Molecular Diagnostic Methods for the Detection of Leptospirosis

Rethinavelu Gayathri*, Vishwakarma Archana and Mohandass Ramya*

Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Kanchipuram, Chennai, Tamil Nadu, India.

Abstract

Leptospirosis is a widespread infectious disease caused by the spirochete *Leptospira*. The clinical features of leptospirosis are fever, headache, vomiting, jaundice, and the acute form of the disease is commonly called Weil's disease. The microscopic agglutination test (MAT) is a gold standard method used to detect leptospirosis. However, it requires 14 days of time and skilled personnel to detect leptospirosis. Various molecular methods were developed for the rapid detection process, including polymerase chain reaction (PCR), multiplex PCR, nested PCR, real-time PCR, and Loop-mediated isothermal amplification (LAMP). Other immuno-based biosensor kits are readily available for the diagnosis of leptospirosis. Though these methods claim to be highly sensitive and specific, each method has its drawbacks. This review discusses the different molecular diagnostic techniques applied for the diagnosis of leptospirosis; elaborating on each method's sensitivity, specificity, and detection time and the different samples of water, blood, and urine used.

Keywords: Leptospirosis, MAT, LAMP, PCR, marker genes

*Correspondence: ramya.mohandass@gmail.com; +91 9442044277

(Received: January 23, 2022; accepted: March 2, 2022)

© The Author(s) 2022. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
INTRODUCTION
Leptospirosis is a zoonotic illness caused by infection with spirochetes of the genus *Leptospira*. It is primarily found in tropical areas, where seasonal outbreaks are becoming more common. The leptospires are classified as pathogenic *Leptospira* and saprophytic or non-pathogenic *Leptospira*, and it has around 200 pathogenic serovars divided into 25 serogroups. The disease can spread to humans via direct skin contact with contaminated soil, water, and plants, as well as infected animal urine. In the early stage of infection, the disease shows minor symptoms such as cold, fever, headache, and jaundice; later on, it causes Weil’s illness, an acute disease, pulmonary haemorrhage syndrome, and hepatic failure. Although leptospirosis has a wide range of symptoms, a large proportion of infections are misdiagnosed. Its resemblance to other febrile diseases such as pneumonia, typhoid, hepatitis, and malaria complicate its diagnosis. Men appear to be at a higher risk than women of developing the disease. Incubation times for *Leptospira* vary from 2 to 21 days, with an average of ten days in humans. Non-pathogenic *Leptospira* can be found in various wet environments, such as surface water, soil, tap water, and seawater, where saprophytic halophiles are most likely to be found. In order to receive prompt and effective treatment, leptospirosis must be diagnosed as soon as possible.

Morphology
Leptospires are spirochetes, tightly coiled with hooked ends and highly motile in the longitudinal axis. They are $\approx 6-20 \mu$m long and 0.1 μm in diameter. They are fragile and observed only in a phase-contrast microscope or darkfield microscope. Leptospires are obligate aerobes that can grow at optimum temperatures of 28°C to 32°C and a pH range of 6.8 to 7.4. The typical morphology, rotational movement, unique coiled-shaped body, and hooks are the structural characteristics that differentiate leptospires from other organisms.

They have a distinctive double-membrane structure found in other spirochetes, with cytoplasmic membrane and peptidoglycan cell wall being closely associated and covered by an outer membrane. *Leptospira* are classified based on lipopolysaccharide (LPS), the major antigen for bacteria in the outer membrane, which shows structural heterogeneity based on gene differences. The genome of *Leptospira* is made up of two circular chromosomes, and it is more prominent when compared with genomes of other spirochetes, such as *Treponema* spp. and *Borrelia* spp., indicating the ability of *Leptospira* species to live in a wide range of environments.

