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Abstract
Pseudomonas aeruginosa is a major cause of urinary tract infections. This organism has extended 
resistance to antimicrobials along with multiple virulence factors, making it difficult to treat. In this 
study, 49 isolates from urine samples were identified as P. aeruginosa and serotyped by the slide 
agglutination method. The sensitivity of isolates against 10 antipseudomonal drugs was determined. 
Phenotypically, lipase, protease, hemolysin, and biofilm production were detected. Genes for the 
type III secretion system, elastase B, and exotoxin A were detected by PCR. Serotype O11 was the 
most predominant serotype among test isolates. High levels of resistance were observed against 
ceftazidime, cefepime, piperacillin, and piperacillin/tazobactam while 10.2% of isolates were resistant 
to amikacin. MDR was detected in 20.4% of the isolates and was significantly associated with strong 
biofilm producers. About 95.9% and 63.3% of P. aeruginosa isolates had proteolytic and lipolytic activity, 
respectively. Among the genes detected, the exoY gene was the most prevalent gene (79.6%), while 
the exoU gene was the least frequent one (10.2%). toxA and lasB genes were amplified in 63.27% and 
75.5% of the isolates, respectively. In addition, the exoU gene was significantly associated with MDR 
isolates. The high incidence of exoS, exoT, exoY, lasB, and toxA genes in uropathogenic P. aeruginosa 
implies that these genes can be considered markers for virulent isolates. Furthermore, the coexistence 
of exoU and exoS genes, even in 6% of isolates, poses a significant treatment challenge because those 
isolates possess both the invasive and cytotoxic properties of both effector proteins.

Keywords: Serotypes, Type III secretion system, antimicrobial resistance, P. aeruginosa, Urinary tract infections

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0959-2260


  www.microbiologyjournal.org1285Journal of Pure and Applied Microbiology

Elbargisy | J Pure Appl Microbiol | 16(2):1284-1297 | June 2022 | https://doi.org/10.22207/JPAM.16.2.57

InTRODUCTIOn
 Urinary tract infections (UTIs) represent 
a great health problem that affects people of 
all ages.1 These infections may be hospital-
acquired. Catheterization of the urinary tract is 
an important predisposing factor to this type of 
infection by introducing opportunistic pathogens 
into the urinary tract.2 P. aeruginosa is commonly 
isolated from complicated UTIs. This bacterium 
is widespread in healthcare facilities and can get 
accessed through tap water, food, disinfectant, 
medical supplies, and healthcare staff resulting in 
severe nosocomial infections, especially among 
immunocompromised patients.1,3

 Treatment of infections caused by P. 
aeruginosa is a great challenge facing physicians 
all over the world. The bacterium has both intrinsic 
and acquired resistance to many varieties of 
antimicrobials, which limits the therapeutic options 
available. Besides, multiple virulence factors, 
either cell-associated (e.g., lipopolysaccharides, 
flagellum, and adhesins) or cell-free (e.g., protease, 
elastase, lipase, hemolysins, exotoxin A) have been 
linked to P. aeruginosa pathogenicity, allowing it to 
persist in a wide range of settings. Some of these 
virulence factors are needed for colonization, while 
others help the invasion process.4,5

 The most potent virulence toxin is 
exotoxin A (encoded by the toxA gene). The 
majority of clinical isolates of P. aeruginosa 
produce this toxin. It has destructive effects 
on host cells including suppression of protein 
synthesis, apoptosis of host cells, and impairment 
of the host cellular immune response.6,7

 The second important virulence factor is 
the type III secretion system (TTSS) which plays a 
significant role in serious infections caused by P. 
aeruginosa. This system transports the effector 
proteins, ExoS, ExoT, ExoU, and ExoY, to the cytosol 
of host cells to start their harmful effects. Both 
ExoS and ExoT can disrupt actin cytoskeleton and 
cause host cell death in addition to inhibition 
of phagocytosis.8 ExoU is an exoenzyme with 
phospholipase activity. It has rapid and potent 
cytotoxic activity that damages the host cells 
including macrophages. Besides, exoU increases 
the expression of inflammation genes. ExoU-
mediated cell death is characterized by a fast loss 
of plasma membrane integrity, which is associated 

with necrosis.9,10 ExoY possesses adenylate cyclase 
activity, which disrupts the actin cytoskeleton and 
promotes the synthesis of the second messengers 
cGMP and cUMP in host cells.11 Another virulence 
factor secreted by P. aeruginosa isolates is LasB 
elastase, which is encoded by the lasB gene. This 
enzyme targets host proteins such as collagen and 
elastin causing degradation of host tissues which 
then facilitates the invasion process.12

