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Abstract
The lack of adequate assessment methods for pathogens especially in food is a critical problem in 
microbiology. Traditional predictive methods are not able to accurately describe the trend of low-density 
bacterial growth behavior observed in the laboratory. The purpose of this study was to leverage state-
of-the-art of machine learning algorithms (MLA) to develop a predictive model for bacterial growth of 
Proteus mirabilis after treatment of bay leaf extract. The experimental data are fitted to three models, 
namely logistic, Gompertz, and Richard models. These models are trained using simulation data and 
a curve-fitting optimization algorithm in MATLAB called fminsearch is applied to the data to obtain 
the optimal parameters of the models. The results show that this method provides a breakthrough 
in bacterial growth modeling. Various forms of mathematical models such as Gompertz, Richard, and 
others are no longer necessary to model bacterial behavior. Additionally, the generated model can help 
microbiologists in understanding the growth characteristics of bacteria after disinfectant treatment, 
and provides a theoretical reference and a method of risk management for better assessment of 
pathogens in food.
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INTRODUCTION

 Proteus mirabilis is a species of pathogenic 
bacterium that causes various infections. This 
pathogen easily contaminates water bodies, soils, 
sewage, garden vegetables, and many others, and 
causes acute diarrhea, particularly acute enteritis 
among people under 10 years old. Other diseases, 
such as urinary tract infections and kidney stones 
may also be induced by P. mirabilis infection.1

 Proteus mirabilis is a species belonging 
to the genus of Proteus with the capability to 
produce endotoxins that facilitate the induction 
of inflammatory responses and the formation 
of hemolysins. In humans, approximately 90% 
of Proteus infections are caused by Proteus 
mirabilis. Recent studies reported that this 
bacterial pathogen may trigger the formation of 
struvite stones following urinary tract infections, 
and is characterized by an increase in urine pH to 
alkaline.2 Its ability to produce urease enables this 
pathogen to hydrolyze urea and liberate ammonia 
(NH3) in the biochemical reaction catalyzed by 
such enzyme. 3

 R e c e n t l y,  t h e  a s s e s s m e n t  o f 
microbiological food safety uses traditional 
microbial counting methods. Such methods 
have been evaluated as labor incentive, time-
consuming, and have noncumulative research 
tools.4 Predictive mathematical models were 
developed to evaluate food-borne pathogens 
in food matrices under real-time conditions.5 
The study of predictive microbiology combines 
mathematical modeling and the response of 
bacterial multiplication/inactivation to several 
factors, such as temperature, pH, and water 
activity.6

 Predictive microbiology is a useful tool 
in the estimation of microbial behavior during 
food processing and storage.6 The primary 
model represents growth data under constant 
environmental conditions while the secondary 
model describes the growth data under constant 
environmental conditions.7 Primary models such 
as the Gompertz, Logistic, and Richard model 
and their modifications are often used to adjust 
microbial growth data.8,9 See also the more recent 
publications discussing the use of Gompertz 
model to analyze growth process.10,11 There are 

numerous sorts of auxiliary models utilize to 
estimate microbial development under dynamic 
conditions. These include the adjusted Richard 
model, response surface model, Ross cardinal 
model, and artificial neural networks.12 Therefore, 
the performance models used in the prediction 
depend on the overall accuracy of both primary 
and secondary models.
 B e f o r e  M L A  w a s  d e v e l o p e d , 
microbiological modeling still used the traditional 
regression method, which was still based on 
empirical regression in microbiological modeling. 
This conventional deterministic model has been 
reported that it cannot precisely estimate the 
behavior of low cell density because it ignores 
single-cell variability (for example variation in cell 
generation time or individual inactivation time) 
that is thought to describe an inherent individual 
cell heterogeneity.13,14

 In the last 2 decades, mathematical 
models with stochastic parameters have developed 
very rapidly.11,13-15 and widely applied in single-cell 
modeling which is indeed a stochastic parameter 
distribution.15 The growth of stochastic modeling 
has encouraged the application of machine 
learning modeling in predictive microbiology with 
varying performances to be developed. In many 
cases, machine learning models do not depend 
on extra recommendations or well recognized 
instruments to determine models and can learn 
predicted input and target features.16,17

