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Abstract
Antimicrobial resistance is a serious public health concern across the world. Gram-negative resistance 
has propagated over the globe via various methods, the most challenging of which include extended-
spectrum β-lactamases, carbapenemases, and AmpC enzymes. Gram-negative bacterial infections are 
difficult to treat in critically extremely sick persons. Resistance to different antibiotic treatments nearly 
always lowers the probability of proper empirical coverage, sometimes resulting in severe outcomes. 
Multidrug resistance can be combated with varying degrees of success using a combination of older 
drugs with high toxicity levels and novel therapeutics. the current therapies for multidrug-resistant 
Gram-negative bacteria are discussed in this review, which includes innovative medications, older 
pharmaceuticals, creative combinations of the two, and therapeutic targets. 
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iNtRODuCtiON

 Resistance to antibiotics is a serious 
and complex phenomenon caused by a complex 
combination of direct and indirect impacts, such as 
antimicrobial misuse in humans and farm animals, 
spillover impacts, such as pollution and poor 
sanitation, and inherent bacteria features. Some 
researchers have identified previous antibiotic 
consumption, underlying illnesses, and invasive 
methods as the most common risk factors for 
resistance.1,2 Furthermore, the lifestyle factors that 
influence resistance distribution differ depending 
on where you live. Antibiotic resistance is more 
likely to spread in underdeveloped nations due to 
poor hygiene and a lack of clean water, as per WHO, 
but research in the United States (US) suggests that 
around one in every five infections conferring 
resistance is caused by contaminated food or 
livestock.3 Antibiotic overuse and abuse, including 
poor contamination management practices, have 
been identified as factors in Europe’s evolution of 
antimicrobial resistance. Antimicrobial resistance 
is a major problem to human health around the 
world.4 Resistance is more likely to spread in this 
area due to variables such as quickly developing 
and densely populated cities, rising income, and 
the resulting increase in large-scale procedures.5 
However, thorough information on the relative 
contributions of numerous elements to the overall 
worldwide problem of MDR diseases has yet to be 
completely clarified.6 As a result, based on various 
epidemiological and socioeconomic scenarios, it is 
necessary to address the diverse aspects of MDR 
diseases both globally and locally.6 Mechanisms 
restricting penetration of drugs into or enhancing 
drug elimination from bacteria, mutation-
selection of therapeutic targets, and enzymatic 
inactivation of medicines are some of the ways 
pathogens evolve antimicrobial resistance.7 
Antimicrobial resistance, for whatever cause, has 
already impaired our ability to treat infections, 
posing a danger to human health successfully. 
Carbapenem-resistant Gram-negative bacteria, like 
carbapenem-resistant Pseudomonas aeruginosa, 
carbapenem-resistant Enterobacterales, and 
Acinetobacter baumannii extensively drug-
resistant (XDR), are a global threat.8 This study 
looks at the current and future effects of MDR 

Negative bacteria infections, current and potential 
treatment choices, and other aspects of the active 
treatment of MDR Negative bacteria infections in 
hospitalized patients.

MethODS

 As the basis for the present narrative 
review, a literature search was performed in 
the MEDLINE / PubMed database using various 
combinations of pertinent keywords (e.g., “ICU,” 
“Gramnegative,” “therapy,” “management,” “novel 
antibiotics,” “novel drugs,” “Pseudomonas,” 
“Ac inetobacter,”  “K lebs ie l la ,”  “MDR”) . 
Subsequently, retrieved papers were discussed 
and further iterative searches were conducted. 
Ultimately, three main narrative chapters were 
organized as follows: (i) MDR Gram-negative 
infections’ current and prospective treatment; 
(ii) Approaches to treating MDR Gram-negative 
infections; (iii) Future therapeutic possibilities for 
MDR-gram-negative bacteria.