 The capacity of P. aeruginosa to induce 
an infection has been linked to its potential 
to form biofilms. Biofilms can escape the host 
defense mechanisms as well as resist antimicrobial 
therapy.13 P. aeruginosa has a high tendency 
for sticking to surfaces forming biofilms. Thus, 
long-term bladder catheterization predisposes to 
adhesion and biofilm formation by P. aeruginosa 
leading to recurrent UTIs.14

 Based on the O-antigen portion of 
their lipopolysaccharide molecule, P. aeruginosa 
isolates were divided into 20 serotypes by the 
international antigenic system (IATS). Several 
investigations have found a link between various 
virulence factors of P. aeruginosa isolates and their 
serotypes.15-17

 Characterization of uropathogenic P. 
aeruginosa will help in the selection of the proper 
therapeutic strategy and improve the treatment 
outcome. Therefore, the present study aimed to 
investigate the antimicrobial resistance, serotypes, 
biofilm formation, and TTSS genotypes of P. 
aeruginosa isolated from urinary tract infections 
in Egypt. The correlations between the studied 
virulence factors, antimicrobial resistance, and 
recorded serotypes were also investigated. 

METHODS
Isolation and identification of P. aeruginosa
 The research ethics committee of Faculty 
of Pharmacy, Mansoura University authorized 
the experiments carried out in this work (Code 
number: 2021-236). Forty-nine isolates of P. 
aeruginosa were isolated from urine samples from 
urinary tract infected patients admitted to the 
Urology and Nephrology center, Mansoura 
University, Mansoura, Egypt. The identification 
of P. aeruginosa isolates was based on their 
gram reaction, growth on cetrimide agar, oxidase 
production, and pyocyanin pigment production. 
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Serotyping of P. aeruginosa isolates
 Isolates of P. aeruginosa were serotyped 
by the slide agglutination method using 4 
polyvalent and 16 monovalent antisera (Bio-Rad®, 
France), and the test was done following the 
manufacturer’s instructions. The serotype groups 
were determined as described in the International 
Antigen Typing Scheme (IATS).18 The isolates 
that did not agglutinate with any antisera were 
described as non-typeable.
Antimicrobial susceptibility testing
 The antimicrobial  activity of ten 
antipseudomonal drugs was determined using 
the Kirby- Bauer disc diffusion method according to 
Clinical Laboratory Standard Institute guidelines.19 
The used antimicrobial discs were ceftazidime 
(CAZ, 30 μg), cefepime (FEP, 30 µg), piperacillin 
(PRL, 100μg), imipenem (IPM, 10μg), meropenem 
(MEM, 10 μg), levofloxacin (LEV, 5μg), ciprofloxacin 
(CIP, 5μg), amikacin (AK, 30μg), gentamicin (CN, 
10μg), and piperacillin/tazobactam (TPZ, 100 µg 
/10 µg) (Bioanalyse, Turkey). Resistance to 3 or 
more classes of antimicrobials was considered 
multidrug resistance (MDR).
Phenotypic detection of some virulence factors 
of P. aeruginosa isolates
• Qualitative detection of Lipase and protease 
enzymes
 Lipase enzyme production was detected 
on nutrient agar plates supplemented with Tween 
80. Following incubation, lipase-producing colonies 
showed a zone of precipitation surrounding 
them.20 Skimmed milk/ brain heart infusion agar 

was used to detect the proteolytic activity of 
the tested isolates. After 24-48 h of incubation, 
protease producers showed a zone of clearance 
surrounding growth.21