 The machine learning algorithm can learn 
more complex models through the data by training 
a large number of parameters, making it possible 
to produce precise forecast. 18-21 Additionally, deep 
neural network has already appeared excellent 
performance in modeling the growth limit of 
Bacillus spp. spores and growth rate of E. coli.22,23 
However, no machine learning-based curve fitting 
has yet to be developed that can predict single-
cell lag times of foodborne pathogens, which 
is important for future application of machine 
learning in microbiological risk evaluation.24-27

 The objective of this study was to 
predict the maximum specific growth rate of 
the asymptote and the maximum value reached 
(µm), and the lag time (l) of Proteus mirabilis. 
The Logistic model is fitted to the growth data of 
Proteus mirabilis and MLA were used to train and 
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validate the model, so that it can accurately predict 
various unseen data of Proteus mirabilis.28

MATERIALS AND METHODS

Methods for determining the growth kinetics of 
Proteus mirabilis
 The growth kinetics of P. mirabilis 
was studied in a phosphate buffer medium 
supplemented with 10% v/v sterile albumen of 
duct egg, in a 1000 mL of Erlenmeyer flask with a 
working volume of 400mL. This medium was then 
inoculated with 1 mL suspension of P. mirabilis 
previously incubated in nutrient broth medium 
for 24 hours at 30°C, placed on a shaker (with the 
speed of 100 rpm) at ambient temperature for 15 
hours. Samples were collected periodically with an 
interval time of 1 hour and subjected to cell density 
determination by applying a serial dilution and 
spread method. Soon after inoculation (to), 1mL 
of this inoculated medium was pipetted and added 
into 9 mL saline solution to obtain a dilution rate of 
10-1. This bacterial suspension was further diluted 
to 10-5-10-7 (depend on suspension turbidity) by 
applying the same procedure. A volume of 0.1 
mL of bacterial suspension from dilution rates of  
10-3 - 10-4 or those from 10-5-10-7 was evenly spread 
on a sterile nutrient agar medium (in Petri dishes), 
incubated for 48 hours to 72 hours at 30°C, and 
counted for growing bacterial colonies. Petri 
dishes with 30 – 300 growing bacterial colonies 
only were counted, with the assumption that 
each colony originated from 1 cell. The study was 
terminated when the bacterial suspension reached 
the stationary phase of its growth. Five replications 
were prepared to obtain representative data, and 
the results were averaged.

Fitting of the growth models
 In general, mathematical models that 
represent growth are presented in the form 
of a sigmoidal curve which generally contains 
parameters a, b, and c.10 These parameters have 
no meaning in biology. The difficulty that arises 
when mathematical models are written involving 
parameters without biological meaning is when 
determining initial values for parameter estimation. 
In addition, parameters such as a, b or c will make 
it difficult to determine the 95% confidence 

interval. Therefore, the mathematical model of 
growth was rewritten so that a mathematical 
model of biological parameters was obtained, 
namely: A, µm, and l where A is the asymptote, µm 
is the maximum specific growth, and l is the lag 
time. This model is known as a secondary model. 
The following discussion is about deriving the 
secondary logistic model. Consider the following 
primary logistic model as: 
 y(t) = a / 1 + exp(b - ct)  ... (1)

 The inflection point of the curve is 
obtained by carrying out twice the differentiation 
of the function with respect to t This gives: 

dy(t)
dt = ac2 exp (b - ct) (1 + exp (b - ct) -2  

... (2)

d2y(t)
dt2

ac2 exp (b - ct) (exp (b - ct) -1
(1 + exp (b - ct))3=     

...(3)

 The inflection point is reached when the 
second derivative is equal to zero or d2y / dt2 = 0. 
This gives t* = b/c. Subsequently, an expression 
µm is derived by taking the first derivative at the 
turning point (t* = b/c) or µm = ac/4 or c = 4 µm/a. 
The tangent passing through t* is given by: 

 y(t) = µm (t- t*) + a / 2  ...(4)

 The intersection between the tangent line 
and X axis is given by: 
0 = µm (l - t*) + a/2           or     
l = (b - 2) /c                       or         
b = lc+2