MDR Gram-negative infections’ Current and 
Prospective treatment
 Global and national organizations such 
as the European Centers for Disease Control 
and Prevention (ECDPC), the American Society 
for Infectious Diseases (IDSA), the World Health 
Organization (WHO), and the US Centers for 
Disease Control and Prevention (CDC), along 
with all MDRs, are the threats posed by gram-
negative bacteria 9. Three carbapenem-resistant 
A. baumannii, Enterobacterales, and P. aeruginosa 
are Gram-negative bacteria on the WHO’s 
priority concern resistant pathogens list for 
2016–17.10 Carbapenem-resistant enterobacterial 
infections accounted for 6.6 percent of the 
140,000 maximum severe healthcare-associated 
enterobacterial infections in the United States 
each year. In comparison, multidrug-resistant 
Acinetobacter infections accounted for 63 
percent of 12,000 infections and 13 percent of 
51,000 Pseudomonas infections, according to a 
2013 CDC report.11 Even though the frequency 
of carbapenem-resistant infections has remained 
steady, MDR continues to be recognized as a 
serious global concern, according to the 2019 
study. Pseudomonas aeruginosa infection has 
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the highest MDR infection rate in Europe, with 
carbapenem resistance reaching 63% in some 
countries in Southeastern Europe in 2017.11,12

 The frequency of carbapenem-resistant 
enterobacteria became extremely low (2.8 percent) 
in a 2016 study of 177 studies carried out in several 
Southeast Asian nations, with the occurrence 

of carbapenem-resistant P. aeruginosa and A. 
baumannii.2 The prevalence of all three resistant 
strains increased by 73.0% and 29.8%, respectively. 
According to the China Antimicrobial Surveillance 
Network, resistance to carbapenems become 
discovered in 10% of Enterobacterales traces 
and 71.4% of Acinetobacter spp., and 20-30% of 

Figure. Treatments for MDR Gram-negative bacterial infection.1,2,14
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P. aeruginosa traces were diagnosed in 2017.13 
Gram-negative MDR has the highest mortality 
rate in critically sick patients, and MDR is linked 
to MDR infection. Carbapenem resistance is rising 
in neutropenic patients, particularly Pseudomonas 
species, with deaths from carbapenem-resistant 
bloodstream infections (BSI) ranging from 33.3 
percent to 71.4 percent in neutropenic patients. 
Inappropriate empirical antibiotic medication 
was provided in 46.2 percent of instances of MDR 
Gram- terrible contamination in hematopoietic 
stem cell recipients.13

Approaches to treating MDR Gram-negative 
infections
 MDR Gram-negative infection poses 
the greatest risk to the critically sick, who 
frequently have numerous comorbidities. There 
are two methods for organizing and managing 
suggestions. Rather than specific MDR Gram-
negative bacteria, most MDR Gram-negative 
infection treatment guidelines focus on general 
clinical and epidemiological conditions. In 
addition, meaningful suggestions must account 
for local resistance patterns and the possibility 
of fast changes in recommendations. However, 
suggestions grouped by MDR agent, antibacterial 
agent, or disease can be found in published 
studies and reviews. Bassetti et al. developed an 
MDR pathogen-based therapeutic approach for 
severely unwell patients in the intensive care unit. 
The first recommendations based on preclinical 
and clinical studies and taking into account local 
resistance patterns are: For carbapenem-resistant 
Enterobacterales, meropenem/vaborbactam, 
ceftazidime/avibactam, aztreonam/avibactam, or 
cefiderocol, imipenem/relebactam, ceftolozane/
tazobactam for treatment of carbapenem-
resistant P. aeruginosa; and A. baumannii with 
cefiderocol. Peri et al. published a new study 
with recommendations for treating A. baumannii, 
P. aeruginosa  and carbapenem-resistant 
Enterobacterales (CRE)(Figure).14 In 2018, Hoki 
et al., Although the data were not organized by 
indication, did provide recommendations for the 
use of antibiotics. On the other hand, the 2020 
IDSA rules provide precise recommendations for 
several forms of MDR illness (Table).15,16

 Indeed, issues with better prices and 
a shortage of comparative records with earlier 

antibiotics prevent widespread use because 
comparative research has not been performed 
or has become similar research.17 Furthermore, 
antibiotic treatment must be delivered as soon 
as feasible in critically ill patients to be successful, 
and doing antibiotic susceptibility tests can cause 
delays.16 As a result, specific empirical treatment 
guidelines based on the kind of infection have 
been developed. Here are some of the riskiest 
MDR clinical scenarios: However, it is important 
to remember that regional patterns of epidemic 
resistance must be considered.
 The following paragraphs summarize 
the main properties of currently available drugs 
to treat the extreme form of MDR gram-negative 
infection in sick patients.

