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Abstract
The ability of plants to acclimatise and thrive in stressed environments can be attributed, in part, to 
the reserve of endophytic fungi that they harbour, that help enhance physiological and immunological 
defence and tolerance to various biotic and abiotic stressors. The present work has focussed on screening 
laccase producing endophytic fungi residing in different aquatic plants isolated from Hulimavu Lake, 
Bengaluru. This lake is well known for its water pollution contributed by anthropogenic factors. Survival 
of plants in this lake can hence be associated with their rich repertoire of endophytic fungi that enhance 
host plant defence towards stressors. Upon isolation and culturing of endophytic fungi, qualitative 
laccase detection using laccase specific growth media and quantitative laccase estimation using 
ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) substrate were performed. Differential  
production rates were observed for the laccase enzyme by different endophytic fungi; production rates 
also varied between fungi isolated from different parts like node, stem, root and leaf of the same plant 
species too. Phylogenetic analysis of fungal isolates with highest laccase production was performed and 
the species was found to be Cladosporium tenuissimum. Even the crude extract of this strain displayed 
laccase production of 42.16U/L, as revealed by ABTS assay. Hence this strain is a promising candidate 
for optimization studies for utilisation in the domain of bioremediation and industrial applications.
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INTRODUCTION

 Associated commonly with wood 
decay or decomposition, laccases are important 
enzymes commonly  produced by many 
basidiomycetes1 among which, genus Trametes 
are well known producers of laccase.2 Laccases are 
glycosylated polyphenol oxidases with important 
biotechnological applications in industrial fields 
like bioremediation, food, pulp-paper industry, 
textiles and detoxification of pesticides and 
pollutants. They are known to catalyse different 
oxidation reactions for organic and inorganic 
substrates like polyphenols and aromatic amines.3 
This group of enzymes are among the oldest and 
most studied groups with inherent properties 
of reactive radical production that have not yet 
been fully applied in various fields due to low 
commercial availability of laccase producing 
organisms.4 Known predominantly for lignin 
degradation, laccases also assist in detoxifying toxic 
polyphenols. Fungal laccases are hypothesised to 
partake in host protection against environmental 
stress through the production of dark pigmented 
polymers of dihydroxynaphthalene melanins.5 
Extracellular laccase production in various 
organisms like plants, fungi, bacteria and insects 
has been reported to be only in small amounts, 
that can be enhanced using various substrates 
like phenols,6 aliphatic alcohols7 and aqueous 
plant extracts.8 While these reports of enhanced 
laccase production have been well documented, 
there remains more scope for research into effects 
of metal ions in laccase production. A study by 
Wang et al. reported a 10-fold increase in laccase 
production in the presence of Lanthanum (La3+) at 
a concentration of 1g/L in a bambusicolous fungus 
Shiraia bambusicola. At the molecular level, this 
was attributed to La3+ mediated upregulation of 
ROS (Reactive Oxygen Species) and NO (Nitric 
Oxygen) that led to enhanced laccase gene (lcc1) 
expression followed by increased cell membrane 
permeability that facilitated greater exudation of 
laccase.9 Highest laccase producers with industrial 
applications are white rot fungi belonging to the 
genera Pleurotus, Trametes and Phlebia.4 Despite 
the various advantages of laccases in different 
industrial applications, major drawbacks of 
commercial laccase production include lower 
yield and longer fermentation duration. Hence 

the need for novel laccase producing organisms is 
of paramount significance. Shiraia strains isolated 
from fruiting bodies were identified as novel fungal 
laccase producers that helped produce about 
12000-16400 U/L laccase in shorter fermentation 
time when compared to white rot fungal species.10 
Alongside lanthanum, similar research into effects 
of metal ions in promoting laccase production 
revealed upregulation in laccase activities in 
Trametes that was brought about by Cu2+ at 
concentrations of 1mmol/L.11 First of its kind, in 
a study to probe the effects of gamma irradiation 
on fungal endophytic laccase production, Navada 
and Kulal reported enhanced laccase production in 
1.2kGy gamma irradiated endophytic fungus and 
laccase stability was also found to be unaffected 
even with metal concentrations upto 10mM.12

