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Abstract
Proteus mirabilis is a specific opportunistic pathogen of many infections including urinary tract infections 
(Utis). Risk factors are linked with the acquisition of multidrug-resistant (MDR) to 3 or more classes 
of antimicrobials) strains. the resistance in extended-spectrum alpha-lactamase is rare, but the rising 
resistance in extended-spectrum beta-lactamase (eSBl) producing strains is a matter of concern. 
β-lactamases and antibiotic modifying enzymes mainly constitute the eSBls resistance mechanism by 
hydrolyzing the antibiotics. Mutation or Porin loss could lead to the reduced permeability of antibiotics, 
enhanced efflux pump activity hindering the antibiotic access to the target site, antibiotic failure to 
bind at the target site because of the target modification, and lipopolysaccharide mutation causing the 
resistance against polymyxin antibiotics. this review aimed to explore various antimicrobial resistance 
mechanisms in Proteus mirabilis and their impact on public health status.
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iNtRODUCtiON

 Proteus  mirab i l i s ,  be long ing  to 
the class Gammaproteobacteria and family 
Enterobacteriaceae, is a well-known rod-shaped 
Gram-negative bacteria that swarm across the 
agar plates to form characteristic bullseye-
shaped motility.1 P. mirabilis strains representing 
18 different species have been isolated from 
various geographical locations.2 P. mirabilis is 
found in multiple environments such as sewage, 
soil, water, and especially in the gastrointestinal 
tract of animals and humans.3 The patients 
having long-term indwelling catheters or 
complicated UTIs also suffer from the infection 
of this opportunistic pathogen.4 Several human 
infections are associated with this bacterium 
such as infections of the gastrointestinal tract, 
wounds, eyes, and UTIs especially catheter-
associated urinary tract infections (CAUTI).5 
Renal damage and the formation of kidney and 
bladder stones (urolithiasis) further complicate 
the P. mirabilis related UTIs and CAUTIs.6 In the 
urinary tract, P. mirabilis mainly forms two types 
of crystals including apatite and struvite (CaPO4 
and MgNH3PO4), which prevent urine flow.7 
The symptoms of P. mirabilis infections such 
as bacteriuria, acute pyelonephritis, catheter 
occlusion, and fever could further complicate 
into bacteremia and sepsis.8 CAUTI is quite 
common in nursing homes whereas bacteremia 
mostly occurs following CAUTI or UTI. P. mirabilis 
associated sepsis and bacteremia comparatively 
lead to a higher mortality rate than other 
infections.9,10  
 Antibiotics resistance exhibited in 48% 
P. mirabilis strains complicates the treatment of 
infections.11 The resistant strains are rising sharply 
and current therapies are becoming unable to 
cope with the situation. This scenario demands 
the urgent development of new antibiotic targets. 
Uropathogenic P. mirabilis might also be resistant to 
extended-spectrum beta-lactams, cephalosporins, 
fluoroquinolones, and aminoglycosides.11 P. 
mirabilis acquire genes encoding antimicrobial 
resistance via transferable plasmids, insertion 
sequences, transposons and integrons. Of these 
mobile genetic materials, integrons, which are not 
considered as transferable element, but are usually 
located on mobile plasmids, and play an important 

role in facilitating the horizontal gene transfer 
process of cassettes carrying resistance genes, 
i.e., integrons help incorporate gene cassettes 
encoding resistance to β-lactams, aminoglycoside 
and also plasmid-mediates quinolones resistance 
genes into recipient P. mirabilis cells (Figure 
1).11 Integrons contain an integrase gene, attI 
(recombination site), and a promoter PC for the 
captured genes’ transcription.12 Integrons link 
with the mobile DNA elements (plasmids and 
transposons) to spread resistance determinants. 
The integrase gene sequence revealed five 
classes of integrons connected with resistance 
determinants.13 Integrons belonging to class 
1 are mainly associated with MDR.14 Several 
antibiotic resistance determinants are present in 
Enterobacteriaceae strains, which are mediated by 
the integrons. Plasmid-mediated beta-lactamases 
gene coding and PMQR (quinolone resistance 
determinants) are complex integrons, which 
include ISCR1 and resistance genes through the 
duplication of the 3′ conserved region in addition 
to the variable part between 5′ and 3′ covered 
regions.15

