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Abstract
Next-generation sequencing (NGS) is a new technology used to detect the sequence of DNA and RNA 
and to detect mutations or variations of significance. NGS generates large quantities of sequence 
data within a short time duration. The various types of sequencing includes Sanger Sequencing, 
Pyrosequencing, Sequencing by Synthesis (Illumina), Ligation (SoLID), Single molecule Fluorescent 
Sequencing (Helicos), Single molecule Real time Sequencing (Pacbio), Semiconductor sequencing 
(Ion torrent technology), Nanopore sequencing and fourth generation sequencing. These methods of 
sequencing have been modified and improved over the years such that it has become cost effective 
and accessible to diagnostic laboratories. Management of Outbreaks, rapid identification of bacteria, 
molecular case finding, taxonomy, detection of the zoonotic agents and guiding prevention strategies 
in HIV outbreaks are just a few of the many applications of Next Generation sequencing in clinical 
microbiology.
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INTRODUCTION
 Next-generation sequencing (NGS) is 
a new technology used to detect the sequence 
of DNA and RNA and mutations or variations of 
significance. NGS generates large quantities of 
sequence data within a shorter time duration as 
compared to conventional Sanger’s method of 
sequencing. This novel technique uses different 
chemistries, matrices and bioinformatics 
technologies which can be used to sequence 
entire genomes or different lengths of DNA and 
RNA sequences in shorter time periods.4 The first 
Next Generation Sequencing technique to be 
commercially available was the massively parallel 
pyrosequencing platform in 2005.46

 DNA sequencing is done various steps 
which includes :
1. DNA fragmentation
2. Gene Library
3. Sequencing
4. Data analysis
DNA Fragmentation
 Targeted DNA is broken into several small 
segments using different methods like sonication, 
enzymatic digestion. The required short segments 
are isolated using different methods such as 
Hybridisation Capture Assay, Amplicon Assay
Genomic Library
 An organism's genome gets broken down 
into smaller pieces. Each piece is cloned into a 
unique vector, which is then carried by a unique 
microbial cell. A collection of recombinant vectors 
represents the organism's whole genome. This 
helps to analyse isolated groups of genes, hence 
understand their expression and function. It is this 
library that is sequenced using the various DNA 
sequencing methods.
 All the methods of DNA sequencing starts 
by attaching short oligonucleotide sequences to 
the ends of fragmented short strands of DNA. 
These short oligonucleotide sequences are called 
adapters. The 5' and 3' ends of fragmented or 
amplicon DNA are annealed with certain DNA 
adaptor sequences. Double-stranded DNA 
adapters are 20–40bp segments with known 
sequences. On both the 5' and 3' ends of the 
fragmented DNA, there are two distinct adaptor 
sequences that can anneal to the DNA fragments.
 Each DNA fragment has an adapter on 
one end that connects it to a solid substrate such 

as beads or flow cells, and another adapter on the 
other end that anneals to a primer that starts the 
polymerase chain reaction (PCR). PCR produces 
several copies of the same fragment, which are 
sequenced at the same time. As a result, these 
techniques are sometimes referred to as massively 
parallel sequencing techniques.
DNA Sequencing
 An NGS sequencer is used to perform 
massive parallel sequencing. In a specific sequencer, 
the library is uploaded onto a sequencing matrix. 
The platform on which the sequencing takes place 
is known as a sequencing matrix. Sequencing 
matrices differ depending on the sequencer. For 
example, the Illumina NGS sequencer uses flow 
cells, while the Ion Torrent NGS sequencer uses 
sequencing chips.
 Several generations of sequencing 
methods have been developed.
1. First Generation sequencing- Sanger 

Sequencing
2. Second Generation Sequencing
a. Pyrosequencing
b. Sequencing by Synthesis (Illumina)
c. Ligation (SoLID)
3. Third Generation Sequencing
a. Single molecule Fluorescent Sequencing 

(Helicos)
b.  Single molecule Real time Sequencing (Pacbio)
c. Semiconductor sequencing (Ion torrent 