eravacycline
 Eravacycline (TP434) is synthesized by 
fluorocycline chemically identical to tigecycline 
and has just been approved by the European 
Medicines Agency (EMA) and FDA to treat cIAI.18 
Eravacycline was developed to circumvent several 
of the tetracycline resistance mechanisms. 
Most bacteria with tetracycline efflux channels, 
ribosome protection, and beta-lactamase are 
resistant to it.19 Except for Burkholderia cenopacia 
and P. aeruginosa, erabacycline is effective against 
Gram-negative, Gram-positive and anaerobic 
bacteria. It is also highly effective against CRAB 
and is more effective than any other drug studied 
in one in vitro study.20 Eravacycline has a high 
bioavailability (over 90%) after oral administration, 
good metabolic stability, and minimal risk of 
drug side effects. Eravacycline has been tested 
in three scientific studies at four levels for cIAI 
and cUTI, with mixed outcomes: good overall 
performance in cIAI but poor overall performance 
in cUTI. The IGNITE study compared intravenous 
erabacycline 1.0 mg/kg to ertapenem 1 g every 
12 hours in a controlled, twofold, quasi-trial.21 
Errabacycline had an 86.8% cure rate in the 
population, while ertapenem had an 87.6% cure 
rate, suggesting that errabacycline was not inferior 
to ertapenem. IGNITE 3 (NCT019783938) and 
(NCT03032510) studies compared erabacycline 
with ertapenem and levofloxacin for the diagnosis 
of cUTI.22 Erabacycline was not less effective in 
any of the studies, raising concerns about its 
potential penetration into the lower urinary 
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tract. Another phase 3 randomized trial (IGNITE 
4) compared erabacycline and meropenem 
to treat non-infectious IAI and showed that 
erabacycline demonstrated 88.9% and 100% 
microbiological responses against enterobacterial 
and acinetobacterial infections, respectively 
reported to be seen. In our view, erabacycline can 
be a crucial remedy alternative for sufferers with 
cIAI due to MDR gram-terrible micro organism 
inclusive of CRAB.23 In addition, excessive oral 
bioavailability (>90%) permits conversion from 
injectables to oral dosage forms.

Fosfomycin
 Fosfomycin is a phosphoenolpyruvate 
analog that prevents the peptidoglycan precursor 
UDP N-acetylmuramic acid from forming.24 
When there were few or no active options, its 
intravenous formulation was used to treat MDR-
gram-negative bacteria, sometimes combined 
with other medicines. In a quick RCT of ninety-four 
CRAB-inflamed sufferers handled with colistin 
plus fosfomycin compared to colistin alone, the 
mixture institution had a better microbiological 
reaction rate but no significant change in life 
expectancy.25 All-motive mortality inside 28 
days in a small pattern of forty-eight sufferers 
with multidrug-resistant Gram-terrible bacterial 
infections handled with fosfomycin (generally in 
mixture with tigecycline or colistin) at a dose of 8 
g every eight hours for 14 days turned into 37.5% 
people.26 Because of the lack of bigger trials and 
the apparent risk of quick resistance selection, we 
believe it is still recommended to use fosfomycin 
only in specific instances.24

Polymyxins
 Polymyxins are antimicrobial detergents 
that attack gram-negative bacteria’s outer 
membrane. Polymyxin B and Colistin (polymyxin 
E) can be used in humans.8,27 Over the beyond 
few years, it has been regularly used to deal with 
infections resulting from gram-terrible micro 
organisms that motivate MDR and has been one of 
the few (and from time to time only) dependable 
options for CRE CRPA and CRAB.28 They are one of 
the first-line remedy alternatives for CRAB infection 
(more effective drugs await). However, because 
of the potential polymyxin-related hazards of 

nephrotoxicity or inadequate concentrations, new 
agents should be used whenever feasible for CRE 
and CRPA illnesses (especially in the lung).29

 Furthermore, certain countries have 
documented signs of rising resistance (e.g., Italy 
and Greece). Consequently, the dosage and 
indications for polymyxin should be tailored 
to maximize efficacy while minimizing the 
development of polymyxin resistance. As a result, 
a recent international consensus declaration 
has been adopted to guide the correct use of 
polymyxin in all situations where polymyxin is still 
needed (e.g. CRAB infection, CRPA resistance to 
CRE, and novel BL/BLI).29