 The asymptotic value is reached t → 8  
for giving or y → a or A = a . Now, the substitution 
of all values a, b and c into (1), give:

y(t) A
1 + exp (4µm / A (l - t) + 2)

=     

...(5)
 Similarly, for Gompertz model y(t) = a 
exp (- exp (b - ct)), gives the secondary (modified) 
Gompertz model of the form:
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y(t) = A exp (- exp (µme / A (l - t) + 1) 

...(6)

 Bacterial growth frequently performs a 
phase where the µ starts at a zero value and then 
accelerates to a maximum value (µm) a while, 
causing a time lag (λ). After that, the growth curve 
reaches a stationary stage where the growth rate 
starts to decrease, and eventually reaches zero. 
At this point, the asymptote (A) is reached. When 
the growth curve is characterized as the logarithm 
of the number of organisms graphed with respect 
to time, this change produces an as-curve  
(Figure 1), with a λ just after t = 0. This is followed 
by an exponential growth phase and then by an 
equilibrium stage.
 The nonlinear equations were fitted to P. 
mirabilis growth data by nonlinear regression with 
function fitnlm in MATLAB. This search method 
is used to find the minimum error produced 
by the differences between the estimated 
and experimental data. The function directly 
determines the initial values by searching for 
the steepest ascent of the curve. This is done 
by crossing the line through the x-axis and by 

taking the final point as an estimation of (A). The 
procedure then determines the growth of the 
parameter with the minimum error (5% significant 
error).

Construction of the data set and machine learning 
models
 The fitting of the Logistics, Gompertz, 
and Richard models to the experimental data was 
carried out by MATLAB R2022 software,5 using a 
non-linear least squares method and the trust-
region reflective Newton algorithm. The initial 
parameters were chosen and selected from the 
experimental data. By applying this procedure, the 
interval with 95% confidence is established. Using 
equation 7, the performance of the primary model 
is assessed. 
 The next step of the application of MLA 
is performed. The model will be trained using 
simulated data. The training data set comprising 
N observation of t, written t = (t1, t2, ..., tN)T, along 
with corresponding observational data of y, 
represented as y = (y1, y2, ...yN)T. The next step aims 
to train the model (with training data), that is, find 
the coefficients a, b, c that best fit the data using 
optimization algorithm fminserch. This algorithm 
minimizes the cost function, in this case, the error 

Figure 1. Shape characteristics of sigmoidal growth curve describing bacteria dynamics: A upper asymptote; µm 
maximum absolute growth rate represented by the tangent at an inflection – slope at an inflection (dashed line); 
Tinf: time at an inflection; Tl : lag time
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y and the predicted, ypred. After the coefficients 
are estimated, it is necessary to measure the 
error between the real value (output variable y) 
and the predicted value ypred. This means finding 
parameters a, b and c that minimize the sum of 
squared errors

SSE = ∑ (yi - a/1+exp (b-cti))i=1

N 2

   ...(7)
 where the times are ti and the responses 
are yi , i = 1, ..., N. The sum of squared errors is the 

objective function and it is used to evaluate the 
performance of the model. 

RESULTS AND DISCUSSION

Fitting Data
 The best fit curve has been found by 
choosing the minimum value of the sum square 
error (SSE). This learning curve searches and 
gives the most robust parameters of a,b, and c 
and it may be considered as another approach 
to parameter estimation. We found that this 
MLA has higher flexibility than the traditional 

Figure 2. (a) Fitting of the Logistic growth models to the experimental data of the growth of Proteus mirabilis.  
(b) Simulated data used to train the growth model

Figure 3. Convergence of the algorithm when applied to Logistic function with the initial value of a =4, b = 1, c = 1 

(a) (b)
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methods because it does not require excessive 
equation formulation that shows the connection 
between responses of P. mirabilis and explanatory  
factors. 29