Antibiotic resistance mechanisms in Proteus 
mirabilis
Resistance to fluoroquinolones
 Fluoroquinolones are commonly used 
antibiotics in Western Europe, North America, and 
Japan to treat a broad range of infections including 
UTIs.16 European Antimicrobial Resistance 
Monitoring Network has reported significantly 
increased resistance to fluoroquinolones in Europe 
since 2001.17 Different fluoroquinolones resistance 
mechanisms have been identified including target 
enzyme modification in parC and parE encoded 
topoisomerase IV, gyrA and gyrB encoded DNA 
gyrase, and changes in the outer membrane to 
reduce drug accumulation through efflux pumps.18 
Gram-negative organisms primarily target DNA 
gyrase whereas Gram-positive organisms target 
topoisomerase IV.19 gyrA is the essential target of 
fluoroquinolones in several Enterobacteriaceae 
species and its mutation is associated with 
fluoroquinolones resistance.20 Further mutations 
in DNA gyrase and topoisomerase IV cause 
higher resistance to fluoroquinolones.21 DNA 
sequence analyses have revealed the genetic 
characterization of mutations in clinical isolates. 
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Quinolone resistance determining regions (QRDRs) 
have been reported to be extremely conserved.20 
QRDRs linked with P. mirabilis resistance to 
fluoroquinolones exhibit substitutions in parC 
(S80) and gyrA (S83) whereas gyrB (S464) mutation 
could result in further higher fluoroquinolones 
resistance.22 QRDRs' role in P. mirabilis resistance 
to fluoroquinolones is not well understood, which 
requires more data to elaborate its resistance 
mechanism. Levofloxacin-resistant P. mirabilis has 

been studied to investigate the fluoroquinolone 
resistance mechanism. The results depicted that 
parE (D420) and gyrA (E87) mutations are crucial 
for a higher resistance in P. mirabilis clinical 
isolates, which links ParE QRDRs and resistance 
to fluoroquinolones.18 Different spectroscopic 
techniques have been employed to identify 
new ciprofloxacin derivatives (hydroxamic acid, 
amide, and hydrazide) in addition to levofloxacin 
analogues. Some of these compounds exhibited 

Figure 1. Schematic diagram illustrating the role of integron in drug resistance acquisition in Proteus mirabilis

Figure 2. Schematic overview of resistance mechanisms to fluoroquinolones in Proteus mirabilis
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significant efficacy against urease splitting P. 
mirabilis.23 Similar to the GyrA gene, the role of 
the ParC gene in ciprofloxacin resistance is also 
important. A couple of mutations in P. mirabilis 
GyrA and ParC genes could cause resistance 
to ciprofloxacin. Moreover, the percentage of 
quinolones resistance should be considered while 
aiming for other medical options. Therefore, drug 
susceptibility testing should be conducted for 
all patients with comparable infections before 
starting a specific medicine.24

 The mutations in target enzymes (GyrB 
(Ser-464) and ParC (Ser-80) codons) and AcrAB 
efflux pump were investigated in relation to P. 
mirabilis resistance against fluoroquinolones. 
However, any relationship between mutation 
numbers in ParC, GyrA, and GyrB genes and the 
degree of P. mirabilis resistance to fluoroquinolone 
was not observed. The role of efflux pumps in 
fluoroquinolones resistance has been estimated by 
measuring the minimum inhibitory concentrations 
(MICs) through an efflux pump inhibitor CCCP. 
The CCCP (12.5 mM) was integrated with Mueller 

Hinton agar. Fifty isolates with uninfluenced 
fluoroquinolones susceptibility in response to 
CCCP were selected from a total of 100 isolates 
and characterized in terms of MICs and genotype 
for Levofloxacin (Figure 2).18