•  Quantitative detection of Hemolysin
 Test isolates with optical density 0.257± 
0.002 at λ600 nm were inoculated in nutrient broth 
and incubated for 48 h at 28°C with shaking at 120 
rpm. The hemolytic activity was assessed using 
human erythrocytes suspension in hemolysin 
assay buffer (2% v/v). For each isolate, the 
supernatant was collected by centrifugation, 
mixed with an equal volume of erythrocyte 
suspension, and incubated at 37°C for 2 h. The 
mixture was then centrifuged, and the optical 
density of the supernatant at λ540 nm was 
determined. Control experiments for spontaneous 
lysis (negative control) and complete lysis (positive 
control, 0.2% sodium dodecyl sulfate) were carried 
out. The percentage (%) of lysed erythrocytes was 
calculated.22

 % of lysed erythrocytes = [(X-B)/ (T-B)] × 
100
 B is the absorbance of the negative 
control, T is the absorbance of the positive control, 
and X is the absorbance of the test sample.
• Quantitative detection of biofilm
 Colonies of overnight cultures were 
suspended in tryptic soy broth to yield 1 McFarland 
turbidity. 100 μl of each bacterial suspension 
was inoculated in triplicate into the wells of a 
microtiter plate and incubated for 24 h at 37°C. 
The content of wells was aspirated. The wells 

Table 1. Primer sequences used for the detection of target genes and their amplicon sizes

Target Primer sequence (5´ - 3´) Amplicon Annealing Ref.
gene  size (bp) Temp.

lasB F   TCATCACCGTCGACATGAAC 490  [22]
 R   TGCCCTTCTTGATGTCGTAG   
exoT F   CAATCATCTCAGCAGAACCC 1159  [25]
 R   TGTCGTAGAGGATCTCCTG   
exoY F   TGCCATAGAATCCGTCCTC 145 60 ° C [26]
 R   GATGACCGCCGATTATGAC   
exoS F   AGGCATTGCCCATGACCTTG 372  
 R   ATACTCTGCTGACCTCGCTC   
exoU F   CTAGAAGAGAAAGGCATGCTCG 274  [22]
 R   CTATGCGTGGGAGTACATTGAG   
toxA F   GACAACGCCCTCAGCATCAACAGC 390 65 ° C 
 R   CGCTGGCCCATTCGCTCCAGC
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were then washed three times with phosphate-
buffered saline. Absolute methanol was added for 
15 min to fix adherent cells, then the plates were 
emptied and left to dry. Crystal violet (1%) was 
added for 20 min and excess stain was washed 
away. After air drying of the plates, glacial acetic 
acid [33% (V/V)] was added. Finally, a microtiter 
plate reader was used to measure the optical 
density of each well at λ492nm. Negative control 
wells were included. Consequently, P. aeruginosa 
isolates were classified as strong/moderate/weak 
slime producers or as non-adherent.20

Molecular detection of the type III secretion 
system, exotoxin A and elastase B
• Extraction of the tested isolates’ genomic DnA 
 A single colony from overnight grown 
culture was picked up and suspended in 0.1 ml 
of DNase / RNase-free water. The bacterial cell 
suspensions were held in a thermocycler at 95°C 
for 10 min, cooled on ice, and centrifuged. The 
supernatants were kept at -20°C in aliquots of 5 
μl untill their use as template DNA in PCR.23

• Polymerase chain reaction for the detection of 
virulence genes
 The virulence genes (exoS, exoT, exoU, 
exoY, toxA, and lasB) were amplified by PCR 

as described previously.24 Positive control and 
negative control reactions were performed 
simultaneously. Primer sequences, annealing 
temperature, and expected amplicon sizes are 
presented in Table 1. 
 For the 49 isolates of P. aeruginosa, all 
data obtained in the previous tests were scored 
using a binary code system. Then, analysis was 
done by the Past 4.03 application through the 
unweighted pair group method with arithmetic 
mean (UPGMA) and Dice coefficient. A dendrogram 
was then constructed based on the analyzed data. 
Statistical analysis of data
 The Spearman rank correlation coefficient 
test was used to determine whether there is a 
significant association between the virulence 
factors, biotypes, and serotypes studied using 
SPSS software (version 13; SPSS Inc.). At a P-value 
of ≤0.05, the results were statistically considered 
significant.