technology)
d. Nanopore sequencing
4. Fourth generation sequencing
Sanger Sequencing
 The first method used for sequencing was 
Sanger’s DNA sequencing. Dr. Frederick Sanger’s 
did research to design a DNA sequencing method 
in the 1970s. He had already published methods 
for RNA sequencing in the late 1960s. Sanger 
sequencing was the most commonly used tool 
in genomic research that led to extraordinary 
accomplishments. For example, the high-quality, 
reference sequence of the human genome under 
the Human Genome Project (HGP) was a product 
of Sangers sequencing.
 The synthesis of DNA occurs in the 5’ to 3’ 
direction. The DNA double helix unwinds to expose 
single strands of the DNA which are replicated 
by adding on complementary nucleotides  
(dNTPs). Several enzymes are involved in the 
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replication of DNA including DNA polymerase, 
helicase, topoisomerase and DNA gyrase. The 
replication of DNA usually stops when the 
replication fork ends or upon reaching termination 
sequences in the template DNA strand.
 Here the DNA to be sequenced is used as 
a template. The reaction mixture consists of primer 
(a short sequence of DNA complementary to the 
region to be sequenced), DNA polymerase, the 
four deoxynucleoside triphosphates (dNTPs), and 
dideoxynucleoside triphosphates (ddNTPs). The 
single stranded template DNA is mixed with this 
reaction mixture. The synthesis of DNA is carried 
out as usual with dNTPs till a ddNTP is added to the 
complementary strand. The ddNTP lacks a hydroxyl 
group at the 3’ end, hence no interaction occurs 
with the 5’PO4 of the next dNTP. The elongation of 
the complementary chain of DNA stops with the 
ddNTP. Hence, Sanger’s sequencing is also called 
the Chain Termination DNA sequencing method.
 Several such strands of DNA are obtained 
and the various locations of the particular 
nucleotide on the complementary strand is 
determined by performing electrophoresis on 
thin slab polyacrylamide gel. Individual synthesis 
reactions are prepared for each ddNTP. In the 
initial models, the position of the different 
fragments were identified using P32 which was used 
to label the dATP molecules. This was observed on 
an X ray film.7

 Later use of fluorescent labels simplified 
the process of reading the electrophoresis 
plates. In 1986, Applied Biosystems introduced a 
fluorescent DNA sequencing instrument, which 
used fluorescently labelled primers. The primer 
for specific nucleotide reaction was labelled with 
a specific fluorochrome and a scanning laser 
beam emitting specific wavelengths scanned 
the surface of the gel. Different excitation 
wavelengths were emitted from the fluorescently 
labelled primers which were detected during 
the separation of fragments electrophoretically. 
Initially, the fluorochromes were used to label the 
primer sequences for identification. The further 
sequences and position of nucleotides were 
identified by the length of the electrophoretically 
separated fragments. Improvements were 
made in the technology and fluorescently 
labelled dideoxynucleotides started to be used 
known as terminators. This allowed all the four 

dideoxynucleotides to get labelled with different 
fluorochromes and the same reaction vessel could 
be used. This helped in lowering the cost of the 
run.
 Automated methods for sequencing 
became popular with the introduction of 
fluorescent labelling. ddNTP s are fluorescently 
labelled and all the four reaction mixtures are 
loaded into a single lane of a gel. These fragments 
are separated using electrophoresis. The position 
of each ddNTP is detected by laser beams when 
the ddNTPs leave the gel. A chromatogram 
documenting the fragment order is generated in 
which the amplitude of each spike represents the 
fluorescent intensity of each fragment.
 Further improvement in the technology 
was made by introduction of Capillary gel 
electrophoresis instead of slab gel electrophoresis. 
This involved directly injecting a polymeric 
separation matrix into capillaries leading to single-
nucleotide resolution.7