Transmission
Leptospira is transmitted through contaminated water or animal urine that enters humans through open wounds or inhalation of infected samples (Fig. 1). Leptospires harbor in the kidney of animals, and temporary carriers (cattle), and permanent carriers (rodents). Endemic or epidemic episodes of *leptospiral* infection occur in regions with high rainfall or natural disasters. Humans exposed to such environments are more...
prone to infection. Leptospires can live in a wet environment for several months, depending on suitable environmental conditions, including soils, mud, streams, and rivers, or in organs and tissues of live or dead animals. The majority of mammalian species naturally carry pathogenic leptospires, which are released in the urine of infected animals, including rodents and farm animals, even though they do not show symptoms of infection. As a result, leptospirosis is a serious occupational disease that affects a wide range of people, including farmers, slaughterhouse workers, veterinarians, rodent catchers, sewer workers, and others. They can sometimes enter the human body through inhaling urine droplets or drinking water but are rarely passed from one person to another through sexual contact, transplacentally from the mother to the baby, or breast milk.

Microbiological Diagnostic Methods

Microbiological diagnostic methods were developed to confirm the presence of *Leptospira* spp. in clinical samples. Some microbiological methods for detecting leptospirosis include darkfield microscopy that can be performed using direct microscopy or staining, culture-based methods and, agglutination tests.

Darkfield microscopy

Diagnosis of leptospirosis using dark field microscopy (DFM), an early diagnostic process and cost-effective method, but it has very low sensitivity, and it could not identify pathogenic organisms. Leptospires appear as thin, bright, actively motile rods that move in a rapid spinning and jerking motion. Darkfield microscopy requires approximately 10 leptospires/mL for one cell per field to be visible. Another disadvantage of this method is that it is easy to make false positive and false negative diagnoses, even by experienced hands. The sensitivity of DFM will decrease when the samples are collected after the first week of infection. The immunostaining method can be incorporated with darkfield microscopy to increase the sensitivity.

Culturing of Leptospira

Leptospira spp. can be isolated from blood, urine, and cerebrospinal fluid (CSF). For early detection of leptospires, blood samples from an affected person should be collected within one week of the onset of symptoms; however, after ten days of illness, leptospires in blood samples may disappear before producing any antibody and they may persist in other organs. Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and

![Fig. 1. Transmission cycle of leptospirosis.](image-url)
Studdard medium are commonly used to culture leptospires. The slow growth of Leptospira in laboratories makes it a time-consuming and tedious process.

Immunodiagnostic Methods

The mortality rate from leptospirosis has risen over time. A prompt diagnosis is required to treat this infection in its early stages. As a result, various immunodiagnostic tests are available, including microscopic agglutination tests, enzyme-linked immunosorbent assays (ELISA), and others. **Microscopic agglutination test (MAT)**

The gold standard serological test for Leptospira diagnosis is MAT, which is also used as a reference test in labs for antibody detection. This method involves diluting a patient’s serum with live leptospires in various dilutions to test for antibodies. Typically 5-7 day-old culture are used as an antigen for the test. Antibodies do not appear in the patient serum until seven days after the illness, hence patient sample must be tested after the 7th day. The MAT is read by viewing the microtiter plate under a dark-field microscope or by placing a small drop of the reaction mixture on a microscope slide. A four-fold increase in the paired samples indicates leptospiral infection, with a titer of 1 to 100. Individuals with acute leptospirosis have both IgM and IgG antibodies. Despite its high sensitivity and specificity, the MAT takes longer to confirm positive cases. It is a complex test requiring a large panel of live-cell suspensions to adequately cover the antigenic diversity found in a given testing site. The MAT cannot be standardized because live leptospires are used as antigens.

IgM – ELISA

The enzyme-linked immunosorbent assay (ELISA) is a serological method for detecting IgM antibodies quickly and accurately to diagnose leptospirosis. This assay can detect anti-Leptospiral antibodies as early as 4-5 days after the onset of symptoms. It detects genus-specific antibodies, either IgM or both IgG and IgM, and is faster and more sensitive than MAT. The antigen used for ELISA should be obtained from Leptospira culture. However, this method is prone to producing false-negative results, which is a disadvantage.