 The symbiotic relationship between 
plants and endophytes is indispensable.13 
While host plants are conferred with numerous 
advantages by endophytes, these microorganisms 
have life cycles that are partly or entirely inside 
plants without harming them or causing any 
diseases to their host plants.14 Of the various 
bioactive compounds produced by endophytic 
fungi, about 51% of the newly discovered 
compounds have pharmacological properties 
including promoting plants to better cope with 
different types of stressed conditions.15 They also 
significantly modulate plant gene expressions and 
secondary metabolites production. Apart from 
pharmaceutical applications, bioactive compounds 
secreted by fungal endophytes are also employed 
for biotransformation of pollutants and toxic 
compounds. Decomposition of a phenylurea 
herbicide diuron was reported to be performed 
by endophytic fungi Neurospora intermedia 
MF362953 isolated from Saccharum officinarum.16 
Various studies have also reported endophytic 
fungi mediated in vitro degradation of different 
anti-inflammatory drugs like diclofenac, ibuprofen, 
piroxicam and so on.17 These bio-degradative 
properties are brought about through synergistic 
actions between enzymes from fungal endophytes 
and their host plants. Thus, endophytic fungi 
represent a repertoire of different enzymes like 
amylase, pectinase, xylanase, cellulase, laccase 
and so on that have numerous applications in 
different industrial processes. Few noteworthy 
examples of fungal endophytic enzymes isolated 
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from different host plants include: xylanase and 
endoglucanase produced by Beauveria bassiana 
MN544934 isolated from host plant Allium 
cepa,18 amylase, cellulase and laccase produced 
by Fusarium equiseti isolated from host plant 
Cananga odorata,19 cellulase produced by from 
Fomitopsis cf. Meliae KYO isolated from host plant 
Bacopa monnieri.20

 Among various enzymes produced by 
fungal endophytes, laccases display wide ranging 
applications in industries partly due to broad 
ranging substrates they have. Additionally, laccase 
mediated biocatalysis is efficient, sustainable 
and eco-friendly. However, factors like high cost 
and efficiency of isolating fungal endophytic 
laccases are the limiting factors in the industrial 
applications of these enzymes. With wide ranging 
applications in bioremediation of dyes, endophytic 
fungi are considered to be efficient, eco-friendly, 
cost-effective and viable alternatives because of 
their properties to degrade non-phenolic and 
phenolic dyes.21 In comparison to endophytic 
bacteria, endophytic fungi are preferred for 
dye biodegradation due to factors like wide 
mycelial network, ability to utilise xenobiotics 
as substrates and presence of catabolic enzymes 
with low substrate specificity.22 White-rot fungi 
are considered as most potent azo dye degrading 
fungal organisms in lieu of the production of lignin 
peroxidase, laccase and manganese peroxidase 
that have non-specific enzymatic activity.23 A study 
by Sun et al. reported decolourisation potential of 
fungal strain Myrothecium verrucaria towards dyes 
crystal violet, congo red, methyl orange and methyl 
red in the presence of ABTS.24 Another such similar 
study reported dye degrading capabilities of fungal 
endophytic organisms against textile dyes. These 
included fungal endophytes like Phlebia spp. 
isolated from P. hispidum Sw. that helped degrade 
textile dyes like Reactive Black 5 and Reactive 
Blue 19.25 Fungal laccases were first reported 
in exudates of plant Rhus vernicifera and have 
continued to be an extensive topic of research. 
Their roles have been implicated in different 
plant physiological processes like delignification, 
pigmentation and pathogenesis.26

 Laccase production by fungal endophytes 
is a significantly promising area of research in 
lieu of various industrial applications of laccase 
in areas like bioremediation and detoxification of 

pollutants. In vivo conditions that favour fungal 
endophytic enzyme production cannot be fully 
replicated in vitro but various aspects can be 
introduced to enhance enzyme production. The 
present work was focussed on isolating fungal 
endophytes from different plants in Hulimavu 
Lake, Bengaluru in order to elucidate their laccase 
producing properties. As evident in this study, 
endophytic fungi cultured from different plant 
regions of Alternanthera exhibited differences in 
quantity of laccase production. Hence, optimising 
enzyme production would involve various factors 
that will be specific to host plants and fungal 
endophytic organisms being studied. Industrial 
applications of enzymes have significant research 
value due to the ability of enzymes to catalyse 
various reactions even when present in low 
quantities. However, the use of enzymes extracted 
from organisms that live in stressed habitats, 
as reflected in this study, have furthermore 
applications due to unique characteristics of these 
organisms to withstand biotic and abiotic stress 
without affecting enzyme production. In this 
regard, extraction of fungal enzymes from plants 
living in polluted or stressed conditions exemplifies 
the significance of these enzymes in industrial 
processes that involve extreme conditions of 
temperature, pH, etc. These enzymes thus help 
partake in catalysis of reactions involving extreme 
conditions without undergoing any negative 
effects on their activity or specificity. Laccase 
catalysed reactions are among the most commonly 
employed processes in industries.

