.77 IAA synthesized 
by PPFM has influence on the root growth 
and development of various host plants also.91 
Thangamani and Sundaram92 reported that among 
16 Methylobacterium isolates tested three isolates 

Table 1. Plant growth promoting attributes of PPFM in various crops

Crop plant Associated methylotrophs Source Activity Ref.

Rice Methylobacterium extorquens,  Phyllosphere IAA production 91
 Methylobacterium
 fujisawaense 
Rice Methylobacterium sp. CBMB-20 Rhizosphere N2 fixation  15
Soybean Pink-pigmented facultative Phyllosphere IAA production 93
 methylotroph
Tomato Methylobacterium suomiense Rhizosphere Root colonization 48
Red pepper Methylobacterium suomiense Rhizosphere Root colonization 192
Groundnut Pink-pigmented facultative Phyllosphere IAA production 78
 methylotroph
Sugarcane Methylobacterium sp. Stem, root,  IAA production, PGP 193
  Rhizosphere activities
Red pepper Methylobacterium oryzae  Rhizosphere Biofertilizer 194
Mung bean Methylobacterium organophilum Mud Biofertilizer 133
Red pepper Methylobacterium sp. Phyllosphere IAA and cytokinin production 195
Combretum Methylobacterium radiotolerans Seed Synthesis of heavy metal 196 
erythrophyllum MAMP 4754  resistant proteins, plant
   growth-promoting 
   compounds
Banana Methylobacterium salsuginis Leaf Cytokinin production, ACC 35
TNMB03   deaminase activity, Biochemical 
   changes in plant 
Poplar Methylobacterium sp. CP3    Seed of Crotalaria  IAA production, Phytate 197
  pumila  mineralization, Zn tolerance
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indicated the accumulation of indole compounds 
in PPFM culture supernatants. These three isolates 
produced IAA amounting from 6 to 13.3 µg mL-1 in 
the presence of L-tryptophan. Radha93 and Jones94 
have independently documented the production 
of IAA by different PPFM strains ranging from 
9.04 to 28.15 μg mL-1 and 0.14 to 25.15 μg mL-1 
of culture filtrate, respectively. Anitha78 isolated 
PPFMs from the phyllosphere of different crops 
by leaf impression method and screened eight 
isolates for their influence on seed germination 
and production of IAA. Using HPLC, amount of IAA 
produced by different isolates was estimated and 
a maximum of 2.32 μg mL-1 of IAA was produced 
even in the absence of tryptophan by the isolate 
obtained from ground nut leaf (PPFM-GN). An 
increase in plant IAA concentration with the 
inoculation of Methylobacterium isolate and 

subsequent plant growth promotion was reported 
by Lee et al.15 
 Besides Indole acetic acid, Cytokinins 
also influence physiological functions of plants. 
Root functions of plants can be altered by 
change in level of cytokinin concentration in 
plants. Potential involvement of plant-growth 
promoting rhizobacteria (PGPR) like Azospirillum, 
Azotobacter, Bacillus, Pseudomonas spp. and 
Rhizobium in cytokinin production in pure cultures 
has already been described.95-102 Methylotrophic 
strains present on phyllosphere have also been 
found to produce cytokinin, with many of them 
able to excrete it into the growing medium.103-105 

Study by Madhaiyan et al.106 demonstrated that 
PPFM inoculation on true seeds of sugarcane 
increases the percentage and rate of germination. 
A higher PPFM population has been observed 

Figure 1. Schematic representation plant growth promoting mechanisms of PPFMs
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when a combination of seed imbibition, soil 
application and phyllosphere spray were given. An 
immunological assay reported a significant increase 
of cytokinin both in mature and young leaves of 
sugar cane plants. Foliar spray of methanol or 
PPFMs results in increased PPFM populations 
which in turn caused a higher concentration of 
bacterially produced cytokinin and increased 
cytokinin contributed to improvement in yield 
of cotton and sugarcane.107 Quantification of 
cytokinin produced by phyllosphere inhabiting 
Methylobacteria isolated from sugarcane, pigeon 
pea, mustard, potato and radish ranged between 
1.09 to 9.89 µg mL-1 in the culture filtrate and 
treating wheat seeds with these cell-free culture 
filtrates registered a significant improvement in 
seed germination.79 With a similar approach, El-
Gawad et al.108 described cytokinin production of 
PPFM bacteria obtained from cotton, datura, snap 
bean, castor oil and peanut plants with a maximum 
of 2.07 µg ml-1 of culture filtrate. An exhaustive 
cytokinin profiling of Methylobacterium strains was 
conducted by Palberg et al.109 recently. Analytical 
results obtained from High performance-liquid 
chromatography-tandem mass spectrometry 
(HPLC–MS/MS) could uncover the immense 
potential of Methylobacterium strains to produce 
most active cytokinin form, trans-Zeatin (tZ), 
ranged from 0.46 to 82.16 pmol mL−1 and which 
marked higher than tZ produced by any other plant 
growth promoting bacteria reported so far. Despite 
a number of exclusive studies on the cytokinin 
production potential of PPFMs, still there is lack 
of knowledge on exact role of Methylobacterium 
produced cytokinins in plants. Therefore, further 
elucidation is required to understand its precise 
mechanism in plants.
 Gibberellic acid (GA3), a plant growth 
hormone, is a key growth regulator involved in cell 
division and tissue differentiation, net assimilation 
rate, dry matter accumulation, leaf expansion 
and elongation, regulation of transpiration 
rate, flowering and photosynthesis.110,111 Apart 
from these functions, GA plays a pivotal role in 
regulating plant development and growth under 
various abiotic stress conditions.112 Plant growth 
promoting effect of gibberellins produced by many 
plant-growth promoting bacteria (PGPB) were 
reported by several workers.113-116 For the first time, 
Rajan et al.117 reported gibberellic acid production 