RESULTS
Serotyping of P. aeruginosa isolates
 Ten serotypes (O1, O2, O4 - O8, O10, O11, 
and O16) with 7 serogroups (B, C, E, F, G, H, and I) 
were detected in P. aeruginosa isolates. Serotype 

Fig. 1. Distribution of serotypes among urine isolates of P. aeruginosa.
NT: Non-typeable
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O11 was the most prevalent (26%) followed by 
serotype O6 (16.3%) and serotype O2 (14%). The 
least frequent serotypes were O7 and O16 (one 
isolate each, 2%). Four isolates of P. aeruginosa 
(8%) were non-typeable, Fig. 1.
Antimicrobial susceptibility testing
 Resistance to ceftazidime and cefepime 
was demonstrated by all tested P. aeruginosa 
isolates. A high resistance rate was also recorded 
for piperacillin (95.9%) and piperacillin/tazobactam 
(91.8%). The resistance rate to meropenem, 
imipenem, and gentamicin was relatively 
low (16.3%, 20.4%, and 24.5%, respectively). 
About 34.7% of isolates were resistant to both 
ciprofloxacin and levofloxacin. Most P. aeruginosa 
isolates (89.8%) were susceptible to amikacin. The 
antibiogram of P. aeruginosa isolates is shown in 

Table 2. Twelve antimicrobial resistance patterns 
were detected (A1: A12). Resistance pattern 
A3 was the most frequent pattern among the 
tested isolates (46.9%). Multidrug resistance 
was detected in 10 isolates (20.4%, patterns A5, 
A9, A10, A11, and A12) and three of them were 
resistant to all tested antimicrobials.
Correlation between serotypes of P. aeruginosa 
isolates and their antibiogram
 Among the most frequent serotypes 
(O2, O6, O10, and O11), the isolates of serotype 
O11 were the most sensitive to all tested 
antimicrobials. A positive significant correlation 
between quinolone resistance and serotypes 
O6 (P=0.008) and O10 (P=0.004) was observed. 
In contrast, quinolone resistance was negatively 
associated with serotype O11 (P=0.017). In 

Table 2. Distribution of antimicrobial resistance patterns among P. aeruginosa isolates

Code Resistance pattern No. of 
  resistant 
  isolates (%)

A1 FEP/CAZ 2 (4.08)
A2 FEP/PRL/CAZ 1 (2.04)
A3 FEP/PRL/TPZ/CAZ 23 (46.9)
A4 IPM/FEP/PRL/TPZ/CAZ 1 (2.04)
A5 CIP/LEV/ CN/FEP/PRL/CAZ 1 (2.04)
A6 CIP/LEV/FEP/PRL/TPZ/CAZ 7 (14.29)
A7 IPM/MEM/FEP/PRL/TPZ/CAZ 3 (6.12)
A8 IPM/MEM/CN/FEP/PRL/TPZ/CAZ 2 (4.08)
A9 CIP/LEV/ CN/FEP/PRL/TPZ/CAZ 4 (8.16)
A10 CIP/LEV/ CN/AK/FEP/PRL/TPZ/CAZ 1 (2.04)
A11 IPM/CIP/LEV/ CN/AK/FEP/PRL/TPZ/CAZ 1 (2.04)
A12 IPM/MEM/CIP/LEV/ CN/AK/FEP/PRL/TPZ/CAZ 3 (6.12)

Fig. 2. The correlation between lipase and hemolysin production in P. aeruginosa isolates.
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addition, 37.5% and 50% of serotypes O6 and O10, 
respectively showed multidrug resistance, Table 3.
Phenotypic detection  of protease, lipase, 
hemolysin, and biofilm
 Most P. aeruginosa isolates (95.9%) 
were proteolytic on skimmed milk-BHI agar 
(Isolates 1 and 4 were negative), while 63.3% 
of isolates were positive lipase producers. For 
hemolysin production, 28 isolates (57.14%) were 
non-hemolytic while 16 isolates (32.7%) caused 
lysis of less than 10% of RBCs in the suspension. 
The highest % of lysed RBCs were observed with 
isolates No. 20 and 33 (75.49 % and 79.83 %, 
respectively). 
 Biofilm production was assessed using a 
microtiter plate assay. P. aeruginosa isolates were 
classified into 3 categories: strongly adherent (10 
isolates, 20.4%), moderately adherent (30 isolates, 
61.2%), and weakly adherent (9 isolates, 18.4%). 
Correlation between the studied virulence factors, 
antimicrobial susceptibility, and serotypes of P. 
aeruginosa isolates
 The association between lipase and 
hemolysin production was studied. Fig. 2 shows 
that hemolysin production had a significant 
negative relationship with lipase production, P= 
0.01.