 The sample containing the fragmented 
and amplified DNA is loaded into the capillaries. 
Electrical current pulses were passed through the 
loaded capillary gel thereby separating the DNA 
fragments to obtain single nucleotide resolution 
through a process known as electrokinetic 
injection.
 Sanger’s Chain termination method is 
very time consuming and expensive method of 
gene sequencing. The human genome project 
which took 10 years to complete used Sanger’s 
Chain termination DNA sequencing method. 
Newer methods of DNA sequencing which does 
not require construction of Genomic Library have 
been developed.
Pyrosequencing / 454 Sequencing
 A succession of enzymatic reactions are 
used which leads to generation of visible light. 
Each plastic bead has one DNA fragment attached 
which is amplified by PCR within an oil-water 
emulsion. The final product has is a about one 
million copies of the DNA fragment covering the 
bead. The PCR products are denatured and each 
bead is deposited into picoliter sized wells. Three 
important enzyme reactions take place in these 
wells. In the first step, DNA synthesis occurs using 
a primer and single type of unlabelled dNTP such 
as d ATP, dGTP, dCTP, or dTTP which is catalysed 
by DNA polymerase. With each nucleotide added, 
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a pyrophosphate (PPi) molecule is released. In the 
second step, the enzyme ATP sulfurylase catalyses 
the conversion of the PPi to ATP.
 In the third step, this ATP is converted to 
light using the enzyme firefly luciferase. A flash 
of light is hence generated for each nucleotide 
added and the intensity of the flash depends on 
how many nucleotides were added. The flashes 
generated from each well is correlated with 
the nucleotide added in the particular well. A 
Computer software is used to monitor the growth 
of the DNA chain synthesised, one nucleotide at a 
time.
ABISOLiD
 This method is called sequencing by 
ligation or SOLiD technology. Amplification of 
genomic fragments is similar to pyrosequencing. 
The amplified fragments are moved onto a glass 
support surface where a primer is hybridised to 
the adapter. Following denaturation of amplified 
fragments, a primer with complementary 
nucleotide sequence to the adapter is added. Eight 
based oligonucleotides (octamers) are attached 
through hybridization to each fragment and this 
is yet again attached to the primer by the enzyme 
ligase. The bases in the fourth or fifth position of 
the octamer are labelled with fluorescent markers. 
To identify the bases, laser light is used to stimulate 
the fluorescent labels. After that, the fluorescent 
label is removed by cleaving the ligated octamer 
after the fifth base. The ligation and cleavage 
process is repeated, and the sequence is identified 
based on the detected fluorescence.
 Whole genome resequencing, targeted 
resequencing, transcriptome research (including 
gene expression profiling, small RNA analysis, and 
whole transcriptome analysis), and epigenome 
research are among applications of SOLiD.
Solexa/Illumina Sequencing
 Solexa/Illumina sequencing is sequencing 
by synthesis and reversible dye terminators which 
help to identify each nucleotide added onto the 
DNA strand during the sequencing process. This 
type of sequencing uses a glass slide coated with a 
lawn oligonucleotides in 8 channels known as the 
flow cell. The sequences of these oligonucleotides 
complement the adapters on both the 3’ and 
5’ ends of the DNA strand, respectively. Hence 
the fragments of DNA with the adapters at both 
ends attach to the glass slide. This forms the 

solid surface where the sequencing occurs. The 
adsorbed DNA strand bind on the 3’ and 5’ ends 
to complementary oligonucleotides in the flow 
cell. Using the Template DNA strand linked to 
the flow cell via adapters, a polymerase enzyme 
synthesises the complementary DNA strand. The 
denatured double-stranded molecule is formed 
and the original template is washed away. Bridge 
PCR is used for clonal amplification. Bridge PCR 
is a technique in which the DNA strand linked to 
the flow cell on the 3' end folds over, allowing the 
adaptor on the 5' end to hybridise with the flow 
cell's matching oligonucleotide. A DNA polymerase 
then generates complementary strands, resulting 
in the formation of a double-stranded bridge. This 
double stranded bridge is denatured resulting in 
2 single stranded copies of the molecule attached 
to the flow cell. Ultimately, many copies of a 
single DNA template are present as clusters in 
bundles at their respective locations. Once cluster 
generation is complete, the templates are ready 
for sequencing. Cluster generation is essential 
for achieving the signal intensity required for 
sequencing.
Pacific Biosciences Single Molecule Real Time 
Reads
 This technology applies the Real time 
principle to sequencing. A SMRT bell library is 
created by ligating adapters to both ends of the 
denatured dsDNA creating a circular template. 
The platform for sequencing here is a SMRT cell 
which contains millions of tiny wells called Zero 
mode Waveguides (ZMW). A single circular DNA 
molecule is incorporated in a single ZMW. Primers 
along with DNA polymerases are added which 
adds labelled nucleotides. With every nucleotide 
added light is discharged. The nucleotide addition 
is hence, observed in Real time.
Nanopore DNA Sequencing
 Nanopore sequencing devices uses flow 
cells as their platform for amplification. These 
flow cells contain numerous minute holes called 
as Nanopores which are embedded in an electro-
resistant membrane. minute holes are lined by 
electrically conducting molecules such as iron 
molecule. As a result, the Nanopore has an electric 
field and acts on its own as an electrode, which 
is linked to a channel and sensor chip that gauges 
the electric current flowing through it.8 The DNA 
fragment to be sequenced is passed through the 
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nanopore such that at a time only one nucleotide 
can pass through. The different nucleotides 
produce a change in the magnitude of current 
which is detected in real time by the sensor chip. 
The alteration of the electric field of the nanopore 
is different for each base which is used for 
detecting the nucleotide base. The characteristic 
squiggle in the electric field produced by the 
passage of each nucleic acid through the nanopore 
allows the DNA to be sequenced. This method can 
be used for sequencing of DNA, RNA and proteins. 
The currently in use nanopores are single channel 
nanopores like biological nanopores and solid state 
nanopores. Recent research has shown promise 
for multichannel nanopore arrays where the fluidic 
chip has multiple pores set in a parallel sequence 
facing one common chamber where the DNA is 
added. This in turn helps to achieve better and 
faster results.29