Resistance to tetracyclines
 Several Gram-positive and Gram-negative 
bacterial infections are treated with tetracycline 
antibiotics but high tetracycline resistance rates 
in Enterobacteriaceae have been reported.25 
Tetracycline resistance is presumed to be related to 
the efflux mechanism. The efflux resistance genes 
are often associated with the mobile elements 
such as the class A tetracycline resistance (tet) 
determinant that was the first to be identified 
from the RP1/Tn1721 system.26 Tigecycline 
(9-t-butylglycylamido derivative of minocycline) 
belongs to the novel class of tetracyclines that is 
used to treat Gram-negative bacteria.27 Klebsiella 
pneumoniae was the first tigecycline-resistant 
strain of Enterobacteriaceae with rpsJ mutation 
encoding Val57Leu on S10.28 Enterobacteriaceae 

Figure 3. Illustrative diagram of resistance mechanisms to β-lactams and cephalosporins exhibited by Proteus 
mirabilis
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tetracycline resistance is mostly considered to be 
linked with tet (A) to tet (E) gene determinants.29 
P. mirabilis possesses a natural resistance against 
tetracycline that could be the main reason for its 
rising tolerance.30 The rise in acquired resistance 
of Enterobacteriaceae demands the development 
of new antibiotics to effectively treat bacterial 
infections.
 AcrAB efflux pump, which is a member 
of the resistance-nodulation-division (RND) 
superfamily is found in Enterobacteriaceae. This 
efflux pump has been reported to be involved 
in P. mirabilis resistance to tigecycline.31 AcrAB 
provides intrinsic resistance to several structurally 
diverse lipophilic compounds, antibiotics, dyes, 
and inclusive detergents.32 P. mirabilis is a notable 
exemption to tigecycline activity, which normally 
exhibits 4 µg/ml MICs in tests. A typical clinical 
isolate was selected to identify the mechanism of 
decreased tigecycline sensitivity. Two independent 
transposon insertion mutants were isolated and 
inserted into the P. mirabilis chromosome. The 
results revealed a correlation between AcrRAB 
gene expression and observed MIC changes 
in various P. mirabilis strains. The classical 
tetracycline resistance determinants could not 
affect the tigecycline, however, AcrAB efflux pump 
identification in P. mirabilis explained its decreased 
susceptibility to tigecycline. Fortunately, the study 

did not report a direct threat of spreading tigecycline 
resistance.33 Nontoxic carbon nanoparticles could 
inhibit Gram-negative bacterial growth when 
integrated with tetracycline. This combination 
has generated tenfold higher activities against 
tetracycline-resistant bacteria as compared to 
solely tetracycline. The tetracycline-conjugated 
carbon nanoparticles could inhibit the efflux 
mechanism of bacteria. Tetracycline is supposed 
to direct nanoparticles into efflux pumps to block 
and inhibit their normal functioning. Qin et al.34 
have conducted a study to acquire tigecycline, 
tetracycline, and colistin-resistant P. mirabilis 
for NDM-1 Plasmid and further characterized 
PM58 isolate. Molecular investigation elaborated 
that the PM58 chromosome contains a novel 
Salmonella genomic island 1 and conjugative 
NDM-1 plasmid.34,35

Resistance to β-lactams
 Lactamase genes are absent on the P. 
mirabilis chromosome whereas β-lactamase 
production includes AmpC β-lactamases and 
broad-spectrum β-lactamases.36 Gene cassette 
sequence analysis could not relate the resistance 
patterns and gene cassette content. The resistance 
patterns to beta-lactam antibiotics were more 
diverse than depicted by integrin-embedded 
cassettes. Gene screening revealed the presence 