Table 3. Correlation between antimicrobial resistance and the commonly detected serotypes

Serotype    Antimicrobials, No. of resistant isolates (%)

 CIP LEV AK CN IPM MEM PRL TPZ MDR

O2 1(14.3) 1(14.3) 1(14.3) 2(28.6) 1(14.3) 1(14.3) 7 (100) 7 (100) 1(14.3)
Correlation -0.175 -0.175 0.055 0.039 -0.062 -0.023 0.084 0.122 -0.062
Coefficient
Significance 0.229 0.229 0.707 0.792 0.672 0.878 0.565 0.405 0.672
O6 6 (75) 6 (75) 2 (25) 3(37.5) 3(37.5) 1(12.5) 8 (100) 8 (100) 3(37.5)
Correlation 0.374 0.374 0.216 0.134 0.187 -0.046 0.091 0.132 0.187
Coefficient
Significance 0.008** 0.008** 0.136 0.360 0.197 0.755 0.533 0.367 0.197
O10 4(100) 4(100) 1 (25) 2 (50) 1(25) 1(25) 4 (100) 3 (75) 2(50)
Correlation 0.409 0.409 0.146 0.177 0.034 0.070 0.062 -0.183 0.219
Coefficient
Significance 0.004** 0.004** 0.318 0.224 0.817 0.633 0.675 0.207 0.131
O11 1 (7.7) 1 (7.7) 0 1 (7.7) 2(15.4) 2(15.4) 11(84.6) 10(76.9) 1(7.7)
Correlation -0.341 -0.341 -0.203 -0.235 -.075 -.015 -0.343 -0.327 -0.190
Coefficient
Significance 0.017* 0.017* 0.163 0.104 0.609 0.917 0.016* 0.022* 0.192

 ** Significant at 0.01 level; *  Significant at 0.05 level.

 The correlations between strong and 
weak biofilm producers and antimicrobial 
resistance, lipase, and hemolysin production were 
also investigated, Table 4. There were significant 
correlations between each of the following 
pairs: strong biofilm production and gentamicin 
resistance (P=0.036), strong biofilm production 
and MDR (P=0.009), weak biofilm production, 
and quinolone resistance (P=0.026). In addition, 
all weak biofilm producers were lipase producers 
(P=0.011) while one isolate only caused lysis of 
RBCs (P=0.034).
 Moreover, the correlation between the 
tested virulence factors and the most frequently 
encountered serotypes was analyzed. Hemolysin 
production was more prevalent in serotype O2 
isolates (71.4%) while lipase production was 
detected more in serotype O10 isolates. In 
addition, a high percentage of isolates of serotypes 
O2, O6, and O11 isolates (71.4%, 75%, and 92.3%, 
respectively) were strong to moderate biofilm 
producers. Statistically, none of these observations 
proved significant. 
PCR-based detection of genes encoding TTSS, 
exotoxin A, and elastase B
 For TTSS genes, exoY was the most 
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prevalent gene (39 isolates, 79.6%) followed by 
exoS (33 isolates, 67.3%) and exoT (31 isolates, 
63.3%) while the exoU gene was the least frequent 
(5 isolates, 10.2%). The toxA and lasB genes were 
amplified in 31 isolates (63.27%) and 37 isolates 
(75.5%), respectively. Three isolates (6.12%) 
did not amplify any of the tested genes. Table 5 
illustrates the coexistence profiles of the tested 
genes. Twenty-one profiles were recorded and 
11 of them were presented by 2 or more isolates 

Table 4. Correlation between biofilm production and antimicrobial resistance, hemolysin, and lipase production

Biofilm    Antimicrobial agents Resistant isolates (%)   Lipase   Hemolysin
category
 CIP LEV AK CN IPM MEM PRL TPZ MDR  