in Methylobacterium obtained from vegetable 
crops and was found to be ranging from 10.9 μg mL-1 
to 106.97 μg mL-1 of the culture filtrate. Studies by 
Radha93 and Jones94 also revealed the production 
of gibberellic acid by methylotrophs which ranged 
from 24.11 to 70.30 μg mL-1 and 53.2 to 273.2 μg 
mL-1, respectively. Further, Sheela et al.118 have 
successfully demonstrated the GA production 
potential of different Methylobacterium strains 
and estimated a maximum amount of 59.13 μg 
mL-1 of GA. PPFM strains isolated from chilli leaves, 
rhizosphere soil and roots samples produced GA 
from 4.77 µg mL-1 to 128.28 µg mL-1 of culture 
filtrate among different isolates as reported by 
Savitha et al.119

 D e t a i l e d  i n v e s t i g a t i o n s  o n 
phytophormone synthesize and release by 
plant associated Methylobacterium community, 
generally encountered on leaf surfaces, may 
provide insight into their beneficial activities. 
It is also possible to improve the PPFM strains 
by developing hormone over-producers which 
may have direct influence on plant growth and 
development.

Siderophore Production
 Siderophore mediated sequestration 
and transport of Fe3+ is an efficient strategy 
evolved in bacteria to meet iron requirements.120 
Bacteria produces low-molecular-weight Fe 
chelating compounds, siderophores, that helps 
to sequester and transport the element into 
bacterial cells. Siderophore production by 
rhizospheric microorganisms is beneficial to plants 
as phytopathogens are out-competed by the 
producer strain under limited iron supply.121 This 
competitive advantage determines how bacteria 
can survive and provide benefit to the host plants.
 Siderophores, either hydroxamate-type 
or catecholate-types are produced by plant growth 
promoting bacteria. Under iron limiting conditions, 
Methylobacterium spp. also produce siderophore 
which transport the Fe-siderophore complex 
by the use of specific proteins. Siderophores 
produced by them are anti-pathological factors 
which can also be considered as indicator of 
biocontrol efficiency.122 In vitro production of 
siderophores by the pathogen Xylella fastidiosa 
and PPFM Methylobacterium extorquens tested 
by Silva-stenico et al.123 found that the culture 
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supernatants of X. fastidiosa did not contain both 
hydroxamate and catechol siderophores, whereas 
hydroxamate siderophores have been detected 
in the culture supernatants of M. extorquens. In 
citrus plants, Methylobacterium spp. inhabiting 
same ecological niche of Xylella fastidiosa 
subsp. pauca (Xfp) was found to be incapable of 
producing catechol-type siderophores but were 
also producing hydroxamate-type siderophores. 
Interestingly, in vitro growth of the pathogen 
was found to be increased in the presence 
of endophytic M. mesophilicum produced 
siderophores which occupy the same niche.124 
Simionato et al.122 reported the production of 
siderophores by Methylobacterium mesophilicum 
(ARS 1/5 and ARS 1/6 strains). Celosia species 
is an iron rich plant with pink pigmented leaves 
and flowers. Gholizadeh and Kohnehrouz125 
postulated the occurrence of both highly efficient 
iron-uptake bacteria and PPFM bacteria on the 
leaves of Celosia species. The prediction was 
experimented by probing with a cDNA fragment 
coding for Methylobacterial-type Fe siderophore 
receptor within Celosia leaf cDNA microflora. The 
results indicated the inhabitation of efficient iron 
scavenging bacteria, most probably PPFM, on the 
surface of plants with high iron content. 
 Positive results were obtained when 
Methylobacterium phyllosphaerae MB-5 and 
CBMB-27 were screened for synthesis of amino 
acid conjugated hydroxamate type of siderophore 
under laboratory conditions, whereas, both 
the strains not contained catecholate type of 
siderophores during iron limitation.126 According 
to Senthilkumar et al.,35 all the 28 endophytic 
Methylobacterium isolates obtained from south 
Indian banana cultivars were shown to have 
iron siderophore complexes production in CAS 
agar medium, indicated by an yellow halo zone 
formation around the bacterial colonies. The 
experimental results demonstrated that these 
endophytic Methylobacterium species ensure 
plant growth promoting nutrients/compounds 
to the host plants. Methylobacterium genomes 
contain different types of siderophores and TonB-
dependent receptors (TBDRs) with diverse roles. 
Siderophore mutant Methylobacterium strain was 
unable to utilize methanol as carbon source, but 
they could solubilize insoluble anthanides oxide, 
suggesting their crucial role in methylotrophy. 