Aminoglycosides
 Bactericidal aminoglycosides block the 
bacterial S30 ribosomal subunit in a concentration-
dependent manner. They have been utilized a lot 
in recent years to treat carbapenem-resistant 
GNB, especially when it comes to polymyxin 
resistance.30 However, as with polymyxins, two 
problems prevent the powerful use of common 
aminoglycosides (e.g., amikacin, gentamicin, and 
tobramycin) to deal with infections as a result of 
gram-negative microorganism MDR: (i) can cause 
toxicity for the kidneys and reduce drug levels in 
the lungs; and (ii) increased resistance rate. On 
the other hand, plazomicin, a new aminoglycoside 
analog of sisomicin keeps balance towards many 
aminoglycoside-enhancing enzymes, on the 
other hand, has been shown to have a low rate 
of resistance in vitro.31 Although some NDM1-
generated CREs have been reported to have 
apparent resistance due to co-expression of 
plasmomycin-inactivated methyltransferase, they 
are in vitro activity appears to be superior to CRE 
over CRPA CRAB. The FDA approved plasmomycin 
as a treatment for complex urinary tract infection 
(cUTI) primarily based on the outcomes of a 
segment three EPIC study that plasmomycin is 
superior to meropenem. A small randomized trial 
showed that patients with severe CRE infection 
who received plasmomycin had a lower mortality 
rate than patients who received colistin plus 
tigecycline or meropenem (BSI). Plazomycin 
has recently been submitted to the European 
Medicines Agency (EMA) to treat UTIs and other 
serious infections.32
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tigecycline
 Because Pseudomonas aeruginosa is 
inherently resistant to tigecycline, and glycylcycline 
antibiotic that interacts with the subunit (30S) of 
the bacterial ribosome, CRE with CRAB is often 
more effective than CRE and CRPA.33 Tigecycline 
has been used with different tablets to treat severe 
CRE and CRAB infections, based on excellent in 
vitro effects and studies.34 It is well worth citing 
that, in step with an FDA caution primarily based 
on data obtained from controlled medical trials, 
tigecycline ought to be used with care withinside 
the remedy of ventilator-related pneumonia 
(VAP).35 It could purpose extra mortality than 
different regimens. Greater doses of tigecycline 
should be used to fulfill PK/PD targets while no 
different selections are available, and tigecycline 
is used to deal with pneumonia.36

Carbapenems
 Although it may seem contradictory, 
carbapenem has been used with other antibiotics 
to treat carbapenem-resistant MDRgram-negative 
bacteria (before the advent of the new BL/
BLI).37,38 This method was preferred because of 
its synergistic potential and aptitude to obtain 
appropriate carbapenem concentrations against 
some resistant bacteria at a slightly elevated 
carbapenem MIC. Large observational studies 
suggest that this method is ultimately more 
suitable for chronic CRE infection by KPC-producing 
strains. In contrast, a recent randomized trial 
showed no difference in survival with meropenem 
plus colistin compared to colistin alone in treating 
severe CRAB infection.27 In this context, in our 
opinion, the significant mortality observed in 
the study highlights the need for innovative anti-
CRAB drugs. There are only a few observations of 
carbapenem CRPA combinations so that no firm 
conclusions can be drawn.25

Piperacillin/tazobactam
 The piperacillin/tazobactam antibiotic is 
powerful in opposition to many Gram-negative 
bacteria, specifically Pseudomonas spp. It is one of 
the few antibiotics which could kill Pseudomonas 
spp.39 In ceftriaxone-resistant patients with E. coli 
or K. pneumoniae, the piperacillin/tazobactam 
combination did not show an increase in thirty-
day mortality compared to meropenem.40 In the 

ZEUS study, piperacillin/tazobactam was relatively 
least active in patients with UTI than fosfomycin. 
Though, it became mentioned that the former's 
dose in that test might also be inadequate.41 In 
many seriously unwell sufferers, the usual dosage 
of piperacillin/tazobactam (4.5 mg 3 instances a 
day) is inadequate to reap powerful bactericidal 
concentrations, and dose modifications can be 
indicated in sufferers with slight or intense renal 
impairment.