MATERIALS AND METHODS

Isolation of fungal endophytes from Hulimavu 
Lake flora
 Three plants were selected for isolation 
of endophytes after initial screening of Hulimavu 
Lake and they were collected from the following 
geographical locations - Latitude 12°56’2’’N; 
Longitude 77°36’21’’E (for Alternanthera 
philoxeroides, Ricinus communis) and Latitude 
12°53’12’’N; Longitude 77°35’22’’E (for Persicaria 
glabra). All plant samples were collected in clean 
plastic covers and brought to the laboratory where 
they were transferred to a large clean plastic tray 
and washed under running tap water for about 15-
20 minutes (total). This wash was repeated thrice 



  www.microbiologyjournal.org301Journal of Pure and Applied Microbiology

Jayaram et al. | J Pure Appl Microbiol. 2023;17(1):298-308. https://doi.org/10.22207/JPAM.17.1.19

(in total) and water was changed during each wash. 
After thorough tap water wash the plant samples 
were transferred to a clean sheet of newspaper and 
dried at room temperature for ~15 minutes. A part 
of all plant samples was kept aside for preparation 
and deposition as herbarium specimens. These 
were later identified by a certified taxonomist as 
Alternanthera philoxeroides, Ricinus communis 
and Persicaria glabra. Remaining parts of all plant 
samples were taken to the LAF (Laminar Air Flow) 
for processing under sterile conditions. Plant 
samples were processed using ethanol and sodium 
hypochlorite as surface sterilising agents.27 Each 
plant sample was processed separately and under 
sterile conditions these plant parts were subjected 
to two surface sterilisation conditions, one set with 
70% (v/v) ethanol and another set with 5% (v/v) 
sodium hypochlorite. Leaves were excised to make 
0.5cm*0.5cm pieces, root and stem explants were 
prepared as 0.25cm, 0.5cm or 1cm segments and 
while inoculating the inside part of all explants 
was placed towards the growth media (and then 
slightly pressed using sterile forceps). Flower 
explants were not cut further since these were 
bud-like small flowers and hence were inoculated 
by placing the inside part towards the growth 
media and then slightly pressing the explants. 
After preparation of each explant for each plant 
sample and blot drying them on sterile filter paper 
pieces, 4 explants of each type were inoculated 
on each petri plate containing PDA (Potato 
Dextrose Agar) growth media (supplemented with 
streptomycin at a concentration of 20µg/mL). All 
these culture plates were kept for incubation at 
room temperature under dark conditions. These 
culture plates were observed every day for fungal 
growth and contamination (if any).

Qualitative screening for laccase production
 A f te r  ~ 5  we e ks  o f  i n c u b at i o n , 
primary fungal endophytic cultures were 
subjected to subculturing onto PDA growth 
media (supplemented with streptomycin at a 
concentration of 20µg/mL) and kept for incubation 
at room temperature under dark conditions for 
~15 days. After optimal mycelial growth in these 
subcultures, qualitative assay to detect laccase 
production was performed according to the 
protocol by Sunitha et al.28 This assay was based 
on growth of fungal subcultures in GYP (Glucose 

Yeast extract Peptone) agar media supplemented 
with 0.005% (g/v) of α-naphthol (growth media 
composition per L: glucose 1g, yeast extract 
0.1g, peptone 0.5g, agar 16g, α-naphthol 0.05g, 
distilled water 1L) followed by incubation for ~4 
days at room temperature (under dark conditions). 
Presence of laccase production was indicated by 
laccase catalysed oxidation of α-naphthol that 
induced media colour change from colourless to 
blue.