Strong 5(50) 5(50) 2(20) 5(50) 3(30) 2(20) 10(100) 10(100) 5(50) 4(40) 6(60)
Correlation 0.163 0.163 0.164 0.300 0.121 0.050 0.104 0.151 0.372 -0.244 0.175
Coefficient
Significance 0.264 0.264 0.261 0.036* 0.409 0.731 0.475 0.300 0.009** 0.091 0.228
Weak 7(77.8) 7(77.8) 1(11.1) 3(33.3) 0 0 9(100) 8(88.9) 3(33.3) 9(100) 1(11.1)
Correlation 0.319 0.319 0.014 0.098 -0.240 -0.210 0.098 -0.051 0.152 0.361 -0.304
Coefficient 
Significance 0.026* 0.026* 0.923 0.505 0.096 0.148 0.504 0.727 0.297 0.011* 0.034*

** Significant at 0.01 level; *  Significant at 0.05 level.

Table 5. Virulence genotypes of P. aeruginosa isolates

Code Gene profile No. of isolates

P1 No genes 3 
P2 toxA 1
P3 toxA, exoS 1
P4 lasB, exoY 1
P5 toxA, lasB, exoT 1
P6 toxA, lasB, exoY 2
P7 lasB, exoU, exoY 1
P8 lasB, exoT, exoY 2
P9 exoS, exoT, exoY 3
P10 lasB, exoS, exoY 1
P11 toxA, exoS, exoT 1
P12 toxA, exoU, exoY 1
P13 lasB, exoS, exoT 1
P14 toxA, lasB, exoS, exoY 6
P15 toxA, lasB, exoS, exoT 2
P16 lasB, exoS, exoT, exoY 5
P17 toxA, exoS, exoT, exoY 2
P18 lasB, exoS, exoU, exoY 1
P19 toxA, lasB, exoT, exoY 4
P20 toxA, lasB, exoS, exoT, exoY 8
P21 toxA, lasB, exoS, exoT, exoU, exoY 2

with the highest predominance for profile P20 (8 
isolates, 16.33%).
 Correlation studies detected a positive 
significant correlation between the lasB and 
exoY genes (P=0.003) and the exoS and exoT 
genes (P=0.05). In addition, the lasB gene was 
significantly detected in isolates sensitive to 
quinolones (P=0.049). exoU gene was significantly 
associated with MDR isolates (P=0.000) in contrast 
to the exoT gene that had a negative association 
with MDR isolates (P=0.014).

 Cluster analysis of the constructed 
dendrogram divided thirty-eight isolates of P. 
aeruginosa into 10 clusters with a similarity 
of 70%. Eleven isolates with a lower similarity 
percentage (< 70%) were not included in these 
clusters. The largest cluster had 12 isolates that 
were moderate biofilm producers of A3 and A8 
biotypes. The second large cluster had 5 isolates 
that were also moderate biofilm producers of the 
A3 biotype. Only two isolates (Nos. 5 and 36) had 
100 % similarity with respect to the analyzed data, 
Fig. 3.

DISCUSSIOn
 P. aeruginosa is well-known as a major 
cause of UTIs especially those associated with 
catheterization. In addition, this bacterium 
contributes significantly to the morbidity and 
death rates associated with nosocomial infections. 
In the current study, 49 uropathogenic isolates 
were identified as P. aeruginosa. Although the 
study population was different from those involved 
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in previous studies, the high prevalence of O11 and 
O6 serotypes was also recorded.15,17,27-29 Lu et al.17 
reported the failure of the standard technique to 
serotype about 8% of their isolates which is similar 
to this study where four isolates (8%) were non-
typeable. Other studies recorded non-typeable 
isolates in higher proportions.30-32

 The antibiogram of the infecting isolates 
is very helpful for physicians to select the 
appropriate antimicrobial to shorten the treatment 

period and improve the outcome. In UTIs, 
improper antimicrobial will delay the treatment 
process and increase the risk for urosepsis.33 In 
this study, the antimicrobial susceptibility testing 
demonstrated high levels of resistance (91.8%-
100%) for ceftazidime, cefepime, piperacillin, 
and piperacillin/tazobactam. Previous studies 
conducted in Egypt also revealed a significant 
rate of resistance to these antimicrobials.34-40 
However, other investigations in Egypt reported a 