Ceftolozane/tazobactam
 Ceftolosan/tazobactam is likely the latest 
commercially available BL/BLI with the highest in 
vitro activity against CRPA; however, it is ineffective 
against CRE.42 The FDA and EMA have authorized 
ceftolozane/tazobactam to treat cUTI and cIAI 
based on the ASPECT-cUTI and ASPECT-cIAI studies. 
Currently, the most enticing use of ceftolosan/
tazobactam is to treat CRPA infections and side 
effects. Indeed, an increase in post-advertising 
and marketing observational data on the use of 
ceftolosan/tazobactam for CRPA infection supports 
this and highlights the lack of a more aggressive 
labeling option.43 Following the announcement 
of quasi-meropenem in the recent ASPECTNP 
trial (NCT02070757), ceftolosan/tazobactam 
may be licensed to HP and VAP in the future.44 
Finally, the use of ceftolosan/tazobactam has 
been proposed as a carbapenem-free alternative 
for contaminations triggered through extended-
spectrum beta-lactamase (ESBL)-producing 
Enterobacteriales, which may be beneficial in 
some cases until further clinical and economic 
evidence.

Cefoperazone/sulbactam
 Current data provided by representatives 
of the SENTRY antimicrobial monitoring program 
indicate that Ceoperazone/sulbactam is one 
of the most active drugs in vitro with in vitro 
activity against 91.6% of Enterobacteriaceae.45 
Susceptibility rates vary by area, with Western 
Europe having the highest rate at 94.4 percent 
and Eastern Europe having the lowest at 82.0 
percent. When cefoperazone/sulbactam was 
compared with tigecycline in ICT, tigecycline 
caused by carbapenem-resistant Acinetobacter 
baumannii had a substantially greater 28-day 
death rate.46 There were no statistically important 
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variations in the success rate (70.6 percent 
versus 73.9 percent, odds ratio 0.847, P = 0.761), 
sepsis-related death, or fourteen-day mortality 
in Enterobacterales-generating ESBL-induced ICT 
patients. Cefoperazone/sulbactam and treatment 
with carbapenem.47 Cefoperazone/sulbactam 
was not shown to be inferior to cefepime in the 
treatment of HP or medical-associated pneumonia, 
and a similar proportion of patients recovered 
after the study.48 Cefoperazone/sulbactam has 
been permitted in several European countries 
(Czech Republic, Bulgaria, Lithuania, Poland, 
Slovakia, and Italy) but not in the United States.48

Meropenem/vaborbactam
 Meropenem/vaborbactam is a new BL/
BLI with strong and specific action against CREs 
producing class A carbapenemase (eg KPC).49 
After FDA approval, the European Medicines 
Agency (EMA) has authorized meropenem/
vabobactam to treat cIAI, cUTI, VAP, hospital-
acquired pneumonia (HAP), and aerobic Gram-
negative infections in adult patients treatment 
choices.49 Meropenem/vabobactam was used 
instead of piperacillin/tazobactam in a dual, 
twofold TANGOI trial for acute urinary tract 
infections, including acute pyelonephritis.50 In 
an open-label TANGOII research, meropenem/
vaborbactam was contrasted to the best medicine 
available for CRE infection, which was prematurely 
due to the meropenem/vaborbactam.51 In most 
instances, patients who develop bacteremia, with 
scientific treatment costs of 65.6 percent in the 
meropenem/vaborbactam group (21/32), and 
33.3 percent in the comparator group (5/15).52 
In light of this, meropenem/vaborbactam is a 
unique and highly successful treatment for KPC-
producing CRE. It should be used with care, as 
with ceftazidime/avibactam, since resistance 
may develop (although possibly less frequently).53 
Consequently, we must carefully consider the 
unique properties and activity spectra of each 
of these two novel compounds for future CRE 
treatment algorithms to exploit the efficacy of CRE 
treatment in all situations while maintaining the 
efficacy of both drugs over time.

Ceftazidime/Avibactam
 Ceftazidime/avibactam is a newly 
approved BL-BLI grouping effective against 

carbapenemases, and some CRPA isolates produce 
CRE classes A (e.g., KPC) and D (e.g., OXA).42 
The European Medicines Agency and FDA have 
authorized ceftazidime/avibactam for cUTI, HAP, 
complex intra-abdominal infections (cIAI), and 
VAP.54 The European Medicines Agency (EMA) 
also authorized ceftazidime/avibactam for GNB 
infections in individuals with limited treatment 
options.55 Although randomized clinical trials 
demonstrated the efficacy of ceftazidime-
avibactam against ceftazidime-resistant isolates 
but not CRE, favorable observational studies 
support its activity against the latter. For example, 
104 sufferers with KPC-generating K. pneumoniae 
BSI who obtained ceftazidime-avibactam had a 
decreased 30-day mortality charge than a matched 
organization of 104 sufferers who obtained 
different medications (36.5 vs. 55.7 percent, 
respectively, p 0.005).56 As a result, ceftazidime/
avibactam is a substantial, effective, and broadly to 
be had remedy alternative for CRE; nevertheless, 
its use must be optimized following antimicrobial 
stewardship standards.57 There have already been 
reviews of ceftazidime/avibactam resistance 
because of blaKPC mutations.

