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Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface 
decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different 
phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high 
respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible 
to microbial contamination but it was not feasible to be decontaminated by normal water washing. 
It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without 
aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure 
plasma sources widely applied in food industry. This study demonstrated the influence of corona 
discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial 
characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed 
that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight 
loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, 
Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble 
solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 
6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, 
respectively. Findings of this research proved that corona discharge plasma pretreatment would be 
appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom 
during preservation.
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INTRODUCTION
 Plasma treatments were widely applied 
in medicine, agriculture and postharvest sector. 
Different kinds of plasma technologies were 
classified as gases (air, nitrogen, helium, argon) 
and methods (plasma jet, corona discharge, gliding 
arc discharge, dielectric barrier discharge) to 
release plasma at atmospheric pressure and low 
temperature.1,2 The numerous benefits of plasma 
treatment included cost-effective running, simply 
convenient manipulation and environmentally 
protective friendliness.2,3 Plasma technology was 
successfully applied in sterilization of medical 
equipment, tooth bleaching.2 Plasma treatment 
could produce bioactive substances free from 
toxic residue.4 Plasma treatment were proven 
to be adaptable for germinating improvement, 
plant morphology, toxic decontamination, contact-
surface disinfection (viruses, bacteria, fungi), 
enzyme retardation and shelf-life extension of 
fresh fruits and vegetables.5-8 In agriculture, under 
plasma treatment the out layer of the fragrant rice 
flour became more hydrophilic to uptake more 
moisture to reduce thermal treatment duration.9 
The effectiveness of plasma technology relied on 
the reactor profile (electrode organize, length from 
the product layer) and the technical variables of 
the equipment (gas component, speed current, 
power, temperature, time).10-12 Corona discharge 
was released by using high voltage between two 
sharp electrodes. The corona discharge electrode 
was specified by a needle. The ionization emitted 
a beam surround this positive electrode. Corona 
charge had weak beam with low electron and ion 
energy.13 Enoki mushroom (Flammulina velutipes) 
was mostly planted for succulent and add-on 
aims.14 This mushroom was rich in polysaccharide 
(both low-digestible and non-digestible), vitamin 
B1, mycosterol, dietary fiber contributing to the 
alleviation of blood sugar, blood cholesterol, 
hypertension, thrombotic, hypolipidemic, 
inflammation, cancer and tumor.15-22 Mycosterol 
could effectively minimize the total cholesterol 
and low density lipoprotein in blood and plasma.23

 Polyphenol in Enoki mushroom was 
proven to be better prevention in probability of 
cardiovascular disease.24,25 Extract from Flammulina 
velutipes greatly scavenged a-a,diphenyl-
picrylhydrazyl free radicals and presented reducing 
power.26 Flammulina velutipes powder and extract 

were useful on the lipid metabolism to decrease 
the low density lipoprotein of hamster.27 Due to 
attractive flavor, aroma, and nutritional proximate; 
Enoki mushroom was highly appreciated to be 
eaten in fresh or minimal processing; therefore 
microbial safety should be strictly paid attention. 
Enoki mushroom was commonly infected by 
foodborne-pathogen like Salmonella, Listeria, 
and E.coli.28-30 Both spoilage microorganisms 
were mainly responsible for quality degradation 
in Enoki mushroom at postharvest. It’s necessary 
to control microbial contamination, maintain 
physicochemical attributes of Enoki mushroom in 
an extended shelf-life.
 There were numerous strategies to 
resolve these problems based on physical and 
chemical approaches.31 Non-contact water 
treatment was highly preferred to avoid water 
remain on the surface that could seriously damage 
the integrity of mushroom by decay. Plasma jet 
treatment got a great attention due to its excellent 
efficacy in microbial decontamination proven 
on different products such as vegetable leaf, 
mung bean sprout, red chicory, citrus fruit.32-40 
In one report, plasma activated water was 
applied to manage postharvest quality of button 
mushroom.41 In another study, pressure plasma jet 
was investigated the effectiveness of the treatment 
time to be effectively eliminate antimicrobial 
load on mushroom surface.42 Similarly, plasma 
treatment was proven to be efficient to inactivate 
microorganisms on product’s surface.43-46 Shelf-life 
of raw Enoki mushroom was normally about 2-3 
days at normal condition. Purpose of our study 
was to find the appropriate method to extend 
its raw stability during post-harvest by verifying 
the influence of plasma jet power values on the 
physicochemical and microbial characteristics 
of Enoki mushroom during 10 days of storage at 
ambient temperature. Plasma treatment would 
be an efficient non-thermal treatment to avoid 
negative impact of heat on natural properties of 
this valuable mushroom.