Quantitative screening for laccase production
 Upon achieving sufficient mycelial 
growth in subcultured explants from PDA growth 
media, under aseptic conditions, 2-3 mycelial 
plugs were transferred from PDA growth media 
to PDB (Potato Dextrose Broth) growth media. 
These broth cultures were incubated for ~8 days 
at room temperature (under dark conditions) for 
subsequent quantitative laccase assay. Under 
aseptic conditions, broths of fungal cultures were 
filtered using filter paper to remove mycelial 
biomass. Filtrates thus obtained were stored at 
4°C until further use for enzyme assays. Laccase 
production was quantified using the ABTS 
(2-azino-bis(3-ethylbenzthiazoline)-6-sulfonate)) 
assay method29 in which oxidation of ABTS was 
monitored as an increase in absorbance at A420. 
For this assay 0.3mL of 0.3mM ABTS and 0.9mL 
of 0.1M citrate buffer (pH=5.0) were mixed with 
1.8mL of enzyme filtrate. Following this, the 
increase in absorbance was monitored every 
one minute at A420 (at room temperature) until 
the absorbance values decreased or remained 
constant.

Molecular identification of laccase producing 
fungal endophytes
 Molecular phylogenetic analysis was done 
by DNA sequencing of ITS (Internal Transcribed 
Spacer) regions. After purification of these PCR 
amplicons, forward and reverse ITS-1 and 4 
primers were used for DNA sequencing. BDT 
v3.1 Cycle sequencing kit was used on ABI 3730xl 
Genetic Analyzer. Results thus obtained were 
analysed using BLAST analysis and compared with 
the GenBank database using nucleotide homology. 
MEGA 10 tool was then used for constructing 
phylogenetic tree. Subsequently, consensus 
sequences were generated from forward and 
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reverse primers using aligner software. Based 
on identity score matrix using BLAST (Basic Local 
Alignment Search Tool) analysis in GenBank 
database, amplified fragments of ITS regions 
were analysed for species identification through 
multiple alignment software program Clustal 
W. Distance matrix. Phylogenetic tree was then 
constructed using MEGA 10.).

RESULTS AND DISCUSSION

Culturing and isolation of fungal endophytes
 Plants selected from Hulimavu Lake were 
subjected to washing and surface sterilisation 
using 70% (v/v) ethanol and 5% (v/v) sodium 
hypochlorite. After inoculation of explants from 
different plant parts like leaf, stem, node and root 
(for Alternanthera philoxeroides), stem (for Ricinus 
communis) and flower (for Persicaria glabra) to 
PDA growth media, these cultures were incubated 
at room temperature (under dark conditions) 
to allow fungal growth. Regular observations 
were made in order to check for mycelial growth 
and contaminations if any. After four weeks of 
incubation optimal mycelial growth was obtained 
and these cultures were then further subcultured 
in PDA and incubated for about 15 days at 
room temperature (under dark conditions) for 
optimal mycelial growth. The culture was further 
inoculated in PDB (Potato Dextrose Broth) and 
incubated for about 7 days at room temperature 
(under dark conditions). These cultures were used 
for subsequent qualitative and quantitative assays 
for detection and estimation of laccase production. 
Different plants and plant regions harbour an 
extensive range of endophytes. Hence for the 
isolation of fungal endophytes these organisms 
need to be subcultured repeatedly to obtain pure 
cultures of desired organisms. Optimisation of 
subculturing conditions to obtain pure cultures 
of fungal endophytes further facilitates enhanced 
production and extraction of required enzymes 
and bioactive compounds. Growth rate of fungal 
endophytes was found to be dependent on 
temperature and culture conditions. Optimal 
growth was observed under dark conditions and 
at ~25°C.
 External factors of growth media 
composition, pH, ratio of carbon-nitrogen sources 
and variations in culture conditions including 

incubation of fungal broth cultures under rotary 
shaking or static conditions significantly impact 
endophytic fungal growth, enzyme production 
and bioactive compounds production. Different 
components in fungal endophytic growth media 
promote growth at varied rates. PDA was selected 
as the growth media of choice in concurrence with 
literature reports that indicated this to be the best 
media that promotes growth of a broad range 
of fungal organisms.30 In a study by Wang et al. 
different pH, temperature (20-40°C) and growth 
media compositions were tested to optimise 
fungal endophytic growth of Monotospora sp. 
Strain W823 and its laccase production. It was 
reported that maximum laccase production was 
obtained at pH of 8.5, temperature of 30°C and 
with growth media consisting of maltose at 2g/L 
and ammonium tartrate at 10g/L.31 Thus, growth 
media composition along with extraneous culture 
conditions like temperature and pH affect the 
growth rate, type and quanta of endophytic fungal 
bioactive compounds. In a study by More et al., 
kinetics of laccase production was studied across 
different temperature and pH ranges and optimal 
production was achieved at 65°C and at pH 4.5. 
Activity of enzyme significantly increased from 
60-65°C after which there was a decline after 70°C. 
Influence of different metal ions and inhibitors on 
laccase production was also analysed of which 
zinc was noted to completely inactivate laccase 
at a concentration of 2mM and other metal ions 
like manganese, mercury and iron inhibited nearly 
60% laccase activity at 2mM concentration. Among 
the inhibitors tested, sodium azide, EDTA and 
SDS exhibited significant inactivation of laccase 
enzyme.32