Figure 4. Schematic overview showing aminoglycosides resistance mechanisms in Proteus mirabilis
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of blaTEM genes in both genomes. blaTEM-2 encoding 
beta-lactamases are effective against early 
cephalosporins and penicillin. Thus, they could 
not be attributed to ESBL phenotype. Ye et 
al.37 have reported the involvement of another 
enzyme in ESBL-positive strains. P. mirabilis is 
known to possess CMY-2-like AmpC β-lactamases 
encoding genes, which facilitate to resist against 
cephamycins and cephalosporins. blaCMY sequence 
has been reported to conform with P. mirabilis 
blaCMY-15.
 Ahn et al.38 have reported chromosome-
borne genes coding for MY-15 in P. mirabilis strains 
in Poland. Colistin serves as a last-resort drug 
against MDR Gram-negative bacterial infections. 
P. mirabilis is naturally resistant to colistin due to 
the presence of the mcr genes, which are mediated 
by the plasmid. This bacterium can transmit these 
genes to other bacteria, which are susceptible to 
colistin.39 ESBL enzyme production confirms the 
wide-spectrum β-lactam antibiotic resistance. 
However, the presence of these genes does not 
necessarily generate phenotypical aspects of 
ESBLs as reported in several studies.40 Initially, 
the CTX-M gene appears in combination with the 
TEM gene but as the predominant gene spreads it 
replaces others. The selective pressure posed by 
the antibiotics misuse might provide a favorable 
environment for the diffusion of ESBLs among 
Enterobacteriaceae (Figure 3).41

Resistance to cephalosporins
 Cephalosporins are widely prescribed to 
treat respiratory, abdominal, and urinary infections. 
Such broad-scale utilization leads to significant 
selection pressure on Enterobacteriaceae members 
for resistance. Cephalosporins resistance is either 
associated with the higher chromosomal ‘AmpC’ 
b-lactamases production in Enterobacter spp. or 
transferable ESBLs.42 During a study in China, 2288 
clinical isolates (non-repetitive) were collected 
from five laboratories in four cities to establish 
cefoselis epidemiological cut-off values (ECOFFs). 
Disc diffusion and broth micro-dilution methods 
based on European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) guidelines were 
followed to determine MICs of Cefoselis and 
diameters of isolates inhibition zones. MIC ECOFFs 
were estimated through visual assessment and 

ECOF Finder software. Distributed cefoselis MICs 
ranged between 0.008 to >256 mg/L whereas MIC 
ECOFFs value was noted as 0.125 mg/L. P. mirabilis 
zone diameter ECOFF was observed as 26 mm.43 
blaCTX, blaOXA-1, tetA, blaCTX-M, and sul1 genes were 
encoded for cephalosporins-resistance.44, 45 
 P. mirabilis isolates exhibited significant 
resistance (57.1%) to Cephalosporins (ceftazidime 
and cefotaxime).45 P. mirabilis strains are not 
frequently found in pneumonia patients but 
they can cause airborne acute infection of the 
lower airways (pneumonia) or infections that are 
transferred through the bloodstream from one 
body part to others.46 Cefepime, an antimicrobial 
agent that is administered to treat pneumonia 
patients, was found to be the most effective 
among six antibiotics used against severe Gram-
negative bacterial infections.47 Several studies have 
confirmed the clinical efficacy of cefepime against 
drug-resistant organisms.48 However, the efficacy 
of ceftazidime has reduced over the past decade 
because of the extraordinary rise in microbial 
resistance.49 Cefotaxime is used against both types 
of bacteria (Gram-positive and Gram-negative) 
but P. mirabilis resistance to cefotaxime has been 
reported.50 Cefuroxime was found to display better 
efficiency against rod-shaped Gram-negative 
bacteria than cephalosporins (first-generation).51 
have concluded that carbapenemase genes were 
not involved in the development of resistance in 
cephalosporin-resistant strains. The mutations 
in porin and protein of the outer membrane 
leading to low antibiotic permeability might have 
contributed to the resistance of cephalosporin-
resistant strains.52 ESBL confirmatory tests 
revealed that 15 out of 50 cephalosporin-
resistant Enterobacteriaceae were ESBL negative 
depicting that these strains might have acquired 
cephalosporin resistance via other mechanisms.53 
The fosA gene mediated by plasmid could be 
transferred amidst Enterobacteriaceae species 
and fosA3 has been reported in 90% of E. coli 
isolates, which produces ESBL to resist fosfomycin 
(FOM).54,55 parC, gyrA, and fosA3 mutations 
might induce resistance to quinolone and further 
lead to high cross-resistance against fosfomycin 
(FOM), levofloxacin (LVX), and cephalosporin in 
UTI-causing bacteria. Ishii et al.56 have reported 
considerable gyrA and parC mutations based cross 
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resistance of UTI causing bacteria to levofloxacin 
whereas the presence of fosA3 was linked to 
fosfomycin resistance. (Figure 3).56

