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Abstract
Meningococcal meningitis (MM) is a severe central nervous system (CNS) infection that occurs primarily 
in children. MM can damage brain areas associated with hearing, learning, reasoning, focus, and 
memory. Genetic changes, including single nucleotide polymorphisms (SNPs), which compromise 
pathogen recognition increase the risk and severity of MM. there is little data on how the variation 
in the frequency of the rs4986790 polymorphism in the toll-like receptor 4 (tlR4) gene may affect the 
population of Saudi Arabia. this study sought to determine the allelic frequency and distribution of 
the tlR4 rs4986790 A/G polymorphism in the Saudi population and compare the data to other global 
populations. Data from epidemiological studies conducted in various ethnic groups were extracted using 
PUBMeD (Medline) and similar web databases. An estimated 5.88% of the Saudi population harbors 
the tlR4 rs4986790 G variant allele. this differed significantly from the frequencies in populations 
in China (p=0.0002), Japan (p=0.0001), Korea (p=0.0001), and Mexico (p=0.01). the tlR4 rs4986790 
polymorphism variant allele has a unique pattern in the Saudi population, which may be the result 
of racial differences. these findings could assist in the risk assessment of people harboring the tlR4 
+896 GG genotype susceptible to MM in the Saudi population.
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iNtRODUCtiON

 Genetic epidemiological studies have 
shown that genetic variations in human groups 
influence susceptibility to infections. There 
are several obstacles to overcome to identify 
the relevant genes and translate these results 
into biological mechanistic explanations.1,2 
Meningococcal Meningitis (MM), a severe 
infection of the central nervous system (CNS) that 
affects hearing and learning capacities, frequently 
occurs in childhood.3-5 The main objective of the 
immune response is to neutralize the pathogen 
by recognizing microbial ligands and then induce 
the release of certain cytokines. However, 
these cytokine reactions may also incidentally 
harm healthy brain tissue, which would be  
detrimental. 6,7

 Mutations in pathogen recognizing 
receptors (PRRs) including Toll-like receptors 
(TLRs) and nucleotide oligomerization domain like 
receptors (NLRs) in macrophages and epithelial 
cells critically modulate the inflammatory 
response.8 These receptors are also expressed by 
neuro-epithelial cells, resident macrophages in the 
CNS, and microglia. Thus, any mutation of these 
receptors significantly increases risk and severity 
of MM.
 Early reports showed that single 
nucleotide polymorphisms (SNPs) located in 
genes responsible for the development of innate 
immunity increase meningococcal, pneumococcal, 
and meningitis susceptibility.9-11 A severity analysis 
linked SNPs located in TLR2, TLR4, and TLR9 with 
deafness in MM patients.12 MM usually begins 
with Neisseria meningitidis and Streptococcus 
pneumoniae growth in the nasopharynx and 
epithelium, progressing to bacteremia in the 
blood circulation. Bacteria may eventually cross 
the blood–brain barrier and proliferate in the 
subarachnoid area.13 
 Microglia, astrocytes, and non-neuronal 
structures near the cerebrospinal fluid (CSF), 
including dendritic cells and macrophages, detect 
the presence of bacteria in the CNS and activate 
the immune response. PRR activation causes 
the production of inflammatory cytokines and 
chemokines, which are also present in the CNS.8 
Brain edema, infarction, increased intracranial 
pressure, and neuronal damage result from the 

local inflammatory response within the brain, 
which is exacerbated by cytokine-induced 
increased blood–brain barrier permeability and 
entry of inflammatory cells into the CNS 13. To 
clear these microbes, the host must be able to 
recognize microbial CNS invasion in order to clear 
the infection. However, the ensuing inflammatory 
response produces few cytotoxic mediators that 
affect healthy bystander neurons, ultimately 
resulting in poor prognosis. 13,14

 Immune cells recognize gram-positive and 
gram-negative bacteria with the participation of 
TLR2 and TLR4 surface receptors. Animal studies 
have established that a lack of TLR2 and TLR4 
reduces the ability of the CNS to remove germs 
after an infection with S. pneumoniae.15 
 Although the rs4986790 SNP is located in 
a critical genomic region for MM susceptibility, its 
prevalence and impact in Saudi Arabia populations 
is unclear.  The present study sought to determine 
the frequency of genetic variation in TLR4 +896 
A/G (rs4986790) that is associated with an 
increased risk of MM. The frequency distribution 
of the TLR4 rs4986790 polymorphism among 
healthy Saudi Arabians was compared with data 
from multiple epidemiological studies conducted 
worldwide.