Besides, siderophores have important role in 
lanthanide uptake, oxidative and nitrosative stress 
tolerance, biofilm formation, and heavy metal 
sequestration.127

 R e p o r t s  s u g g e s t  m e m b e r s  o f 
Methylobacterium  as a potent source of 
siderophores which are successfully involved 
in iron scavenging and transport. Furthermore, 
siderophore production helps in root pathogen 
suppression by competitive exclusion, and 
promotes growth and development of the host 
plants. 

Nitrogen fixation
 Nitrogen, a vital mineral nutrient, is 
indispensable for development and growth of 
plants.128 It forms the building blocks of many 
structurally and physiologically relevant molecules 
like proteins, nucleic acids, chlorophyll and 
coenzymes. Moreover, it constitutes an important 
component of ATP, energy currency of the cell.129 
There are numerous microorganisms, referred 
as diazotrophs, especially eubacteria, which can 
add substantial amount of nitrogen into soil by 
N2 fixation. Diazotrophic microorganisms provide 
fixed nitrogen in exchange of carbon source from 
plants.130 The beneficial effects of diazotrophic 
organisms have been well documented. 
 There has been remarkable research 
progress in the area of Methylobacterium 
mediated nitrogen fixation and the involvement 
of Methylobacterium  mediated nitrogen 
acquisition by host plants. In the past few 
years, Rhizobia were classified under three 
different phylogenetic branches within the 
alpha-2 subclass of Proteobacteria. Of the three 
branches described, first branch contains the 
genera Rhizobium, Sinorhizobium, Mesorhizobium, 
and Allorhizobium with Agrobacterium, second 
branch with Bradyrhizobium with photosynthetic 
free-living Rhodopseudomonas, and third 
contains the genus Azorhizobium as well as the 
chemoautotroph Xanthobacter. Later, Sy et al.83 
described Methylobacterium as a fourth rhizobial 
branch within alpha-subclass of Proteobacteria 
and introduced a new species of Rhizobium, 
Methylobacterium nodulans, isolated from 
Crotalaria legumes using nodA amplification 
assays. Though the wide spread occurrence of 
Methylobacterium in various crops has already 
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been well known, their symbiotic relationship 
with host plants was unknown until recently. 
In this concern, Methylobacterium nodulans 
capable of inducing nodulation in plants was the 
first nodule forming Methylobacterium species 
identified. This study could reveal the relatedness 
of nodA gene present in M. nodulans with nodA 
gene of Bradyrhizobium and was believed to be 
acquired by horizontal gene transfer mechanisms. 
It was for the first time, Raja et al.131 reported 
that a phyllosphere colonizing, non-nodulating 
Methylotroph, Methylobacterium spp. MV10. 
possess functional nifH gene which was quite 
different from M. nodulans. A partial sequencing 
of genome of Methylobacterium extroquens 
helped identifying a few genes with close similarity 
to symbiosis-associated genes of Rhizobia and 
Agrobacterium.132

 Lee et al.15 experimented the potentiality 
of  diazotrophic r ice methylotrophs l ike 
Methylobacterium sp. CBMB20, Enterobacter sp. 
CBMB30, Burkholderia sp. CBMB40 in improving 
the rice seedling growth. These isolates exerted a 
discernible influence on germination of seed and 
seedling vigour index, and biomass production of 
rice seedlings. Methylobacterium organophilum, 
isolated from hot spring mud, a thermophilic 
nitrogen-fixing species, fixed di-nitrogen efficiently 
even at elevated temperature.133 The characteristic 
feature of Methylobacterium to fix atmospheric 
nitrogen and colonize leaf tissues have been shown 
to improve tolerance of Jatropha (biodiesel crop) 
under low soil nutrient conditions. Exploitation of 
nitrogen fixing Methylobacterium was reported to 
have improved the productivity and green index 
of Jatropha biofuel.134 Recently, a preliminary 
assessment of three endophytic Methylobacterium 
sp. obtained from Palm oil revealed their ability to 
proliferate in nitrogen-free media, suggesting the 
nitrogen fixing ability of Methylobacterium.37 