Helicos tSMS
 It is the first commercial NGS platform 
using the principle of single molecule fluorescent 
sequencing. DNA samples are first fragmented to 
small size molecules of 100-200 nucleotides in 
length. A universal poly A sequence along with 
a fluorescent adenosine nucleotide is attached 
to the 3’ end of each strand which acts as the 
template. A Helicos flow cell is the surface where 
hybridization occurs. The flow cell has several 
oligoT oligomers immobilised on its surface 
which act as capture sites for the polyA tagged 
DNA fragments. The flow cell that contains 
the hybridised fragments is loaded into the 
instrument. Each fluorescently labelled template 
is detected by a laser that illuminates the flow cell. 
On the flow cell surface, a CCD camera creates a 
map of the template. The fluorescent template 
label is cleaved and cleared away once the 
templates have been recorded. A DNA polymerase 
is added which catalyses the addition of single 
type of complementary fluorescently labelled 
nucleotides one at a time to the primers. A wash 
step removes the unhybridized nucleotides and 
DNA polymerase. A laser beam is used again to 
detect and image the fluorescence from the added 
nucleotides at the specific locations on the flow 
cell surface. The fluorescent label is cleaved yet 
again, and the procedure is repeated with each 
of the other nucleotide bases until the DNA is 

sequenced to the appropriate length. Imaging is 
done with each addition of the nucleotides. This 
method can sequence a billion bases per hour. 
Hence, the time required to sequence complete 
genomes is considerably reduced.
Fourth Generation Sequencing
 These methods are used especially in 
histology specimens where the sequencing is 
done in situ in the cells, preserving the spatial 
co ordinates of RNA and DNA. This ultimately 
enables to map the sequenced data back to the 
histological context. This enables to identify tumor 
microenvironments to identify new targets for 
therapy. Examples of fourth generation sequencing 
includes single cell RNA sequencing (scRNA-seq) 
technology, in situ sequencing (ISS).
Comparison Of Various Sequencing Methods
 Next generation sequencing was a great 
advancement over the Sanger’s sequencing 
and helped ensure that this method could be 
commercially available for use. Some advantages 
over Sanger’s sequencing include
1. Sequencing library construction and clonal 

amplification of DNA as part of the sequencing 
procedure

2. Array based sequencing in which DNA can be 
multiplexed and larger through put achieved

3. Immobilisation of DNA on solid phase as the 
platform

 The  f i rst  NGS sequencer  to  be 
commercially available was the pyrosequencer. 
It had several advantages over Sanger’s method 
in having a higher sensitivity, it was faster 
and more cost effective. The disadvantages of 
pyrosequencing includes:-
a. Laborious sample preparation.26

b. Only short sequences can be sequenced.6

c. Prone to produce errors as the reading was 
through homopolymeric sequences.6

d. Expensive instruments.26

 The Illumina sequencer though offers a 
high throughput of data, requires very expensive 
instruments.26

 ABI/SOLiD has very high throughput 
and lesser cost of reagents but it takes a long 
duration of time to give results and the cost of the 
instrument is high.26

 The short read length and resequencing is 
a key disadvantage of the Sequencing by Ligation 
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technique. The Nanopore sequencing method has 
several advantages over the earlier sequencers 
given that it can read long lengths of fragments, 
is fluorescent tag-free,7 and that use of enzymes 
is remarkably low thereby reducing the need for 
stringent temperature controls.8 The problem 
with the Nanopore sequencer and the Pacific 
Biosciences Single Molecular Real time Reads is 
that they are expensive, and low through put.
Clinical Microbiology Applications of Next 
Generation Sequencing
 Management of Outbreaks, identification 
and surveillance of pathogens, rapid identification 
of bacteria using the 16S-23S rRNA region, 
molecular case finding, taxonomy, metagenomics 
approaches on clinical samples, and the 
determination of the transmission of zoonotic 
microorganisms from animals to humans are just 
a few of the many applications of Next Generation 
sequencing in clinical microbiology.
Outbreak Management
 Whole genome sequencing and NGS 
can be used to detect and monitor Outbreaks 
in hospital settings, in public health and 
epidemiological studies.28 Apart from Outbreak 
tracing and characterisation, NGS can be used 
to implement control measures to prevent the 
spread of the infective agent.25 This is particularly 
useful in outbreaks caused by Multidrug Resistant 
organisms30,37,31 and highly virulent strains of 
bacteria. This can be applied in the high risk 
areas initially such as transplant units, neonatal 
ICU’S etc. to promptly curtail any outbreaks.22,33,34 
The main chal lenge here is  the lack of  
user-friendly platforms in the bioinformatics 
software for the interpretation of data by 
diagnostic microbiologists.22 A global initiative to 
sequence and store genetic information about all 
known pathogens would help to curb outbreaks 
of emerging pathogens in the initial phase of 
community transmission.47