MAteRiAlS AND MetHODS

Search criteria of gene variants
 The PUBMED (Medline),  Web of 
Science, and EGEMS databases were searched 
using the keywords "TLR4,” "rs4986790," and 
"polymorphism". Studies on human subjects 
written in any language were included in the 
search. Studies reporting genotype frequencies for 
the control population were included. Studies that 
reported only allele frequencies and no genotype 
frequencies were excluded. For every study that 
met the requirements, the first author's name, 
year of publication, subjects' country, number 
of controls, research type, inclusion/exclusion 
criteria, and subjects' allele and genotype 
frequencies were all abstracted. The most 
recent publication data were used for the Saudi 
population. The prevalence of the TLR4 rs4986790 
polymorphism was extracted from 48 studies and 
included in the current analysis and compared to 
the Saudi population (Table 1). 16
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table 1. Studies included in the TLR4 +896 A/G (rs4986790) gene variant analysis in different populations 

No. Study Year Ethnicity Reference

1 Semlali 2019 Arab 16
2 Martinez-Rios 2013 Mexican 17
3 Ameziane 2003 Caucasian 18
4 O’Halloran 2006 Caucasian 19
5 Edfeldt 2004 Caucasian 20
6 Zee 2005 Caucasian 21
7 Koch 2006 Caucasian 22
8 Dzumhur 2012 Caucasian 23
9 Nebel 2007 Caucasian 24
10 Balistreri 2004 Caucasian 25
11 Morange 2004 Caucasian 26
12 Golovkin 2014 Caucasian 27
13 Guven 2015 Turks 28
14 Van well 2013 Caucasian 29
15 Sargın 2017 European 30
16 Machado 2016 Mixed 31
17 Qin 2009 Asian (China) 32
18 Na 2008 Asian (Korea) 33
19 Burton 2007 European 34
20 Snelgrove 2007 European 35
21 Adam 2006 European 36
22 Gergely 2006 European 37
23 van der  2005 European 38
24 van Well 2013 European 29
25 Ahmad-Nejad 2011 Caucasian 39
26 Nakada 2005 Asian (Japan) 40
27 Agnese 2002 Multi-ethnic 41
28 Bronkhorst 2013 Caucasian 42
29 Carregaro 2010 Multi-ethnic 43
30 Elkilany Atia 2015 Caucasian 44
31 Everett 2007 Undefined 45
32 Feterowski 2003 Caucasian 46
33 Guarner-Argente 2010 Undefined 47
34 Henckaerts 2009 Caucasian 48
35 Horcajada 2009 Caucasian 49
36 Kompoti 2015 Caucasian 50
37 Kumpf 2010 Caucasian 51
38 Lorenz 2002 Caucasian 52
39 Mensah 2009 Multi-ethnic 53
40 Ozgur 2009 Undefined 54
41 Rodriguez-Osorio 2013 Mexican-Mestizo 55
42 Read 2001 Caucasian 56
43 Sampath 2013 Multi-ethnic 57
44 Schnetzke 2015 Caucasian 58
45 Shalhub 2009 Caucasian 59
46 Tellería-Orriols 2014 Caucasian 60
47 Van der Graaf 2006 Undefined 61
48 Yoon 2006 Asian (Korea) 62
49 Yuan 2008 Caucasian 63
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Statistical analysis
 SPSS version 21 software was used for 
the Pearson's χ2 test to match the genotype 
and allelic frequencies of various populations. 
The Hardy-Weinberg equilibrium (HWE) was 
investigated using Court-Lab. A p-value <0.05 
denoted statistical significance.

ReSUltS

 The minor allele frequency (MAF) of 
the TLR4 rs4986790 polymorphism in the Saudi 
population was 5.88%, according to the genotype 
distribution. The value was in accordance with 
HWE (Table 2). Different minor allele frequencies 
were found in the genotypic (A/A, A/G, and G/G) 
and allelic frequency distributions of the studied 
polymorphisms in various populations (Table 3). 
When the frequency in Saudi Arabia was compared 
to that of other populations, a substantially 
different MAF was observed for the ethnicities 
of populations of China (p=0.0002), Japan (p 
<0.0001), Korea (p <0.0001), and Mexico (p=0.01).