Future therapeutic Possibilities for MDR-gram-
negative Bacteria
 For treating MDR- gram-negative bacteria 
infections, rifampin has shown a variable in 
vitro synergy when used with other drugs. In a 
randomized controlled trial, 210 patients with 
A. baumannii infection were randomly assigned 
to colistin or colistin plus rifampin to determine 
whether the addition of rifampin improved their 
microbiological response.58 However, the two 
arms had equal death rates. Aminomethylcycline 
Omadacycline is FDA-approved for treating 
community-acquired streptococcus pneumoniae 
and chronic skin-related diseases.59 Although 
efficacy has been demonstrated in vitro against 
some MDR gram-negative bacteria, therapeutic 
post-advertising and marketing evidence is 
desirable to evaluate whether this medicine will 
be included in future MDR gram-negative infection 
treatment algorithms.60

 In this part, we will talk about novel 
medicines that are in the last stages of development 
against MDR Gram-negative infections. Examples 
of future clinical evidence that may guide antibiotic 
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selection for treating Gram-negative MDR infection 
in critically sick patients.

Murepavadin
 Murepavadine (POL7080) is a peptide-
protein derivative that targets antibiotics 
and belongs to the outer membrane protein 
family (OMPTA).61 It works by targeting the 
lipopolysaccharide transport protein D (LptD), 
implicated in lipopolysaccharide production in 
Pseudomonas aeruginosa’s outer membrane.62 
So, Murepavadin is particularly effective against 
P. aeruginosa, but has little effect on the normal 
intestinal flora or selection of resistance of other 
bacteria. It is effective against P. aeruginosa, 
particularly colistin-resistant, carbapenemase-
producing, pan-resistant isolates, drug-resistant, 
and other Pseudomonas species in vitro, and 
not against quasi Gram-negative pathogens 
or Enterobacteriaceae.63 The medicine has 
broad tissue spreading, progressive and dose-
proportional pharmacokinetics, and an elimination 
half-life of 2-5 hours. Murepavadin was given to 
25 individuals with proven P. aeruginosa VAP in 
an open phase 2 study (NCT02096328). Clinical 
treatment was obtained in 91% of patients with 
established P. aeruginosa VAPs (nine had MDR or 
a highly drug-resistant infection), and the 28-day 
all-cause death rate was just 8%, significantly 
below the projected mortality rate of 20-40%.64 
There were no signs of development of resistance 
to murepavadine during the study period. In the 
PRISMUDR study (NCT03582007), murepavadine 
and one antibiotic were compared with two 
antibiotics in the VAP, and in the PRIMSMDR 
trial (NCT03582007), murepavadine and one 
antibiotic in the VAP0960 were compared with two 
antibiotics in the VAP0960. (NCT3) was compared.2

 In conclusion, if the positive results from 
the phase 2 trial are repeated in the phase 3 trial, 
murepavadine may be a useful adjuvant to other 
antibiotics in both conventional and targeted 
treatment of P. aeruginosa infection in patients 
with high-risk features. There is an obvious need 
for efficacy evidence for additional infections, such 
as bloodstream infections, cUTI, or cIAI.