 As shown in Figure 2 (a), the plot of 
the experimental growth data of P. mirabilis 
comprising N = 14 data points is presented. The 
data is considered as the training dataset. The 
logistic model and the Gompertz are fitted to the 
data using30 (cftool) on Matlab 2021 giving best fit 
parameters for the Logistic model are a = 3.896 
x 106, b = 7.646, c = 0.9472, for Gompertz are  
a= 4.01×10-6,b = 4.446,  c= 0.6314, and for Richard 
model are a = 3.909 x 106, b = 0.8614, c = 0.8993, 
and d = 7.583. The traditional method stops after 
finding the fitted parameters. The models have 
not been trained with a new dataset. To train or 
test the curve with a new dataset, simulated data 
are used. The new data are generated by adding 
noises or errors to the experimental data. 
 In microbiology, the experimental data 
are difficult to collect because it is time-consuming 
and expensive. One approach to dealing with 
this is to generate data using simulations. The 
simulated data were produced by computation 
of the corresponding data and added with a small 
level of random noise characterized by normal 
distribution, y(t) = f(t;a, b, c) + rand(µ, s, n), µ 
and s are the mean and the standard deviation of 
the experimental data, see Figure 2b. The source 
of random noise could come from: a) sample of 
bacterial suspension is not 100% homogenous 
before spreading on the medium, b) viable cells 
in the samples (replicates) spread on the medium 
vary. Those lead to variations in cell numbers in the 

counting. Although an adjustable pipette was used 
in the sample transfer, the volume of the sample 
may vary at any time of sample transfer. 
 The process of the learning curve is 
presented in Figure 3. The best fitted curve 
gives the minimum value of SSE 0.9678 with 126 
iterations. Since parameters a,b, and c has no 
meaning in microbiology, the model has to be 
reparametrized in the form of a new model of 
growth known as a secondary model as given in 
equation (5) giving relationships: 
 a = A; b = 4µm / A l + 2 ; c = 4µm / A
 Substituting a = 3.896 x 106, b = 7.646, 
c = 0.9472, gives A = 3.896 x 106, µm = 0.9226,  
l = 5.9605. We refer to Zwietering et al.,8 for the 
calculation of the secondary models of Gompertz 
and Ricard models. The calculation results are 
summarized in Table. 
 The value of a or A parameter for 
the three models is not significantly different. 
The availability of experimental data around A 
(asymptotic line) becomes an important issue due 
to its close relationship with other parameters, 
such as µm and l. Our result, µm and l obtained 
for the logistic, Gompertz, and Richard models do 
not show a significant difference except for Richard 
models. This is due to the fact that Richard model 
involves 4 parameters. An additional experiment 
shows Gompertz models (3 parameters) and 
Richard (4 parameters) give the same prediction 
for µ(h) and l (1/h) and µm and l have a biologically 
similar meaning and the same units for all assessed 
models. However, our result shows that the 
doubling time for proteus mirabilis variates for the 
three models as seen in Table. 
 Overall, it can be concluded, that further 
investigations are still needed to make the model 
perform well. Curve fitting machine learning 
algorithm has the potential as a new methodology 
for predicting µm and l in Proteus mirabilis present 
in food. This algorithm is a breakthrough in 
bacterial growth modeling. With this algorithm, it 
no longer requires various forms of mathematical 
models such as Gompertz,  Richard, and  
others.3 What is needed is a basic model, namely 
a sigmoid model with 3 or 4 parameters. The 
findings of our study are significantly important 
to help practitioners to comprehend growth 
characteristics of single-cell of P. mirabilis following 
disinfectant application and provide them with 

Table. Summary results of parameter estimations

Parameters  Model

 Logistic  Gompertz Richard 

a 3.896 x 106 4.010 x 106 3.939 x 106

b 7.646 4.446 0.8614
c 0.94722 0.6314 0.8993
d - - 7.583
A 3.896 x 106 4.010 x 106 3.909 x 106

µm (h-1) 9.226 x 105 9.314 x 105 9.180 x 105

l (h) 5.9607 5.4577 7.583
v - - 0.8614
Doubling 0.6449 0.3972 0.70422
Time



  www.microbiologyjournal.org817Journal of Pure and Applied Microbiology

Ramona & Dharmawan | J Pure Appl Microbiol. 2023;17(2):811-818. https://doi.org/10.22207/JPAM.17.2.07

theoretical guidance for food companies and risk 
management for the improving assessments in 
foodborne-related pathogens. 
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