Marker genes and their significance

Gene markers are DNA sequences with a known physical location on a chromosome. For Leptospira detection, a variety of molecular markers are used. The lipoprotein coding genes are used as markers to identify Leptospira based on their Lipopolysaccharide (LPS), which is the main antigen in serological classification. (Table 1) lists the markers used in the molecular diagnostic method, including lipoprotein markers, outer membrane proteins (OMP), and others.

Samples Used For Molecular Diagnostic Methods

The stage of infection determines the clinical samples used for leptospirosis molecular diagnostics. Whole blood, urine, serum, post mortem samples, and cerebrospinal fluid are all examples of fluids that can be used as clinical samples for detecting Leptospira. The most common test for Leptospira is a blood sample. In the first 5 to 10 days after infection, molecular methods can be used to diagnose leptospirosis. It’s only good for two weeks’ worth of symptoms. Leptospiries in the blood are gone after 10-15 days. Leptospira is typically transmitted from a carrier to a human through infected animals’ urine. Leptospires are found in urine for a long time and can be used to diagnose the disease at any stage. Organs of affected animals or humans and the aborted foetus of animals were sampled post mortem. The bacterial concentration in serum samples is lower than in freshly isolated blood samples, and it can be collected while the patient is still in the acute stage. A study also reported two cases of Leptospirosis wherein Leptospira nucleic acid was detected in the cerebrospinal fluid, but not in the plasma.

Molecular diagnostic methods

Molecular methods are preferred over serological methods because they detect disease more quickly and earlier. These molecular diagnostic methods have been shown to improve detection specificity and sensitivity. Some of the molecular methods used to detect leptospirosis include polymerase chain reaction (PCR), multiplex PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP). (Table 2) shows how these methods are designed differently depending on the sensitivity, specificity, and temperature of the sample used.

Polymerase chain reaction (PCR)

The polymerase chain reaction (PCR) is a molecular technique for amplifying a specific target DNA to a large number of copies. Since 1989, this method has become a more commonly
Several multiplex PCR techniques were used to detect pathogenic leptospirosis using primer pairs specific for the gene markers Lip32 and 16S rRNA. With high sensitivity and specificity, this assay detected different organisms targeting different genes in a reaction. The specificity and sensitivity of the mPCR assay for sensitive and reliable detection of *Salmonella*, *Leptospira*, and *Brucella* spp. were tested, and the results were compared to single-PCR detection. With a limit of 100 fg for *Brucella* and one pg for both *Salmonella* and *Leptospira* strains, the assay appears to be highly specific and sensitive. Similarly, the mPCR assay detected *Orientia tsutsugamushi*, *Rickettsia typhi*, and pathogenic *Leptospira* spp with 100% sensitivity and 70% specificity, which was much better than serological tests. This method could aid in identifying causative agents during the early stages of these diseases, allowing for more timely and appropriate treatment, and the primers did not react with other bacteria. Multiplex PCR was also used in several studies to detect abortive infectious agents such as *Brucella* spp., *Leptospira* spp., and *Campylobacter* spp. in bovine foetal tissues. In abortive bovine samples of cattle, the mPCR showed 100 percent sensitivity and 93 percent specificity for *Brucella* spp. and *Leptospira* spp. The mPCR can also be a useful tool for diagnosing co-infection. While it is not a replacement for PCR, it can be used to reduce the number of tests needed and provide results more quickly and inexpensively. When sequencing large sequential genomic regions, the disadvantages of mPCR include the fact that using a larger number of primer pairs in a single reaction can reduce amplification efficiency and cause primer cross-reaction.