Molecular Case Finding
 A molecular case definition is given to the 
isolates producing the outbreaks and are further 
used in clinical and epidemiological investigations. 
These databases are used retrospectively in 
outbreaks later on to form a conclusive diagnosis. 
As a result, cases that would have been missed by 
standard epidemiological investigations can now 
be tracked down.41

Characterisation of Pathogens
 NGS can be used to characterise the 
pathogens with respect to virulence characteristics 
and detection of novel resistance genes. This 
is of special significance in organisms such 
as Mycobacterium tuberculosis, where Next 
Generation sequencing methods can provide data 
regarding resistance against anti tubercular drugs 
precipitately within 8 – 9 days as it can be done 
directly from the specimen. This in turn helps the 
physician to administer well targeted therapy.23 

The epidemiology and evolution of pathogens 
such as Yersinia pestis, Vibrio cholerae, Methicillin 
resistant Staphylococcus aureus etc. has been 
studied using these sequencing technologies 
aiding in our understanding of the emergence of 
these epidemic clones and ultimately helping in 
preventing such epidemics.32,35

Influenza Virus Vaccine Development
 Influenza virus undergoes genetic 
reassortment, antigenic shift and antigenic drift 
thereby requiring active surveillance to detect the 
strain in circulation in the particular region and 
device vaccines according to the circulating strains. 
The evolution of human and animal influenza 
viruses are monitored all around the year to select 
the appropriate strains for vaccine development.21

Guiding Prevention Strategies in HIV
 In certain circumstances where a sudden 
increase in the number of reported cases of HIV 
occurs, it is important to trace the source and 
detect HIV genomic sequences and analyse them 
with epidemiological data to characterise the 
outbreak and establish the transmission dynamics. 
This can be done accurately in a shorter duration 
of time using Next generation sequencing.21

 Massively parallel sequencing (MPS) and 
Pyrosequencing can be used to detect single clones 
of coreceptor (CXCR 4) tropism of the HIV virus, 
thereby enabling the prediction of drug efficacy 
while using entry inhibitors.42-44

Detection of Emerging Pathogens
 Use of sequencing is pivotal for diagnosis 
of emerging infections using genomic and 
metagenomic analysis.2 The detection of potential 
bioterrorism agents can be done at a faster pace 
using Next Generation sequencing. Strain specific 
genotyping helps in tracing the contacts in such 
suspected cases.45
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Bacterial Taxonomy
 Whole Genome sequencing and 16s rRNA 
gene are used to identify the taxonomic trees of 
bacteria.
Metagenomics
 Metagenomic analysis of the organisms in 
a particular environment such as gut microbiome 
has vast implications. Research has been done to 
find the relationship between the gut microbiome 
and many illnesses such as diabetes, Irritable 
bowel syndrome, obesity etc. Targetted Next 
Generation Sequencing of the 16s-23s rRNA cluster 
region for characterisation of bacteria from clinical 
specimens can be used where the entire microbial 
population in a clinical sample is detected and 
analysed.36

Detecting Zoonotic Transmission
 Human and animal pathogens can be 
well distinguished by NGS with more conviction. 
Early and specific detection of such zoonotic 
transmission helps in precise and directed 
treatment targeting the right organism. It is also 
very important in curtailing community spread of 
these zoonosis. The virulence factors allowing such 
transmission also can be studied using NGS.
Diagnosis of Genetic Disorders by Next Generation 
Sequencing
 In genetic disorders where the clinical 
diagnosis is unclear, genetic testing can help with 
precise diagnosis. Three methods of sequencing 
for diagnosis are broadly gene panel, exon and 
genome sequencing
Control of Antimicrobial Resistance
 Whole genome sequencing has immense 
potential to help in curtailing antimicrobial 
resistance. The detection of specific genetic 
changes associated with the development of 
resistance,27 to the antibiotic as well as the 
identification of newer targets of action for drugs 
can be identified which opens the possibilities of 
novel antibiotic development.24

CONCLUSION
 Next generation sequencing methods 
have evolved through several years to reach a 
point where it can be used in clinical diagnostic 
laboratories and research labs to create quality 
work. It helps to determine new targets for therapy 

and diagnosis which in turn broadens the horizon 
for patient care.
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