 Despite considerable research on 
methylotroph mediated nitrogen fixation, there 
are still gaps in our understanding of its precise 
mechanism. When Methylobacterium mediated 
nitrogen fixing mechanisms are well understood, 
future researchers may be able to develop 
successful and promising strains to improve plant 
growth and development.

Phosphorus solubilization
 Phosphorous is a limiting nutrient 
which is very essential for biological growth 
and development as it is involved with life 
sustaining metabolic processes of plants such 
as photosynthesis, signal transduction, energy 
transfer, macromolecular biosynthesis and 
respiratory process. Phosphate solubilization 
process is considered as equally important as 
nitrogen fixation process.135 Though P is quite 
abundant in soil, it remains mostly unavailable to 
plants. Generally, P in the soil exists in two different 
forms, either in inorganic (bound, fixed, or labile) 
or organic (bound) forms. However, plants can 
take up P only in soluble forms such as mono- and 
dibasic phosphate forms.136 Therefore, it is evident 
that the phosphate solubilization is an extremely 
important and necessary process. Supply of 
plant essential nutrient through any biological 
means, especially microorganisms, is a better 
and promising choice in sustainable agriculture. 
Microorganisms play a central role in solubilizing 
the unavailable inorganic, but insoluble P fraction 
of soil and make them available for uptake by the 
plants easily. 
 Microorganisms offer various means 
to mineralize phosphates like rock phosphate, 
tricalcium phosphate, aluminium phosphate 
and organic phosphorus which have complex-
structural characteristics, present in soil to improve 
the availability of accessible forms of P, like 
orthophosphate to plants.137,138 The mechanisms 
underlying microbe mediated P solubilization has 
been well documented. Of various mechanisms, 
secretion of organic acids of low molecular weight 
is the primary mechanism of P solubilization 
by microorganisms. Amongst them, acids like 
carboxylic acid, formic acid, succinic acid, lactic 
acid, glycolytic acid, fumaric and propionic acid139 
brings down the rhizosphere pH which in turn 
cause the release of bound phosphate forms.140 
Another well studied phosphate solubilizing 
mechanism is the release of extracellular enzymes 
such as phytases, nonspecific acid phosphatases 
and C-P lyases phosphatases by phosphorous 
solubilizing bacteria that mineralize insoluble 
organic phosphate.141,142 Obviously, secretion 
of extracellular enzymes would help them to 
gain competitive advantage over deleterious 
pathogens.
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 Hitherto, elaborate studies are lacking 
on phosphate solubilization by PPFM. A detailed 
study to understand Methylobacterium-mediated 
phosphorous solubilization under in vitro 
conditions was done by Jayashree et al.143 This 
study recorded P-solubilization index of thirteen 
PPFM isolates grown for 7 days on NBRIP-BPB 
plates which ranged from 1.1 to 2.7. A thorough 
examination of these isolates under in vitro 
conditions could identify Methylobacterium as 
potential phosphate solubilizer with diverse 
mechanisms to solubilize organic phosphate. Later, 
Kumari144 reported P solubilization index ranging 
from 1.28 to 1.85 of four different facultative 
methylotrophic strains that solubilized tricalcium 
phosphate in Pikovskaya’s agar medium. Agafonova 
et al.84 reported phosphate solubilization activity 
as a newly revealed characteristic feature of 
methylotrophs and explicated their phosphate-
solubilizing activity in association with different 
plants. A first report on the presence of all the 
genes responsible for the synthesize of three 
phosphatase enzymes in Methylobacterium oryzae 
was published by Kwak et al.145 Recently, Rahim 
et al.36 demonstrated the phosphate solubilizing 
potential of nine newly isolated Methylobacterium 
sp. In Pikovskaya broth, the Methylobacterium 
isolate EPPD1 solubilized 4.12 mg/mL of inorganic 
phosphate whereas isolate ENPD2 solubilized an 
amount of 3.97 mg/ml of inorganic phosphate in 
Pikovskaya and 3.3 mg/ml in NBRIP broth.
 Significant advances have been made 
in the area concerning to Methylobacterium 
mediated phosphate solubilization. Nevertheless, 
search for new potential phosphate solubilizing 
Methylobacteria should be augmented to develop 
promising candidates of PPFM for commercial 
inoculum development.