Nested PCR

Nested PCR is a PCR method that reduces non-specific binding to improve the specificity and sensitivity of a PCR amplification reaction using different pairs of secondary PCR primers. When a low copy number of targets is present in the sample, this method is typically used, and it can increase sensitivity by at least 20 folds. To amplify the Lip32 gene using the PCR method, researchers used DNA samples from pathogenic *Leptospira* spp. and urine and serum samples from *Leptospira* spp. Both studies found that PCR had a low sensitivity when it came to amplifying the 264bp region.
Another pair of primers was designed to amplify the targeting gene to increase amplification sensitivity, resulting in nested PCR amplifying 183bp region from 264bp sequence with high sensitivity.57,70 In 2008, the direct nested PCR method amplified a larger region of the sequence obtained from first-round amplification with 100 percent specificity than nested PCR followed by conventional PCR.58 Apart from the LipL32 gene, a study recently reported that targeting the secY gene from a bovine uterine fragment using nested-PCR as an alternative to conventional PCR for non-amplifiable products yielded significant results.71 In addition, when compared to other serological methods, the nested PCR may provide 100 percent specificity. It has been shown to be a quick way to detect leptospirosis during the acute phase of infection.72 Despite the fact that nested PCR improves specificity and sensitivity, it has a high risk of contamination, which can result in false positives and negatives.57

Real-time PCR

The real-time polymerase chain reaction (RT-PCR) is a technique for quickly diagnosing infectious diseases in clinical laboratories. Real-time PCR is a rapid and sensitive alternative to traditional PCR methods such as SYBR green technology, TaqMan probes, and, more recently, Light Upon eXtension (LUX) technology for detecting pathogenic Leptospira spp. In SYBR Green and LUX-based rtPCRs, precise primer annealing is required to generate amplicon-specific fluorescence signals. In probe-based techniques, specific probe annealing is also used to increase specificity. To determine the exact melting temperature (Tm) of dye and LUX-based rtPCR, a further melting curve analysis is required, and the melting curve can distinguish pathogenic leptospires. The melting curve analysis without the probe is less specific than the probe method, but it can be used instead of expensive probes when amplification has been optimised.73