Qualitative detection of laccase production
 Detection of laccase production was 
performed qualitatively by inoculating the fungal 
endophytes in GYP agar media supplemented 
with 0.005% (w/v) of α-naphthol. Incubation was 
performed at room temperature (under dark 
conditions) for ~4 days and observed regularly. 
Laccase production was indicated by oxidation of 
α-naphthol that resulted in growth media colour 
change from colourless to light blue. Fungal 
endophytes isolated from stem, root and node 
regions of Alternanthera philoxeroides, stem 
region of Ricinus communis and flower regions 
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of Persicaria glabra showed presence of laccase 
production indicated by growth media colour 
change to blue from colourless. In few of these 
cases, intensity of growth media colour change to 
blue for stem explants of Alternanthera was more 
enhanced than explants of Ricinus and Persicaria. 
This could be attributed to variations in the 
amount of laccase enzyme production by different 
fungal endophytes isolated from different regions 
of their host plants. Figure 1 depicts the bluish 
purple colour spreading in the media around the 
fungal mycelia of the explant from A. philoxeroides 
indicating that it is laccase positive.
 Various parameters like growth media 
composition (carbon source, nitrogen source, 
ionic balance, etc.), pH, temperature, growth 
culture volume, fermentation conditions (static 
and shaking), nature of host plant, type of plant 
part and fungal organisms being analysed affect 
the ultimate production and yield of various 
enzymes and bioactive compounds. Certain biotic 
and abiotic stressors in the environment of host 
plants also affect the physiological secretions by 
resident fungal endophytes that in turn favourably 
help their host plants to become tolerant to stress. 
In a study by Chanyal S. et al. different substrates 
of laccase were used in the qualitative analysis 
of fungal laccase production. Tannic acid, ABTS, 
syringaldehyde and guaiacol were each added 
to each GYP agar media to test the presence of 
laccase production by fungal endophytes. Though 
all substrates facilitated detection of laccase 
enzyme based on their specific modes of action, 
ABTS was reported as the best substrate for laccase 

enzyme. Tannic acid was considered to be less 
efficient than the other substrates due to its non-
specificity as a substrate for laccases.33

Quantitative estimation of laccase production
 Fungal endophytic subcultures incubated 
in PDB at room temperature for ~8 days (under 
dark conditions) were used for the quantitative 
estimation of laccase production. After incubating 
these subcultures in PDB the broth cultures were 
filtered using filter paper and filtrates were stored 
at 4°C for subsequent use in enzyme assays. 
Laccase estimation was performed by ABTS assay 
in which the oxidation of ABTS per minute by 
laccase enzyme (at A420) was calculated as per the 
formula: Enzyme units per L (U/L) = (δE×Vt )/
(ε × d ×Vs).
 where δE is the change in excitation of 
light per minute at A420, Vt is the total volume 
measured, Vs is the volume of enzyme stock 
solution added to ABTS stock solution, d is the 
layer (in cm) of thickness of cuvette and ε is 
the molar absorption coefficient of ABTS at A420 
(3.6 × 104 M/cm-1). Thus enzyme activity of 1 
unit under standard conditions is considered as 
1µmol of ABTS being oxidised in each minute.29 As 
summarised in Table, different plant regions like 
stem, root and node of Alternanthera displayed 
significant differences in laccase production. 
While crude enzyme extracts of fungal endophytic 
cultures from HEFAPhS1, i.e. Hulimavu Lake 
Endophytic Fungus Alternanthera philoxeroides 
Stem (isolate 1) produced the highest amount of 
laccase (42.16U/L), those from its root and nodal 