Modulation of Ethylene Levels in Plants
 The gaseous hydrocarbon ethylene 
is a unique phytohormone with a number of 
biological roles related to seedling growth, 
ripening of fruits, germination of seed, abscission 
of leaves and petals, organ senescence and biotic 
and abiotic stress induced responses. Ethylene 
improves the plant growth and also hinder the 
developmental processes which depends up 
on the cell type and plant species. Generally, 
decrease in levels of ethylene in plants enhances 

root extension, but increased ethylene levels in 
plants, especially in fast growing roots, can hinder 
important developmental processes, mainly root 
elongation.146 Thus, beneficial role of this vaporous 
hormone is reported at very low concentrations. 
Elongation of shoot and root is normally inhibited 
by action of ethylene. High levels of ethylene 
is harmful which causes small lateral root 
proliferation.147 Moreover, stress regulating 
activity of ethylene has also been elucidated 
well.148 Various abiotic stress like salinity, drought, 
flooding of water, and presence of heavy metals 
dramatically increases endogenous level of 
1-aminocyclopropane-1-carboxylate (ACC), the 
immediate precursor of ethylene in plants, which 
in turn cause higher concentration of ethylene.149 
Accumulation of larger volumes of ethylene leads 
to further stresses in plants like reduced ability to 
nutrient uptake, water absorption etc.150 
 Degradation of the precursor molecules, 
ACC, would forbid the synthesize and accumulation 
of ethylene and thereby prevent the detrimental 
effects of the high ethylene levels.151 The enzyme 
ACC deaminase (EC 4.1.99.4), first characterized 
by Honma and Shimomura152 has been shown 
to degrade ACC to alpha-ketobutyrate and 
ammonium. Therefore, it was assumed that 
plant growth promoting bacteria with high 
locally induced ACC deaminase activity could 
be a powerful strategy for ameliorating plant 
stress. In this regard, it has been proved that ACC 
deaminase-containing PGPB could effectively be 
used to overcome the deleterious consequences 
caused by abiotic stresses. Achromobacter,153 
Bacillus,154,155 Burkholderia,156,157 Ensifer,158 
Mesorhizobium ,159 Pseudomonas ,155, 160,161 

Streptomyces,162 and Variovorax,163 are some 
examples of well documented ACC deaminase-
producing bacterial genera.
 Only a few research publications on 
ACC deaminase activity in Methylobacterium 
spp. exist. The inhabiting activity of rice 
1-aminocyclopropane-1-carboxylate deaminase 
(ACCD) on phyllosphere Methylobacteria has 
been detected and assessment of its functional 
regulatory role in determining ethylene level in 
rice and tomato seedlings showed that the enzyme 
activity notably lowers the ethylene level (60–80%) 
in the plants. A key finding made in this study was 
the homology of accD gene sequence of the rice 
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phyllosphere Methylobacterium with Rhizobium 
leguminosarum (98% similarity).164 Based on the 
results of a gnotobiotic root elongation assay 
conducted on canola seedlings, Madhaiyan et 
al.82 reported the occurrence of ACC deaminase 
in Methylobacterium spp. ACC deaminase activity 
of M. fujisawaense caused substantial lowering 
of ethylene levels in canola seedlings. Madhaiyan 
et al.17 also found the presence of M. oryzae sp. 
nov., an aerobic ACC deaminase producing PPFM 
bacterium in stem tissues of rice. The isolate was 
reported to be closely related to M. fujisawaense, 
M. radiotolerans  and M. mesophil icum. 
Methylobacterium oryzae strains CBMB20 and 
CBMB110 showed significant variation in their 
ability to utilize ACC and they produced 94.5 and 
24.7 nmol α-ketobutyrate mg-1 of protein h-1, 
respectively. Seed treatment with theses strains 
increased the root length of pepper and tomato 
plants attributed to their ACC deaminase activity 
compared to control plants under gnotobiotic 
conditions.165 Treatment of tomato and red 
pepper plants with Methylobacterium reduced 
the ethylene emission compared to control plants 
under greenhouse conditions also.166 Recently, 
Senthilkumar et al.35 demonstrated the positive 
influence of endophytic Methylobacterium 

possessing ACC deaminase activity isolated from 
tissue culture banana plantlets of South Indian 
banana cultivars. Regulation of acdS gene encoding 
aminocyclopropane carboxylate deaminase 
(AcdS) by an AcdR homologous protein in epiphytic 
phytosymbiotic methylotroph Methylobacterium 
radiotolerans  JCM2831 was proposed by 
Ekimova et al.167 The transcriptional regulatory 
protein encoded by an open reading frame 
activates the acdS gene expression when ACC or 
2-aminoisobutyrate is present as an inducer. It 
can regulate the transcription initiation process 
even in the absence of inducer molecule, when 
present excessively. A better understanding of ACC 
deaminase enzyme activity in Methylobacterium is 
needed to extend their integration in sustainable 
crop production. 