Fig. 3. Dendrogram of 49 P. aeruginosa isolates based on antibiogram, serotyping, virulence genotype, virulence 
phenotype (lipase, hemolysin, and biofilm production).  *MDR isolates, NT: non-typeable, W, M, S: Weak, moderate, 
and strong biofilm producers.
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lower rate of resistance (29%-43%).41,42 The same 
discrepancies in resistance rate were observed in 
different countries, where some studies recorded 
a high resistance rate,43-45 while others recorded a 
relatively low resistance rate with respect to the 
used antimicrobials.46-48 Isolates of the current 
study showed low to moderate resistance (20.4%-
34.7%) to gentamicin, ciprofloxacin, levofloxacin, 
imipenem, and meropenem. Although some 
reports coincide with current data,34,37,49 several 
research groups reported high resistance levels to 
quinolones, gentamicin, and/or carbapenems.36,40,50 
In agreement with previously published data,34,41, 

51-53 amikacin showed the highest efficacy against 
tested isolates. 
 Multidrug resistance of P. aeruginosa 
is alarming everywhere, but the problem is 
escalating in Egypt and other developing countries 
because there are no regulations that limit 
the prescription of antibiotics even the broad-
spectrum ones. Antibiotics are also sold without 
a doctor's prescription as over-the-counter 
medications. In the current study, 20.4% of the 
isolates were MDR compared to 48.8% -100% of 
the MDR demonstrated by many research groups 
in Egypt.34,35,37-39,42 In addition, 37.5% and 50% 
of isolates belonging to serotypes O6 and O10 
isolates were MDR and a significant association 
was found between these two serotypes and 
quinolone resistance. These results agree partially 
with Abdel-Rhman and Rizk who found a significant 
association between MDR and O6 and O10 
serotypes.39 In contrast to many earlier studies,54,55 
P. aeruginosa isolates of serotype O11 were the 
most sensitive to all tested antimicrobials, and 
a negative significant correlation was detected 
between these isolates and quinolone resistance. 
 The pathogenesis of P. aeruginosa in 
different illnesses has been linked to its ability to 
express multiple virulence factors. Previous studies 
had shown that among the multiple virulence 
factors produced by P. aeruginosa, individual 
virulence factors may control and contribute to 
the outcome of various infections. Like other 
infections, the establishment of UTIs requires 
colonization of host tissues, which is facilitated by 
many virulence factors of the bacterium. In this 
study, most isolates were proteolytic on skimmed 
milk-BHI agar while 63.3% of isolates were positive 
lipase producers. Proteases, according to Gupta 

et al., play an important role in the pathogenesis 
of P. aeruginosa in UTIs because they enhance 
bacterial colonization of renal tissues by degrading 
a variety of substrates that aid tissue invasion and 
dissemination.56 Lipases also destroy host tissues.57 
The case was different for hemolysin production, 
where 21 isolates (42.86%) were hemolytic 
and 16 of them caused lysis of less than 10% of 
the RBCs and there was a significant negative 
association between lipase and hemolysin 
production. Gupta et al. observed that mutant 
strain producing hemolysin but not producing 
proteases and elastase was incapable of colonizing 
the renal tissues of the used mice model. This may 
suggest that hemolysin has a minimal role in UTIs 
compared to proteases and elastases.56

 The ability of P. aeruginosa to cause 
infections has been linked to its tendency to 
form biofilms. Its capacity to adhere to catheter 
surfaces makes catheterized patients more 
likely to get UTIs.58,59 In addition, urea, the 
major solute in urine may encourage the biofilm 
development of P. aeruginosa through alterations 
in the cell membrane or production of additional 
extracellular matrix.60 In this study, all isolates had 
biofilm-forming capacity, where 20.4%, 61.2%, and 
18.4% of them were strong, moderate, and weak 
biofilm producers, respectively. The same finding 
was recorded in two previous studies conducted in 
Egyptian hospitals where 100% of the isolates were 
biofilm producers.38,61 Also, a lower percentage of 
biofilm production by P. aeruginosa was reported 
by other studies.37,62-65

 In contrast to studies that found no 
relationship between biofilm and MDR,38,62,63 this 
research concurred with other reports that found 
a significant link between biofilm production and 
MDR.37,65,66 In addition, weak biofilm production 
was associated with quinolone resistance which 
agrees with previous investigations.63,67,68 Most 
weak biofilm producers were nonhemolytic but 
all of them had lipolytic activity. This also may 
reflect the importance of lipase production in the 
pathogenesis of P. aeruginosa. Besides, the current 
work found no significant correlation between the 
serotypes predominant in the isolates and any of 
the investigated virulence factors, contradicting 
the findings of Mittal et al.69 and Visca et al.70