Table 1. The marker genes targeting Leptospira with their significance

<table>
<thead>
<tr>
<th>No.</th>
<th>Target</th>
<th>Marker genes</th>
<th>Size (kDa)</th>
<th>Significance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lipoprotein (Lip)</td>
<td>LipL32</td>
<td>32</td>
<td>Unique outer membrane protein presents only in pathogenic species.</td>
<td>[29, 30]</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>LipL41</td>
<td>41</td>
<td>A major hydrophobic and detergent-extractable membrane protein.</td>
<td>[31],[32], [33]</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>LipL36</td>
<td>36</td>
<td>Present in the inner surface of the outer membrane. It plays an essential role in pathogenicity.</td>
<td>[34]</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>LipL21</td>
<td>17</td>
<td>An outer membrane protein expressed on both pathogenic and non-pathogenic Leptospira.</td>
<td>[35]</td>
</tr>
<tr>
<td>5.</td>
<td>rrs</td>
<td>16S rRNA</td>
<td>550</td>
<td>Necessary for the initiation of protein synthesis. Useful in identifying the bacteria at the species level.</td>
<td>[36],[37]</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>23S rRNA</td>
<td>990</td>
<td>Encoding the insertion hot spots in the L. interrogans genome</td>
<td>[38]</td>
</tr>
<tr>
<td>7.</td>
<td>Lig</td>
<td>ligA</td>
<td>128</td>
<td>Limited to L. interrogans and L. kirschneri strains</td>
<td>[3],[13]</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>LigB</td>
<td>212</td>
<td>Leptospiral immunoglobulin-like protein is widely present among pathogens and may be useful for their consistent identification and classification</td>
<td>[3],[13],[39]</td>
</tr>
<tr>
<td>9.</td>
<td>omp</td>
<td>ompL1</td>
<td>31</td>
<td>Transmembrane is widely expressed in pathogenic leptospires. Ability to mediate attachment for various extracellular matrix (ECM) and serum components.</td>
<td>[29],[40]</td>
</tr>
<tr>
<td>10.</td>
<td>fla</td>
<td>flaB</td>
<td>31.3</td>
<td>Flagellin B protein for locomotion of the bacteria.</td>
<td>[32],[41], [42],[43]</td>
</tr>
<tr>
<td>11.</td>
<td>sec</td>
<td>secY</td>
<td>13.64</td>
<td>A protein translocase subunit. It has great phylogenetic potential.</td>
<td>[13],[42], [44]</td>
</tr>
<tr>
<td>12.</td>
<td>gyr</td>
<td>gyrB</td>
<td>71.32</td>
<td>DNA gyrase B. Higher nucleotide divergence in Leptospira species</td>
<td>[13]</td>
</tr>
<tr>
<td>Method</td>
<td>Gene target</td>
<td>Sample</td>
<td>No. of samples</td>
<td>Size</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCR</td>
<td>23S rDNA</td>
<td>Urine (Dog)</td>
<td>132</td>
<td>260 and 220 bp</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>Blood and urine (Human)</td>
<td>33</td>
<td>285 bp</td>
<td>G1/G2 – 57.6%</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>Serum (Human)</td>
<td>124</td>
<td>NA</td>
<td>11%</td>
<td>95%</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>Serum (Human)</td>
<td>100</td>
<td>NA</td>
<td>62%</td>
<td>100%</td>
</tr>
<tr>
<td>LipL32</td>
<td>Serum (Human and cattle)</td>
<td>133</td>
<td>407 bp</td>
<td>98.68%</td>
<td>98.25%</td>
</tr>
<tr>
<td>LipL32</td>
<td>Blood (Human)</td>
<td>207</td>
<td>NA</td>
<td>406 bp</td>
<td>87.01%</td>
</tr>
<tr>
<td>LipL32</td>
<td>Blood (Human)</td>
<td>347</td>
<td>NA</td>
<td>289 bp</td>
<td>100%</td>
</tr>
<tr>
<td>LipL32</td>
<td>Urine (Cattle)</td>
<td>170</td>
<td>497 bp</td>
<td>52%</td>
<td>79%</td>
</tr>
<tr>
<td>Multiplex PCR</td>
<td>LipL32</td>
<td>Bovine fetal Sample (Hamster)</td>
<td>63</td>
<td>223bp</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>31kDa for Brucella spp.</td>
<td>DNA (Water)</td>
<td>32</td>
<td>423bp</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>16S rRNA for Leptospira spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Water sample</td>
<td>100</td>
<td>474bp</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SecY</td>
<td>430bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fiaB</td>
<td>793bp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Culture</td>
<td>10</td>
<td>330bp</td>
<td>21.8pg</td>
</tr>
<tr>
<td></td>
<td>16SrRNA</td>
<td>DNA (Human) DP2 for leptospira spp. and 23 other</td>
<td>83</td>
<td>166bp</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Blood (Human)</td>
<td></td>
<td>243bp</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Gene target</td>
<td>Sample</td>
<td>No. of samples</td>
<td>Size</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Nested PCR</td>
<td>LipL32</td>
<td>Culture DNA</td>
<td>35</td>
<td>183bp in 264bp</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Serum (Human)</td>
<td>59</td>
<td>183bp in 264bp</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Urine (Cattle)</td>
<td>30</td>
<td>859bp in 497bp</td>
<td>200pg</td>
</tr>
<tr>
<td></td>
<td>flaB</td>
<td>Blood (Human)</td>
<td>74</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Real time PCR</td>
<td>secY</td>
<td>Blood Serum (Human)</td>
<td>133</td>
<td>245bp</td>
<td>93%</td>
</tr>
<tr>
<td>SYBR Green</td>
<td>LipL32</td>
<td>Blood Serum (Human)</td>
<td>266</td>
<td>NA</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>16S rRNA</td>
<td>Blood Serum (Human)</td>
<td></td>
<td>NA</td>
<td>56%</td>
</tr>
<tr>
<td>Taqman probe</td>
<td>LipL32</td>
<td>Blood Urine</td>
<td>36</td>
<td>NA</td>
<td>86%</td>
</tr>
<tr>
<td></td>
<td>16S rRNA</td>
<td>Blood Urine</td>
<td></td>
<td>NA</td>
<td>100%</td>
</tr>
<tr>
<td>SYBR Green</td>
<td>secY</td>
<td>Blood Serum (Human)</td>
<td>119</td>
<td>203bp</td>
<td>67.7%</td>
</tr>
<tr>
<td>Probe based</td>
<td>LipL32</td>
<td>Blood, serum, urine (Human)</td>
<td>119</td>
<td>NA</td>
<td>93%</td>
</tr>
<tr>
<td>Method</td>
<td>Gene target</td>
<td>Sample</td>
<td>No. of samples</td>
<td>Size</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Loop mediated isothermal amplification</td>
<td>rrs</td>
<td>Blood (Human)</td>
<td>133</td>
<td>NA</td>
<td>43.6%</td>
</tr>
<tr>
<td></td>
<td>LipL41</td>
<td>NA</td>
<td>37.6%</td>
<td>NA</td>
<td>90.2%</td>
</tr>
<tr>
<td></td>
<td>LipL41</td>
<td>Urine (Rat)</td>
<td>18</td>
<td>NA</td>
<td>2 genome equivalent per reaction</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Serum and urine (Cat) strains</td>
<td>172</td>
<td>NA</td>
<td>91.69%</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>DNA (Human)</td>
<td>24</td>
<td>438bp</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Bacterial 16S rRNA (Human)</td>
<td>24</td>
<td>NA</td>
<td>91.69%</td>
</tr>
<tr>
<td></td>
<td>LipL32</td>
<td>Bacterial 16S rRNA (Human)</td>
<td>24</td>
<td>NA</td>
<td>91.69%</td>
</tr>
</tbody>
</table>