PPFM as potential plant-growth promoters
 Plethora of methylotrophic bacterial 
species are known to live in close intimacy with 
plants, both terrestrial and aquatic, by living 
along on roots, leaf surfaces, buds and other 
plant parts. Numerous benevolent attributes 
of PPFM have been explored and reported by 
various researchers (Table 1; Figure 1). Inoculation 
of either Methylobacterium or methanol spray 

Table 2. Biological control of plant diseases by PPFM

Methylotrophs Pathogen(s) Source Ref.

Methylobacterium sp. PPFM-Os-07 Rhizoctonia solani Rice phyllosphere 14
Methylobacterium sp. Aspergillus niger, Sclerotium rolfsii Groundnut phyllosphere 185
Methylobacterium sp. Co-47 Macrophomina phaseolina, Rice phyllosphere 187
Methylobacterium sp. MV-10 Phytophthora infestans, Fusarium
Methylobacterium sp. LE-1  oxysporum, Fusarium udum,
Methylobacterium sp. AM-1 Pythium aphanidermatum, 
 Sclerotium rolfsii
Methylobacterium fujisawaense Meloidogyne incognita Tomato rhizosphere 191
TNAU 14
Methylobacterium sp. Co-47  
Methylobacterium sp. MV-10
Methylobacterium sp. LE-1  Rhizoctonia solani Rice phyllosphere 188
Methylobacterium sp. AM-1         
Methylobacterium rhodinum  Rhizoctonia solani Soil 198
Methylobacterium aminovorans 
Methylobacterium sp. GPPFM13 Macrophomina phaseolina, Sclerotium Ginger phyllosphere 177
 rolfsii, Pythium myriotylum, 
 Colletotrichum gloeosporioides 
 Fusarium oxysporum 
Methylobacterium populi Colletotrichum capsici Chilli phyllosphere 190 
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has shown profound increase in dry matter 
production and plant height of cotton against 
uninoculated control.168 Discernable variation 
in photosynthetic activity was noticed in rice 
cultivar Co-47 treated with Methylobacterium 
due to increased chlorophyll content, stomatal 
number and maleic acid content.14 A remarkable 
improvement in germination was noted compared 
to uninoculated control when sugarcane true 
seeds were treated with PPFM strains. Strikingly, a 
combination different method of PPFM application 
such as seed treatment, soil drenching and 
phyllosphere spraying helped increasing the 
height of plants, specific leaf area, internodal 
numbers and cane yield significantly.106 Yet another 
interesting evidence was provided by Lee et al.15, 
wherein diazotrophic bacterial strains including 
Methylobacterium spp., not only improved seed 
germination but also biomass and seedling vigour 
index (SVI) of rice seedlings. 
 A C C  d e a m i n a s e  p r o d u c i n g 
Methylobacterium fujisawaense could reduce the 
synthesis of ACC and hence lowered the 
deleterious ethylene levels in seedlings of canola 
when grown under gnotobiotic conditions. 
Lowered ethylene level could induce canola 
seedlings root elongation.82 A gnotobiotic 
root elongation assay was carried out to test 
the efficacy of two Methylobacterium strains 

namely Methylobacterium sp. strain CBMB20 
and CBMB110. Seeds of red pepper and tomato 
imbibed with Methylobacterium strains showed 
substantial increment in root length compared 
to uninoculated control and M. extorquens miaA- 

knockout mutant treated plants. Furthermore, 
accumulation of indole-3-acetic acid, trans-
zeatin riboside and dihydrozeatin riboside was 
noted in the extracts of red pepper plants. In 
the same way, accumulation of trans-zeatin 
riboside and dihydrozeatin riboside was recorded 
in tomato plants extracts.85 Radhika et al.169 
recorded highest maize cob yield when plants 
were sprayed with methylotrophic bacteria. In 
another investigation, high chlorophyll content 
was measured from soyabean plants which 
received both seed inoculation and foliar spray of 
Methylobacterium.170 
 Methylobacterim spp. are known to 
enhance rice plant growth in a multitude of ways. 
When effect of eight Methylobacterium isolates 
on seed germination was monitored, PPFM-SOY 
(isolated from soybean leaf) and GN (isolated 
from groundnut leaf), were shown to improve the 
germination of heat-treated seeds of paddy, maize 
and soybean. When the heated seed of soybean 
was treated with PPFM-SOY, 14.28 per cent 
increase in germination was obtained compared 
to untreated heated seeds. Same level of increase 