Figure 1. Qualitative laccase assay for fungal endophytes isolated from Alternanthera philoxeroides stem explants 
showing bluish purple coloration in the GYP medium: a) Laccase positive fungal isolate  b) Laccase negative fungal 
isolate
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regions produced lower amounts of 9.305U/L and 
9.28U/L of laccase, respectively. From among the 
organisms tested for laccase production, crude 
enzyme extracts of fungal endophytic cultures 
from Persicaria flower reported lowest laccase 
production with enzyme units of 4.416U/L. 
Aslam, M.S. et al. reported partial purification of 
extracellular laccase with an output of 0.19U/L 
by Cladosporium cladosporioides that was further 
subjected to kinetics assays to determine the 
kinetic constants and physicochemical properties 
of laccase.34 Fungal laccases which are monomeric 
proteins have molecular weights ranging from 50-
90kDa.35,36,37 General research on fungal laccases 
dwells around organisms like Phanerochaete 
chrysosporium, Pycnoporus sanguineus and 
Trametes versicolor.34 Partial purification of 
laccase from Schizophyllum commune IBL-06 gave 
an yield of 0.367U/L. Here, while 1mM of CuSO4 
enhanced its production, AgNO3, TEMED and 
mercaptoethanol decreased laccase production 
by 25%.38

  
Identification of the Fungal Endophyte by rDNA 
Sequence Analysis
 Endophytic fungi isolated from the stem 
region of Alternanthera philoxeroides exhibited 
maximum laccase production. This fungal isolate 
was identified by 28S rRNA sequencing by PCR 
amplification of ITS-1 and 4 regions. Based on 
identity score matrix using BLAST (Basic Local 
Alignment Search Tool) analysis in GenBank 
database, amplified fragments of ITS regions 
were analysed for species identification through 
multiple alignment software program Clustal W. 
Distance matrix. As depicted in Figure 2, after 
nucleotide homology, phylogenetic analysis using 
Maximum Likelihood Method and comparison with 
GenBank database, the fungal endophytic species 
was identified as Cladosporium tenuissimum. The 
sequence obtained was deposited in the Genbank 
database (Accession number ON505945). The 
genus Cladosporium species is considered to be 
heterogeneous and 993 organisms belonging 
to this genera come under the category of 
common endophytes.39 This fungus has been 
researched globally for its production of secondary 
metabolites. Examples include C. tenuissimum 
from Swietenia mahagoni in Indonesia,40 from 
Pinus wallichiana in Kashmir41 and from Cronartium Ta
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flaccidum in Italy.42 Being an extensively researched 
organism, C. tenuissimum finds immense potential 
for industrial and therapeutic applications of 
its bioactive compounds. Different bioactive 
compounds have been known to be isolated 
from this genera of fungal endophytes and few 
examples include o-hydroxyphenyl,41 plumbagin 
(5-hydroxyl-2-methyl-naptalene-1,4dione)30 
and hydroxyemodin.43 Ethyl acetate extracts of 
antioxidants from Cladosporium tenuissimum have 
revealed high antioxidant activity along with IC50 
value of 85.35µg/mL.40 There are many products, 
like cladosporin identified in 1971,44 that have 
been reported to be produced by fungal organisms 
belonging to the genus Cladosporium. These 
include secondary metabolites like azaphilones, 
coumarins and isocoumarins, lactones, sterols and 
so on.13 Biological properties of these compounds 
have since been extensively studied. Laccase 
production by Cladosporium tenuissimum remains 
an area of research that needs further exploration. 
From among the few reports published in 
this area, a study by Dhakar K. and Pandey A. 
reported laccase production from a newly isolated 
psychrotolerant Cladosporium tenuissimum strain 
NFCCI 2608. This strain recorded laccase activity 
of 15.10±0.78U/L at 14°C when compared to its 
activity of 8.05±0.94U/L at 24°C, with efficiency 
of laccase production being maximum at lower 