DiSCUSSiON 
 
 Many human diseases, including multiple 
sclerosis, diabetes, asthma, cancer, and birth 
abnormalities exhibit multifactorial inheritance 
patterns. A complex interplay between genetic 
factors, including copy number variation, epistatic 
interactions, and modifier effects, as well as 
numerous environmental factors, results in disease 
onset and progression. It is difficult to predict 
whether a disease will develop in situations where 
there is discontinuous trait variation due to the 
number of factors that may or may not exceed the 
liability threshold. Common alleles that contribute 
to the hereditary component of widespread 

multifactorial disorders can be identified using 
genome-wide association studies (GWAS). The 
alleles discovered using this method typically have 
small impact sizes and cannot fully explain the 
disease susceptibility.
 This gap might emerge as a result of the 
difficulty in utilizing GWAS to find rare variants 
with low to medium penetrance. The percentage 
of people in a group that has a specific allele 
and displays an associated phenotype signifies 
penetration. Mendelian diseases, in contrast to 
multifactorial illnesses, have strong penetrance 
and a very low allele frequency. 
 Several techniques have been developed 
to study complicated illnesses. GWAS have 
identified the common genetic variables underlying 
the most severe complex illnesses. However, much 
remains to be discovered regarding the origins and 
characteristics of many multifactorial illnesses. 
 The majority of diseases are multifactorial, 
and the consequences of an intricate web of 
hereditary and environmental factors affect how 
the disease develops over the course of a person's 
lifetime. A growing body of research suggests that 
genetic variation makes people more susceptible 
to conditions such as diabetes, cardiovascular 
disease, and cancer.64-66 Therefore, a primary 
priority in understanding the pathophysiological 
mechanisms underlying common human illnesses 
is the detection of genetic variations associated 
with common complicated diseases. The 
possible impact of common functional germline 
polymorphisms on disease risk, development, and 
prognosis has attracted increasing attention. 
 Genetic variety refers to the genomic 
variation present within a population or species.67 
Given the richness of the human genome, genetic 
variation is recognized as a factor that affects a 
person's phenotype.68 Individual gene variation 
is referred to as genetic diversity and serves as 

table 2. Observed and expected genotypic frequencies of TLR4 +896 A/G (rs4986790) polymorphism in the 
control group

Study        Genotype observed (n)   Genotype Expected (n) MAF p-value
        (HWE)
 A/A A/G G/G A/A A/G G/G  

Semlali et al.16 166 20 1 166 21 1 0.059 0.83
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a mechanism for population survival by enabling 
adaptation to a dynamic environment. The key to 
understanding the biology of human diseases has 
long been thought to be genetic heterogeneity 
within and between populations.69-71 
 TLRs are central to the activation of 
the innate immune system and its response to 
CNS infections. 72 Early studies have linked SNPs 
located in TLR4 with meningitis, tuberculosis, 
malaria, and lupus risk.73 TLR2 and TLR4 activation 
leads to variable gene expression through 
nuclear factor-kappa B (NF-κB) regulated  
transcription.74 Toll/interleukin 1-domain-
containing adapter inducing interferon-beta (TRIF) 
also contributes to TLR signaling. When TLR4 is 
activated, MyD88 and TRIF are recruited. When 
TLR2 is activated, only MyD88 is recruited. Due 
to variations in the timing of NF-κB activation, 
MyD88 and TRIF are believed to coordinate distinct 
intracellular pathways.74 TLR2 and TLR4 activation 
also leads to the production of pro-inflammatory 
TNF-α in murine macrophages.75,76 Previous 
genetic studies have shown a strong association 
between TLR4 and Crohn’s disease in the pediatric 
population.77