Cefiderocol
 Cefiderocol is an antimicrobial containing 
a catechin fragment at the 3rd position of the 

side chain that chelates unbound iron and offers 
new medications with a new mode of action.65 
Bacterial iron transporters that bind to ferric 
iron and enhance its activity in response to acute 
infection actively carry the side chains of catechols 
through the outer membrane. Cefiderocol is 
also a good carbapenemase enzyme inhibitor. 
Cefiderocol is particularly effective against the 
gram-negative bacteria that produce KPC and VIM, 
P. aeruginosa that produces Stenotrophomonas 
maltophilia, MBL, and Acinetobacter baumannii 
OXA-lactamase.66

 A phase 2, multicenter, double-blind 
study compared cepiderochol (2 g every 24 hours) 
to imipenem/cilastatin (1 g every eight hours) 
to treat UTIs. In the treatment trial, 183/251 
(73%) of patients treated with cepiderochol 
and 65/118 (55%) of patients treated with 
imipenem cilastatin achieved primary goals of 
clinical treatment and microbiological eradication 
(weighted difference of 18.6%, 95% confidence 
interval 8.2–28.9).67 Cefiderocol has also been 
shown to be safe and well-tolerated. Only 5 (2%) 
discontinued cepiderochol since of C. difficile, 
anaphylaxis, elevated liver enzymes, or diarrhea. 
Cefiderochol is also being studied in two further 
phase 3 clinical studies for hospital-acquired 
influenza and severe carbapenem-resistant Gram-
negative bacteria infections.67 In the APEKSNP 
study (NCT03032380), all-cause death in adult 
Gram-negative HP/VAP patients treated with 
cepiderochol and meropenem was compared 
(combined with linezolid). In June of 2019, the 
inquiry is scheduled to be concluded. Another 
randomised, open-label section three research 
(CREDIBLECR, NCT02714595) started in 2017 to 
offer proof of cefiderocol's efficacy in sufferers with 
carbapenem-resistant GNB infections (healthcare-
related pneumonia [HCAP], cUTI, VAP, HAP, and 
BSI).68 Cefiderocol is as compared to the quality to 
be had the remedy for carbapenem-resistant GNB, 
which incorporates up to a few antibacterial sellers 
and is both polymyxin-primarily based totally or 
non-polymyxin-primarily based.69 Despite the 
absence of clear findings from phase 3 studies, 
we think Cefiderocol is among the most potential 
future therapy choices for carbapenem-resistant 
Gram-negative MDR bacteria such CRPA, CRE, and 
CRAB infections.



  www.microbiologyjournal.org1584Journal of Pure and Applied Microbiology

Sharma et al. | J Pure Appl Microbiol. 2022;16(3):1575-1589. https://doi.org/10.22207/JPAM.16.3.65

Aztreonam/Avibactam
 Since 1986, aztreonam has been the 
only monobactam antimicrobial licensed to treat 
gram-negative infections. Ambler class A (KPC 
and ESBL) and class C (eg AmpC) beta-lactamases 
hydrolyze them, rendering them worthless against 
MBL-producing bacteria.66 Consequently, the 
arrangement of aztreonam and avibactam can 
prevent cell wall formation by MBL-producing 
bacteria, even when other beta-lactamases 
or carbapenemases are coexistent. In vitro, 
aztreonam/avibactam is 10-fold more active than 
aztreonam alone against ESBL, lactamase class, 
MBL, and KPC-producing bacteria. Nevertheless, 
it showed moderate activity against P. aeruginosa 
and A. baumannii compared to aztreonam alone.66

 A phase III clinical trial is now underway 
to relate aztreonam/avibactam to meropenem to 
treat Gram-negative bacteria-caused VAP, HAP, and 
cIAI, for whom therapeutic options are limited or 
non-existent (NCT03329092).70 Alternative phase 3 
study is initiated to investigate the safety, efficacy, 
and permissibility of aztreonam/avibactam in 
treating severe contaminations triggered by 
MBL-producing gram-negative bacteria (cIAI, 
cUTI, HAP, NP, BSI) (NCT03580044).71 Aztreonam/
avibactam may be a potential therapy option for 
MBL-producing bacteria infections.
 Cefepime/zidebactam Cefepime/
zidebactam combines a broad-spectrum antibiotic 
and diazabicyclooctane (DBO) zidebactam, a 
second-generation BLI. In vitro, zidebactam was 
more effective against class C blatamase than 
abibactam or relebactam.72 When available, 
Cefepime/zidebactam may become an essential 
antimicrobial agent in the combat against gram-
negative MDR infection. Tolerability, safety, 
and pharmacokinetic study of the intravenous 
administrat ion of  cefepime/zidebactam 
(NCT02707107) in healthy volunteers were 
performed.73

Meropenem/nacubactam
 Nacubactam is every other DBO BLI. 
When used with meropenem, it has validated 
in vivo efficacy against multidrug-resistant K. 
pneumoniae, P. aeruginosa, and E. coli.74 A recent 
study looked at the intrapulmonary absorption 
of nacubactam and meropenem in fit people 
(NCT03182504).75