Figure 2.  Biocontrol mechanisms of PPFMs against various phytopathogens
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in germination was observed on treatment with 
PPFM-GN. When normal seeds were treated with 
PPFM-SOY and PPFM-GN, 23.21 and 7.14 per cent 
increase in germination was observed respectively. 
Treatment of heated maize seeds with PPFM-SOY 
and PPFM-GN resulted in an increase of 27.50% 
and 30.0% over control respectively. For paddy 
seeds also, 13.88% and 11.11% increase over 
control was recorded on treatment with PPFM-
SOY and PPFM-GN respectively.89 Among selected 
methylotrophic bacteria tested in a pot culture 
study, PPFM50 significantly increased the shoot 
biomass, height, stem girth, leaf area, chlorophyll 
content, and tuber yield of Coleus forskohlii. 
Markedly, 216.10 per cent increase in tuber yield 
was observed against reference strain (216.10%) 
and uninoculated control (136.07%).171

 In a two-year field experiment, application 
of PPFM alone was found improving growth 
attributes like leaf number per plant, chlorophyll 
content, and yield attributes like pod number 
per plant of snap bean. Moreover, total sugars, 
ascorbic acid, amino acids, and protein content 
of pods were also increased significantly.108 
Effect of inoculation of Methylobacterium spp. 
possessing ACC deaminase (ACCD) and indole-
3-acetic acid activity on tomato and red pepper 
seedling performed under gnotobiotic and 
greenhouse condition was found to be comparable 
to exogenous applications of synthetic IAA.172 
Increased production of IAA by the foliar application 
of M. extorquens MP1 isolated from Peach (Prunus 
persica L.) phyllosphere and M. zatmanii MS4 from 
Strawberry (Fragaria ananassa L.) employing leaf 
imprint method augmented the growth of tomato 
plants compared to uninoculated control.173 
Methylobacterium extorquens MM2 obtained 
from the phyllosphere of mustard leaf increased 
the production of IAA in plants which in turn 
enhanced the plant growth.66 Methylobacterium 
sp. 2A isolated from Solanum tuberosum L. cv. 
Desirée plants significantly increased biomass 
of potato plants along with root hair density. 
Besides, its strong biocontrol activity against 
fungal phytopathogens has been evidenced in dual 
confrontation assays.34 A recent report showed 
that inoculation of microbial consortium consisting 
of rhizobium, AMF, PPFM and Bacillus altitudinis - 
FD48 significantly improves the growth and yield 
of groundnut.174 

 Positive responses of a Methylobacterium 
application have also been experimented on 
wheat,79 barnyard millet (Echinochloa frumentacea 
Var.  COKV 2),175 biodiesel  plant Crambe 
abyssinica,176 Ginger,177 rice,16,178 cotton179,180 and 
cardamom.181 All these high-throughput studies 
have been undertaken to gather knowledge 
about consequences of interactions between 
Methylobacterium  and their host plants. 
The combination of multiple plant growth 
promoting characteristics keeps PPFMs as an 
attractive microbial tool in agriculture. They are 
categorized as biosafety level one organisms as 
there is no report of Methylobacterium mediated 
pathogenicity in plants till now. Taking into account 
of their beneficial attributes to the host plants 
various Methylobacterium based biofertilizers 
have been launched to the markets. For instance, 
Newleaf Symbiotics, a company designing next 
generation of Agri biologicals as biocomplements 
to existing chemicals, developed a commercial 
product composed only of Methylobacterium to 
accelerate the growth of cotton, tomato, peanut, 
rice, corn, soybean, and wheat.182 Even though, 
many potential Methylobacterium strains have 
been described previously, relatively small number 
of products are currently available in the market.
 Very recently, a seed coating technology 
using immobilized cells of plant growth promoting 
Methylorubrum aminovorans to improve seed 
quality of cotton was introduced by Pragathi  
et al.183 This novel technology uses microbial cells 
of Methylorubrum aminovorans immobilized in a 
composite nanofibre matrix composed of Chitosan 
and Poly Vinyl Alcohol (PVA) as an effective 
localized delivery system. Yet another similar 
study conducted by Mukiri et al.184 put forwarded 
a seed invigouration technique for groundnut 
plants that uses electrospun Polyvinyl alcohol 
(PVA) nanofibre containing immobilized microbial 
cells of Methylorubrum aminovorans. Application 
of encapsulated Methylorubrum aminovorans was 
successful in enhancing root colonization followed 
by improving seed germination, seedling vigor and 
growth of groundnut plants.