 Experimental studies have shown that 
TLR4+896 SNP is associated with a reduced 
response to lipopolysaccharide (LPS) in mice and 
humans.78,79 Compared to healthy volunteers, 
adult surgical intensive care unit patients have a 
higher risk of developing gram-negative infections 
owing to the same TLR4 SNP 41. TLR4 +896 has 
also been associated with mortality, greater need 
for respiratory assistance, use of inotropic agents, 
skin grafting, and limb loss in a pediatric population 
with meningococcal infections.80 Decreased pro-
inflammatory intracellular signaling and impaired 
TLR4-mediated LPS responses are probable 
mechanisms. 
 Identifying genetic variations that 
predispose individuals to the development of 
MM is important because it helps to clarify the 
specifics of MM pathogenesis. Additionally, this 
knowledge makes it possible to forecast a person's 
risk of developing MM and may help in identifying 
people at the highest risk of developing serious 
complications from their condition and needing 
specialized care. Furthermore, the outcome can 
be useful in the identification and immunization 
of individuals with the highest MM risk. Another 
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possibility is to supplement existing prediction 
models for difficulties in hearing, memory, or 
behavior after MM with genetic risk factors.81-83

 Global human genome variation is a 
product of numerous evolutionary processes, 
including population separation, mixing, 
migration, selective pressure, and genetic drift. 
84-86 Footprints conserved throughout the genomes 
of multiple groups provide evidence to support 
our understanding of health and disease.87,88 The 
Human Genome Diversity Project has recently 
made significant contributions to the development 
of a single nucleotide alteration database by 
identifying genetic differences between and within 
individuals of various ethnic groups worldwide. 
89-91 The likely heterogeneous genetic diversity 
of the Saudi population could be investigated to 
help develop early preventative and intervention 
techniques. This study compared the frequency 
distribution of the TLR4 +896 A/G polymorphism 
variant in the Saudi population with that of other 
populations worldwide.
 TLR4 detects bacterial LPS on the surface 
of gram-negative bacteria. Previous research 
has revealed a connection between TLR4 and 
bacterial-related phenotypes such as Crohn's 
disease, ascites, scrub typhus, and tuberculosis. 
92,93 Similarly, the rs4986790 SNP located in TLR4 
has been used to assess variable manifestations 
of disease.94,95 These results suggest that the 
rs4986790 SNP of the TLR4 gene modulates the 
antibacterial actions of TLR4 because genetic 
changes result in functional alterations.96,97 
 The present study involving the Saudi 
population revealed a 5.88% frequency of 
variant allele (G) of rs4986790. This frequency is 
substantially different from China, Japan, Korea, 
and Mexico. Differences in allele frequencies 
among separate datasets can affect the ultimate 
SNP effect because most SNPs are less penetrant, 
and diseases are polygenic in nature. A change 
in MAF of 0.02 will result in significant statistical 
changes in genetic association studies. Any 
change, even as small as <0.1, in a particular 
allelic prevalence will significantly influence 
the individual effect of one SNP in the case of 
interaction between two SNPs.98

 Variations in allelic frequencies in 
genetic association studies can be attributed to 

racial variance, demographic heterogeneity, and 
varying sample sizes. The TLR4 gene exhibits a 
wide range of patterns compared to other people 
worldwide.99 The varying incidence of these SNPs 
in various populations shows that different groups 
are differently affected by susceptibility factors. 
It is important to note that the genotype and 
allele frequencies examined in this analysis may 
not accurately represent all possible variants at a 
location. However, such investigations can inform 
the subsequent creation of epidemiological and 
clinical databases. Large data repositories have 
been created over the past ten years as a result of 
GWAS and genetic association studies.100 Multiple 
genetic association tests are required to identify 
important genes and/or their SNPs involved in 
the development of early disease prevention 
programs and treatments. However, before novel 
genetic biomarkers for application in gene-disease-
association research can be identified, a number 
of bottlenecks must be solved. These include 
statistical and computational trials as well as the 
repeatability factor.101

CONClUSiON 

 The TLR4 rs4986790 polymorphism 
variant allele in the Saudi population differs 
significantly from that of many other populations 
worldwide. These findings may help with 
population screening and evaluation of the 
relevance and propensity of MM. The evaluation 
of diseases may be aided by variations in the 
frequency distribution of important MM-related 
genes in healthy Saudi populations and other 
racial groups. Better management of the affected 
pediatric cohort in the Saudi population may 
result from the identification of susceptibility 
factors linked to individual susceptibility and 
predisposition to increased frequencies of support 
for artificial breathing, use of inotropic agents, skin 
grafting, and limb loss. To utilize this polymorphism 
as a biomarker, future large-scale research 
investigating gene-gene and gene-environment 
interactions is necessary.
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