Resistance to aminoglycosides
 Broad-spectrum aminoglycosides 
antibiotics are primarily produced through 
Actinomyces species to treat Gram-negative 
and Gram-positive bacteria.57 Aminoglycosides 
have served as successful antibiotics but the 
resistance and toxicity aspects have hindered 
their application.58 However, they can still 
be efficiently used to counter MDR bacterial 
species.57 Mechanisms of aminoglycoside 
resistance and aminoglycoside-modifying 
enzymes (AMEs) have been detected frequently 
in bacteria.59 AMEs initiate resistance by changing 
aminoglycoside molecules at specific positions. 
Based on the modifications, these enzymes are 
known as aminoglycoside acetyltransferases 
( A A C s ) ,  p h o s p h o t ra n s fe ra s e s  ( A P H s ) , 
nucleotidyltransferases, and adenyltransferases 
(ANTs).60 The mobile agents such as plasmids, 
integrons, or transposons carry the AME coding 
genes, which often integrate with other resistance 
mechanisms.57 Recently, 16S ribosomal RNA 
(rRNA) methyltransferases have been used to 
code the aminoglycoside-resistance mechanism as 
these enzymes contain an aminoglycoside linking 
site in the ribosome to produce higher resistance 
against all clinically available aminoglycosides.61 
Sometimes, the isolates already containing 
β-lactamases or Metallo-β-Lactamase (MBLs) 
carry 16S rRNA methyltransferases encoding 
genes.62 Alteration of membrane protein and 
ribosome, and raised efflux could be the other 
mechanisms of aminoglycoside resistance. 
However, these mechanisms are less spread as 
compared to AMEs.63 Plazomicin aminoglycoside 
(semi-synthetic) is obtained from sisomicin. The 
modifications in the plazomicin molecule structure 
make it resistant to AMEs-based alterations.64

 Carbapenems are highly effective 
antimicrobial agents to cure hospital-acquired 
infections (HAIs). However, the development of 
carbapenemases (GES, VIM, KPC, IMP, OXA-48, and 
NDM) based resistance has limited their utility.65 
Carbapenemases encoding genes are commonly 
found in plasmids and they might also contain 
AMEs encoding genes.66 AMEs-based enzymatic 

inefficiency is common aminoglycosides resistance 
mechanism followed by 16S rRNA methylation 
that also imparts significantly higher resistance 
against gentamicin, tobramycin, and amikacin.67 
The studies have reported multiple isolates 
harbouring blaKPC-2, blaNDM-1, and AMEs encoding 
genes. The literature depicts the Klebesiella 
pneumoniae carbapenemase (KPC) insistence 
over the years that led to the emergence of a new 
carbapenemase known as NDM. The relationship 
of blaKPc-2 and blaNDM-1 genes and their association 
with AME genes in P. mirabilis isolates has been 
described (Figure 4). This association demonstrates 
a fast P. mirabilis evolution to obtain and preserve 
different genes, which urgently require further in-
depth elaboration.68