Legends: NA-Not applicable
When comparing the sensitivity of two molecular methods, rrs real-time PCR and combination of 16S rRNA/ Lipl32 real-time PCR, it was discovered that the combination of 16S rRNA and Lipl32 has a higher sensitivity than rrs RT-PCR. Furthermore, RT-PCR can improve the detection limit of blood and urine samples. Moreover, a few other studies found that RT-PCR is more accurate than serological and microbiological methods for a variety of target genes. Despite the fact that RT-PCR is a more advanced method than conventional PCR, both can detect disease before antibodies are produced, which can be used as an early diagnostic method. In comparison to traditional PCR, quantitative real-time PCR has the advantage of quickly, accurately, and sensitively diagnosing leptospirosis. This method reduces the risk of a false-positive result while also reducing contamination. To interpret the results, advanced equipment with a monitor connection is required, as is training to perform the assay.

Loop-mediated isothermal amplification (LAMP)

Loop-mediated isothermal amplification is a nucleic acid-based amplification method that can amplify even a single copy of target DNA in samples in less than one hour under isothermal conditions. This method uses six specially developed primers, four of which are used in the LAMP’s primary stage and two of which are used in the LAMP’s later stages. LAMP is a low-cost, simple method that can be observed with either gel electrophoresis or naked eyes. The first application of the LAMP technique for rapid detection of leptospirosis was in 2008, when the LipL41 gene was targeted with a detection limit of 100 copies and a higher specificity. However, in 2011, LAMP, which used purified DNA for amplification, determined a lower detection limit of 20 copies by targeting the 16S rRNA gene. To make the sampling process easier, a Lepto-rrs method was developed to amplify target DNA without purification of DNA from cattle urine. This method has a higher detection limit (2 genome equivalent) than previous studies that showed heat-denatured DNA can increase sensitivity. LAMP targeting the LipL32 gene in combination with the LipL41 gene was found to have a detection limit of 10 copies per reaction, indicating that LipL32 LAMP has higher diagnostic and analytical sensitivity. A systematic review and meta-analysis study published in 2021 compared LAMP and PCR and concluded that LAMP has higher accuracy and sensitivity. Real-time LAMP, multiplex LAMP, and LigB-LAMP were among the LAMP-based methods used to diagnose Leptospira spp. Targeting LipL32 led to the development of the real-time LAMP (RealAmp) method for high sensitivity and rapid detection of leptospirosis, and the LipL41 gene can distinguish pathogenic and non-pathogenic Leptospira spp. from environmental water samples. Within 70 minutes of reaction amplification, real-time amp has been shown to have higher sensitivity than real-time PCR. Multiplex PCR with lateral flow dipstick, on the other hand, has developed with 100 percent specificity. Another LAMP-based method, LigB-LAMP, was created to target the LigB gene using Hydroyx naphthol blue (HNB) and SYBR green dye, which has higher specificity than the traditional LAMP method. All of these LAMP techniques, on the other hand, can amplify the DNA target for Leptospira spp. diagnosis with greater efficiency, sensitivity, specificity, and rapidity at a lower cost. This method does not necessitate complex equipment; the reaction can be carried out in a water bath at the proper temperature. The method is widely applicable for detecting leptospirosis due to its simplicity.