Cefepime/enmetazobactam
 C e f e p i m e / e n m e t a z o b a c t a m  i s 
another promising therapy for β-Lactamase 
Enterobacterales. When used against ESBL-
producing bacteria, enmetazobactam has been 
demonstrated to restore cefepime and piperacillin 
activity more efficiently than tazobactam.76 
Cefepime/enmetazobactam was as effective in 
vitro against the same ESBL-producing bacteria as 
meropenem and imipenem.77

Major Factors to Consider in the Future therapy 
of Diseases that are Resistant to Antibiotics
 Antimicrobial prudence programs, 
improved surveillance and infection control 
programs indicate significant and recommending 
practices, reduced use of antimicrobials in 
agriculture, the establishment of innovative 
antimicrobials, prudent antimicrobial use program, 
more inclusive availability of drugs, and enhanced 
antimicrobial use prudence programs are all part 
of future antimicrobial resistance management 
programs. Although this is a lengthy and tough list, 
following these guidelines is crucial for worldwide 
antibiotic resistance reduction.58

 The advent of new diagnostic techniques 
is one of the most significant projected 
advancements in treating antibiotic-resistant 
diseases. Although empirical therapy contributes 
to antibiotic overuse and resistance, it is still the 
most extensively utilized approach. Antibiotic 
sensitivity testing using traditional growth-based 
techniques is time-consuming and requires 
clean cultures. Meanwhile, the crude material 
can be used in new diagnostic procedures using 
nucleic acid amplification and immunodiagnostic 
methods.59 These methods promise to enable 
quick diagnostic and antibiotic susceptibility 
testing at the service point. This is predicted to 
shorten treatment times and allow for a change 
to evidence-based treatment, reducing antibiotic 
overuse and the spread of antibiotic resistance. 
Obviating the need to filter and develop cultures 
may also lower the total cost of therapy.59

 Infection specialists should initiate 
antibiotic management programs, including 
communication between the management 
team and crucial maintenance physicians and 
treatment algorithms for antibiotic medicating and 
classification. Optimal evidence-based culture and 
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sensation. Because of the continuous high use of 
carbapenems and the constant rise in carbapenem 
resistance must be used appropriately, especially 
in hospitals.78 The World Health Organization’s 
pathogen priority list provides a framework 
for researching novel antimicrobial drugs and 
combinations of new and older medicines, such 
as those listed below.60 While many progressive 
medicines display excessive interest ranges in 
vitro, they may no longer be prepared for medical 
use, and getting them to the approved degree 
takes time. Conducting randomized managed 
research with the specified wide variety of 
sufferers on time is not always feasible because 
of the few positive MDR diseases. New agents, 
in particular, must be compared to established 
agents to determine their function in treatment 
algorithms. Newer compounds may be even more 
efficient and well-tolerated, and they’re much 
more expensive. Expenses can be decreased by 
employing de-escalation procedures as needed, 
and these variables should be addressed in any 
AMS program. Financial incentives funded by 
the government are also required to stimulate 
the development of innovative antimicrobial 
drugs that might aid in the fight against MDR 
infections.79 Reimbursement must consider the 
particular characteristics of emerging antibiotic 
therapies to promote market acceptance and give 
pharmaceutical development incentives for these 
medications.79

 Geographical differences in resistance 
underscore the importance of tailoring empirical 
treatment to regional epidemiology, patient risk 
assessment, and regional management measures. 
Quick diagnoses, carefully tailored treatments, 
and, where feasible, early de-escalation from 
broadspectrum medications are all important in 
guiding management.

CONCluSiON

 Researchers may continue to investigate 
novel antimicrobials and combinations of 
prospective and updated medications to limit 
the spread of Gram-negative MDR infection using 
the WHO Shortlist of diseases as an incentive and 
guideline. The success of new antimicrobials will 
depend on the efforts of governments around 
the world to support research and development, 

comprehensive programs for the rational use 
of antimicrobials, and accurate data on local 
resistance. In the future, treating severe Gram-
negative MDR infection in critically ill patients 
will require professional and complex clinical 
judgment, considering the target population 
and appropriate empirical coverage and the 
increasingly specific need for new antimicrobial 
activity on the enzyme level.
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