PPFM as Biological Control Agents of Plant 
Diseases
 Biocontrol activity of PPFM on soil borne 
phytopathogens has been recorded in addition 
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to its positive effect on plant growth14 (Table 2;  
Figure 2). PPFM have also been well elucidated 
for their induced systemic resistance (ISR) activity 
against various plant pathogens.14,121,185 
 Seed treatment or foliar spray of 
Methylobacterium on rice induced the pathogenesis 
related proteins which protected the plants against 
sheath blight pathogen Rhizoctonia solani under 
pot culture conditions.14 PPFMs bring about 
several physiological changes in plants, making the 
plants more resistant to pathogens. M. extorquens 
CO-47 induced the accumulation of peroxidase, 
polyphenol oxidase, phenylalanine lyase and 
phenols in plants and subsequently suppressed the 
pathogen Rhizoctonia solani.14 Methylobacterium 
spp. treated groundnut plants challenged with 
Aspergillus niger or Sclerotium rolfsii resulted in 
enhancement of seed germination and seedling 
vigour index. It also caused the increase in the 
activities of β-1,3- glucanase, phenylalanine 
ammonia lyase (PAL) and peroxidase (PO). Also, 
presence of five isozymes of polyphenol oxidase 
and PO were noticed in Methylobacterium treated 
plants when challenged with the pathogens.185 
Application of Methylobacterium strains on tomato 
induced the defence response against the plant 
pathogen Ralstonia solanacearum.186 As already 
stated, Methylobacterium spp. synthesize anti-
phytopathogen factors, such as siderophores.136 
The antagonistic effect on the fungal pathogens 
tested may also be attributed to the salicylic acid, 
a type of siderophore, produced by PPFM isolates 
as already proved in Methylobacterium oryzae 
CBMB20 challenge inoculated with Pseudomonas 
syringae pv. tomato in tomato plants compared to 
control or M. oryzae treated plants under growth 
chamber and green-house conditions.121 According 
to Poorniammal et al.187 volatile antibiotics 
produced by Methylobacterium ceases mycelial 
growth of Sclerotium rolfsii, Fusarium udum, 
Fusarium oxysporum, Pythium aphanidermatum, 
Colletotrichum capsici,  and Cercospora capsici, 
and also inhibit the growth of Xanthomonas 
campestris with various biocontrol efficacies under 
in vitro conditions. Methylobacteria isolate CO-
47 hindered the mycelial growth of Rhizoctonia 
solani and the inhibition zone measured under 
in vitro conditions was 1.4 cm.188 Methylotrophs 
inhabiting mangrove sediment have been found 
to be powerful biocontrol agent against root 

rot pathogen Macrophomina phaseolina.189 As 
reported by Santosh et al.190 inoculation of PPFM 
isolates to chilli grown under field conditions 
remarkably reduces the anthracnose disease 
caused by Colletotrichum capsici. 
 Another interesting finding made was 
the biocontrol potential of M. fujisawaense 
against Meloidogyne incognita (Kofoid and 
White) chitwood race 3. M. fujisawaense filtrate 
was found to be highly effective in inhibiting egg 
hatching and reducing root penetration of M. 
incognita in tomato plants.191 Literature published 
on biocontrol activity of Methylobacterium to date 
are consistent and conclusive. Induced systemic 
resistance activity in plants on methylotrophic 
bacterial treatment suggests the possibility that 
PPFM bacteria could be used as a means for 
biological control of plant diseases.

CONCLUSION

 Pink Pigmented Facultative Methylotrophs 
(PPFMs) are generally regarded as ubiquitous 
colonizers of several, if not all plants. Their 
beneficial interactions with host plants and the 
symbiotic nature, and other valuable attributes 
are attracting greater attention. Methylotrophic 
bacteria with plant growth promotion ability 
are widely accepted as efficient and potential 
microbes for enhancing agricultural yield, and 
hence can be developed into a reliable component 
in sustainable agricultural systems. Multiple 
mechanisms of plant growth promotion, such as 
phytohormone production, nutrient acquisition 
and biocontrol activities emphasize the potential 
of the PPFMs in crop production. Since PPFMs can 
promote plant growth as well as prevent infection 
by phytopathogens, they can be used as better 
alternatives to chemical fertilizers and fungicides 
in sustainable agriculture. The importance of plant 
microbiome in plant and crop health is getting 
realized of late. The innovations focusing on core 
microbiome understanding of crop plants could 
help integrate PPFM as a component in synthetic 
microbiome development which would open up 
environmentally-friendly opportunities to take 
care of the current crop production challenges.
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