Advanced molecular method for the detection of leptospirosis

Due to their improved sensitivity and specificity, biosensor-based technology has become an excellent platform in leptospirosis diagnostics in recent years, overcoming the drawbacks of PCR-based molecular techniques. Nanoparticle-based biosensors, aptamer-based biosensors, DNA biosensors, and other biosensors are all used to detect Leptospira. One of the DNA-based biosensors designed for the detection of leptospirosis is the electrochemical DNA biosensor. It can target organisms and detects the presence of L. interrogans in samples with extreme sensitivity, specificity, and speed. AuNPs (Silver Nanoparticles) – modified multiwalled carbon nanotubes immobilised with an amino-labeled ssDNA with polyamidoamine — and graphene quantum dots with cysteine as a linker make up the biosensor. In addition, multiple cross-
displacement amplification (MCDA) is a method for amplifying nucleic acids in an isothermal environment to detect more bacteria, and a label-based lateral flow dipstick biosensor (LFB) assay was developed to detect *Leptospira* based on antibody binding. MCDA and LFB were combined in a study to detect *Leptospira* spp. from a pure culture by targeting the *LipL41* gene. All pathogenic *L.interrogans* were found to be positive, while all non-pathogens were found to be negative. Similarly, a study using a lateral flow dipstick biosensor assay combined with multiplex LAMP found that thirteen pathogenic *Leptospira* species, two intermediate *Leptospira* species, one non-pathogenic *Leptospira* species, and twenty-eight other bacterial species had 100% specificity.

Future aspects of molecular diagnostic methods

Innovative diagnostic techniques could help detect leptospirosis even more in the future. Isothermal amplification and real-time LAMP are two new detection methods that have high sensitivity and specificity while also being quick. Furthermore, next-generation sequencing (NGS) has been used to diagnose leptospirosis, which may lead to a better understanding of the molecular pathogenesis and virulence evolution of *Leptospira* spp. Furthermore, once multiplex real-time PCR, microarrays, and next-generation sequencing (NGS) have been shown to be a cost-effective diagnostic tool for leptospirosis diagnosis, they may become commercially available and more widely used.

CONCLUSION

Although MAT and ELISA are commonly used serological diagnostic methods for detecting *Leptospira* spp., they have several drawbacks, including the need for expert handling and a long detection time. Despite this, several molecular diagnostic methods for rapid detection have been developed, which overcome the limitations of serological methods. Depending on the molecular marker genes and clinical samples used for detection, these various molecular methods can detect the presence of *Leptospiral* at an earlier stage with high sensitivity and specificity in a short time. The sensitivity and specificity of several molecular techniques for diagnosing leptospirosis that have been reported so far, as well as their pros and cons, are reviewed, analysed, and compared in this study. Further studies are required for the investigation of the clinical and epidemiological implications of leptospirosis molecular detection.

ACKNOWLEDGEMENTS

The authors express their gratitude to SRM Institute of Science and Technology, Chennai, Tamil Nadu, India, for their support in completing the study.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION

All authors have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

None.

ETHICS STATEMENT

This article does not contain any studies with human participants or animals performed by any of the authors.

AVAILABILITY OF DATA

All datasets generated or analyzed during this study are included in the manuscript.

REFERENCES

62. Ahmed AA, Goris MG, Meijer MC. Development of Lip32 real-time PCR combined with an internal and