temperature.41 Comparatively, the present 
study demonstrated high laccase production 
by Cladosporium tenuissimum isolated from 
Alternanthera philoxeroides growing in highly 
polluted Hulimavu Lake, Bangalore, without the 
addition of any laccase inducers and at standard 
temperature of ~25-28°C.
 A study by Navada et al. aimed at 
enhancing laccase production upto 1.6 fold in 
Phomopsis sp. through 0.2kGy gamma-irradiation. 
Laccase enzyme from irradiated fungal cultures 
retained its activity in broad ranges of pH from 
4-8 and temperature from 25-45°C conditions, 
while also displaying tolerance to metals like Zinc, 
calcium, copper and chromium at concentrations 
upto 10mM.45 Another study also reported 
increased laccase production upto 225.05mg/L six 
days after incubation of Shiraia bambusicola fungal 
cultures. Here, laccase activity was enhanced using 
lanthanum (La3+) at a concentration of 1-2g/L. 
While lanthanum inhibited mycelial biomass, the 
laccase production was enhanced almost 10 fold 
compared to control fungal cultures.9 In a study 
by Revankar and Lele, laccase production by 
fungal strain belonging to the genus Gandoderma 
was maximised by optimising growth media 
micronutrients. This strain naturally produced 
high amounts of laccase (124U/mL) compared to 
other strains that produced between 4-100U/mL 

Figure 2. Species identification of fungal cultures isolated from the stem region of Alternanthera philoxeroides:  
Genomic DNA isolation (left), ITS region PCR amplification (middle) and DNA  ladder specifications.
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of laccase. Using orthogonal matrix method of 
experimental design, enhanced laccase production 
was achieved by calculating optimal levels of 
micronutrients in the fermentation media. Starch 
based growth media supplemented with copper 
sulphate and 2,5-xylidine (laccase inducer) 
enhanced the laccase production upto 692U/mL 
by this fungal strain.46

 Laccase production by fungal endophytes 
is a significantly promising area of research in lieu 
of the various industrial applications of laccase in 
areas like bioremediation and detoxification of 
pollutants. In vivo conditions that favour fungal 
endophytic enzyme production cannot be fully 
replicated in vitro but various aspects can be 
introduced to optimise and enhance enzyme 
production. As evident in this study, endophytic 
fungi cultured from different plant regions of 
Alternanthera exhibited differences in quantity 
of laccase production. Hence, optimising enzyme 
production would involve various factors that will 
be specific to host plants and fungal endophytic 
organisms being studied. Industrial applications 
of enzymes have significant research value due to 
the ability of enzymes to catalyse various reactions 
even when present in low quantities. However, 
the use of enzymes extracted from organisms 
that live in stressed habitats have furthermore 
applications due to unique characteristics of 
these organisms to withstand biotic and abiotic 
stress without affecting enzyme production. In 
this regard, extraction of fungal enzymes from 
plants living in polluted or stressed conditions 
exemplifies the significance of these enzymes 
in industrial processes that involve extreme 
conditions of temperature, pH, etc.47,48 These 
enzymes thus help partake in catalysis of reactions 
involving extreme conditions without undergoing 
any negative effects on their activity or specificity. 
Laccase catalysed reactions are among the most 
commonly employed processes in industries. The 
present work aimed at probing laccase producing 
fungal endophytes through qualitative detection 
and quantitative estimation of laccase production. 
From among the plants studied in this work, fungal 
endophytes from stem regions of Alternanthera 
philoxeroides reported highest laccase production 
and those from flower regions of Persicaria glabra 
reported the least laccase production. Laccase 
production varied among the different plant 

regions like node, root and stem of Alternanthera, 
thus demonstrating the effect of variations in plant 
regions and type of fungi on laccase production.
The current study helps demonstrate the variations 
in fungal endophytic composition within a single 
plant, on the type and quanta of fungal endophytic 
enzymes produced. Hulimavu lake was chosen 
for this study due to the high levels of biotic and 
abiotic stress present in this lake, brought about 
by factors like pollution by nearby commercial 
habitation and dumping of waste into this lake. 
Owing to this, fungal endophytes present in plants 
of this lake were hypothesised to harbour useful 
wide ranging enzymes and bioactive compounds 
that conferred their host plants with the ability 
to withstand extreme conditions. Since laccase is 
an industrially important enzyme, research into 
optimising fungal endophytic laccase production 
would pave the way for standardising large scale 
fermentation reactions by using high laccase 
producing fungal endophytes, especially ones 
which can tolerate extreme conditions. The 
present study revealed the high laccase production 
by C. tenuissimum endophytic strain which showed 
42.16 U/L laccase output even from crude filtrate 
of the fungal culture. Hence the study points to 
an excellent laccase producer which can be used 
for further characterization and optimization of 
laccase production by altering cultural conditions, 
using elicitors etc.
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