Status of Proteus mirabilis resistance to various 
antimicrobial agents
 The first report of ESBL-based resistance 
in Proteus species emerged in 1987.69 P. mirabilis 
isolates capable of producing ESBL are now more 
frequently detected in clinical settings. A study 
in France (1988 to 1990) revealed the presence 
of only 0.8% ESBL producing P. mirabilis strains, 
which has increased up to 6.9% and 9.5% in France 
and the USA, respectively.70-72 The isolation of 
ESBL-producing P. mirabilis strains reached 8.8% 
during 1997–1999.73 An Italian survey in 1999 
ranked P. mirabilis as the second-highest ESBL 
producer in Enterobacteriaceae.74 In France, urine 
samples of 3340 patients were found positive for 
P. mirabilis from 1997 to 2002 whereas 45 (1.3%) 
patients were infected with extended-spectrum 
b-lactamases producing P. mirabilis.75 In Japan, 
45.6% of the P. mirabilis strains were found to 
produce ESBL during 2009-2010.76 European 
Committee on Antimicrobial Susceptibility 
Testing revealed that74% of isolates were 
resistant to penicillin in 2010 whereas 1.23% of P. 
mirabilis strains were resistant to third-generation 
cephalosporins.77,78 In 2019, 8.4% of P. mirabilis 
isolates were noted to be resistant to various 
antibiotics such as ciprofloxacin, amoxicillin, 
gentamicin, amoxicillin/clavulanic acid, and 
cefotaxime. 28.6% of these isolates possessed 
ESBL genotype (blaCTX-M-2) whereas 71.4% had 
AmpC/ESBL genotype (blaCMY-2/blaTEM-1).

79 Recently 
(i.e. 2020), 37% of strains produced ESBLs and all 
ESBLs-producing isolates contained blaTEM. These 
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isolates were susceptible to cefotaxime/clavulanic, 
cefoxitin, and imipenem.80

 Levofloxacine (LVX) resistance average 
has gradually increased between 2000 and 
2005 and a continuous high prevalence (17.5%) 
has been reported in Europe and Japan since 
2004.81,82 Similarly, a high spreading rate (37.0%) 
of cefotaxime (CTX)-resistant P. mirabilis strain 
was also noted in 2004. The rise in CTX-resistant 
P. mirabilis up to 45.6% is comparable to that 
reported in Japan between 2009 and 2010,76 
whereas the spread of FQ-resistant P. mirabilis 
strain increased to 17.5% in Japan.18 In 2014, 
the ciprofloxacin resistance in uncomplicated 
UTIs in some European countries was reported 
as Germany (20.3%), France (4.8%), Sweden 
(7.3%), Spain (30.8%), and the UK (15.3%).83 
P. mirabilis resistance rate against a novel 
antimicrobial agent glycylcycline reached up to 
13% in Germany in 201647,51 whereas P. mirabilis 
resistance to imipenem (3.6%) and meropenem 
(4%) has also been reported in Iran.84 Similarly, 
decreased efficacy of imipenem (61.5%, 90.9) 
and ceftazidime-avibactam (72.7%, 93.8%) has 
been noticed in Canada for ESBL as compared 
to non-ESBL-producing Enterobacteriaceae in 
2015. The situation has led to the lower response 
of complicated UTI patients to imipenem and 
ceftazidime-avibactam.85

CONClUSiON

Problems and Future Concerns
 The ability of Proteus mirabilis to colonize 
and form crystalline multidrug-resistant (MDR) 
biofilms is a major reason for recurrent CAUTIs.86 
Multidrug resistance (MDR) in the clinical isolates 
P. mirabilis is leading to public health anxiety and 
serious wildlife implications. Therefore, wildlife's 
role in spreading resistance to antimicrobials has 
become a main topic of interest for researchers.87 
Several studies have been conducted to understand 
the P. mirabilis ability to produce swarm cells 
but it remains unclarified. Peng et al.88 have 
reported that the swarming migration of the 
P. mirabilis strain is a rare feature.88 A recent 
study has revealed the appearance of infectious 
diseases and the mcr-1gene (colistin-resistant) 
in MDR Enterobacteriaceae in the Syrian refugee 
camps' sewage water.89 These findings further 

elevate concerns about the health and sanitary 
conditions in Syrian camps. Similarly, mcr-1 
gene has been detected in P. mirabilis samples 
collected from sewer and domestic waters of 
Lebanon’s war refugee camps. These results 
are alarming as P. mirabilis association with 
healthcare and community infections has already 
been established. Furthermore, the mcr gene 
encodes colistin resistance that serves as a last-
resort antibiotic to treat complex Gram-negative 
bacterial infections.39
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