 Some virulence factors are recognized as 
major in acute infections caused by P. aeruginosa, 
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among which is TTSS. The distribution of TTSS 
genotypes among P. aeruginosa clinical isolates 
can help in understanding the epidemiology of 
such infections. The distribution frequency of 
TTSS genes varied between studies. In this study, 
the exoS gene was prevalent in 67.3% of isolates, 
which was consistent with previous reports.38,71-73 
Also, the exoU gene was detected in only 10.2% 
of isolates; however, higher prevalence rates were 
reported in Egypt and other countries.38,72,74,75 
While the exoT gene was amplified in 63.3% of 
isolates and it was significantly associated with 
exoS gene, a recent study in Egypt recorded exoT 
gene in only 6.7% of isolates.38 Other research 
studies showed high prevalence rates of the exoT 
gene.10,74 The exoY gene was the most predominant 
gene (79.6%), which is consistent with earlier 
studies.38,74 Statistical analysis revealed a significant 
association between MDR and exoU gene, which 
coincides with previous reports.72,73 Few isolates 
(6%) harbored both exoS and exoU genes which 
agrees with prior studies.72,73,76,77 These isolates 
will possess the invasive and cytotoxic properties 
of both toxins. Although the exoU gene was found 
in only a few isolates, earlier studies correlated 
its existence with high mortality rates.77-79 In the 
current investigation, the elastase encoding gene 
lasB was detected in 75.5% of isolates and it was 
statistically associated with exoY gene. Similar 
results were reported in Egypt38, 80; however, higher 
prevalence was observed in studies conducted by 
Benie et al. (89.2%),81 and Babour et al. (100%).82 
About 63.3% of the P. aeruginosa isolates amplified 
the toxA gene which is regarded as an important 
virulence factor in catheter-associated UTIs.83 A 
higher frequency of this gene was reported in Iran 
(95.7%)9 but recently in Egypt, a lower frequency 
(45.6%) was recorded.38

 B a s e d  o n  b i o t y p e s ,  s e ro t y p e s , 
virulence factor production, and PCR results, the 
dendrogram grouped 38 isolates into 10 clusters 
(70% similarity), while 11 isolates had similarities 
lower than 70%. The 17 isolates that represented 
the two largest clusters were moderate biofilm 
producers and of definite biotypes but were of 
different serotypes. This confirms that serotyping 
is still a more useful tool to discriminate between 
P. aeruginosa isolates.84 Two isolates showed 

100% similarity, which may indicate cross-infection 
among hospitalized patients.39

COnCLUSIOn
 In this study, isolates of serotype O11 
were the most sensitive to all antimicrobials 
tested compared to isolates of other commonly 
encountered serotypes. Amikacin was the most 
effective antimicrobial against test isolates. 
Although MDR was detected in 20.4% of isolates, 
it was significantly associated with strong biofilm 
production, making treatment more difficult. 
Most of the isolates had proteolytic and lipolytic 
but nonhemolytic activity, which may reflect the 
importance of lipase and protease enzymes in 
the pathogenesis of P. aeruginosa in UTIs. The 
current work found no significant correlation 
between the serotypes predominant in the test 
isolates and any of the investigated virulence 
factors. In addition, the high prevalence of exoS, 
exoT, exoY, lasB, and toxA genes in uropathogenic 
P. aeruginosa isolates suggests identifying these 
genes as a maker of virulent strains. Although exoU 
gene was detected in only 10.2% of isolates, it is 
commonly associated with a high mortality rate. 
Furthermore, the coexistence of exoU and exoS 
genes even in a small % of isolates constitutes a 
great challenge in treatment as those isolates will 
have both the invasive and cytotoxic properties 
of the two effector proteins, especially that exoU 
gene was found significantly in MRD isolates. 
Isolates of different serotypes were distributed in 
all clusters in the dendrogram, emphasizing that 
serotyping is still a more useful tool to discriminate 
between P. aeruginosa isolates.
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