MATERIAL AND METHOD
Material
 Enoki mushroom was harvested in farm 
of Soc Trang province, Vietnam. Chemical reagents 
such as oxalic acid, 2,6-dichlorophenol-indophenol 
reagent were all analytical grade. Corona discharge 
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equipment (model HV-X10, Tantec) was used to 
treat Enoki mushroom. This equipment operated 
under mains voltage and frequency (100-240 
VAC 50/50 Hz), output voltage/power (Max. 400 
Vp/0-1000 Watt), power consumption (1200 VA), 
dimensions in mm (430 x 470 x 200, LxWxH).
Researching method
 In this research, the corona discharge 
plasma treatment time 3 min and oxygen flow 
rate 0.6 mL/min were fixed while the power was 
varied from 0-210 W. After treatment, the enoki 
mushroom was packed in vacuum bag and stored 
at ambient temperature for 10 days. In two-day 
interval, 15 samples were taken to evaluated the 
weight loss, total soluble solid, ascorbic acid, total 
plate count, Coliform and Enterobacteriaceae. 
Weight loss (%) was examined by comparing the 
reduction percentage of the initial weight and the 
weight at sampling interval. Total soluble solid 
(oBrix) was evaluated by hand-held refractometer 
(Atago, model: Master-53M). Ascorbic acid 
content (mg/100 g) was determined by applying 
a 2,6-dichlorophenol indophenol manual titration 
protocol. Total Aerobic count (log CFU/g), Coliform 
(log CFU/g), Enterobacteriaceae (log CFU/g) were 
enumerated by 3M-petrifilms. The 3M™ Petrifilm™ 
Aerobic Count Plate was a ready-made culture 
medium system that contained modified Standard 
Methods nutrient, a cold-water-soluble gelling 
agent and an indicator that facilitates colony 
enumeration. The 3M™ Petrifilm™ Coliform, 
Enterobacteriaceae Count Plate were sample-
ready-culture medium systems that contained 
modified Violet Red Bile Glucose (VRBG) nutrient, a 
cold-water-soluble gelling agent, and a tetrazolium 
indicator that facilitates colony enumeration. 5 g 
of sample was blended with 45 ml of phosphate 
buffer dilution. Lifting the top film, 1 mL of sample 
suspension was dispensed onto the center of 
bottom film, leaving the top film down. The 
counting plates were incubated at 34-37 °C in 48±2 
h for total Aerobic count; 44°C ± 1°C in 24h ± 2h for 
Coliform; 34-37 °C in 24±2 h for Enterobacteriaceae 
in a horizontal position by incubator (model 
IF450, Memmert). Red colonies without closely 
associated gas bubbles was identified as coliform. 
Enterobacteriaceae colonies would appear as 
red colonies associated with yellow zones, red 
colonies associated with gas bubbles, red colonies 
associated with yellow zones and with gas bubbles 

(according to The 3M™ Petrifilm™ Aerobic, 
Coliform and Enterobacteriaceae Interpretation 
Guide). Total Aerobic count, Coliform and 
Enterobacteriaceae were counted with the 
3M™ Petrifilm™ Plate Reader. According to Food 
Standards Australia New Zealand 2016 at website: 
http://www.foodstandards.gov.au and http://
www.foodstandards.govt.nz, the acceptable limits 
of microorganisms in ready-to-eat foods like fresh 
fruits and vegetables were not applicable for total 
Aerobic count (log CFU/g), coliform (4 log CFU/g), 
and Enterobacteriaceae (4 log CFU/g).
 The reason for analyzing only these 
microbiological parameters and no others could 
be explained that they were the most popular 
hygienic indicators represented as quality criteria 
for this kind of product.
Statistical analysis
 Al l  tests were arranged in three 
replications. The values were expressed as average 
± standard deviation. Statistical summary was 
executed by the Statgraphics Centurion version 
XVI.

RESULT AND DISCUSSION
Physicochemical properties
Weight loss
 The effect of corona discharge plasma 
power (control, 120, 150, 180, 210 W) on the 
weight loss of Enoki mushroom was presented 
in Table 1. It’s rather easy to notice that there 
was a gradual increment of weight loss during 
storage. Weight reduction could be due to water 
loss during mushroom respiration.41 Weight 
loss was not beneficial for mushroom because 
it caused a remarkable tissue shrinkage leading 
to negative appearance as well as commercial 
value. Therefore, weight loss should be minimal. 
The greatest weight loss was occurred on Enoki 
mushroom pretreated at 210 W (2.12±0.05 to 
6.10±0.06 %) while the lowest weight loss was 
noticed on control sample (0.19±0.11 to 2.61±0.03 
%). There was no significant difference of weight 
loss among control sample, sample pretreated at 
120 W and sample pretreated at 150 W. Under the 
treatment of corona discharge plasma power 150 
W, the weight loss of Enoki mushroom increased 
from 0.63±0.04 % at the 2nd day to 3.35±0.07 
% at the 10th day. Our result was in accordance 
with finding a similar report. Weight loss was 
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 Table 2. Total soluble solid (oBrix) of Enoki mushroom pretreated by corona discharge plasma power 
(W)

Plasma power   Storage (days)
(W) 2 4 6 8 10

Control 8.02±0.04a 7.95±0.01a 7.84±0.03a 7.62±0.02a 7.37±0.04a

120 8.00±0.03a 7.87±0.02a 7.75±0.04a 7.54±0.03a 7.29±0.02a

150 7.99±0.05a 7.61±0.03ab 7.43±0.01ab 7.21±0.04ab 6.98±0.03ab

180 7.97±0.02a 7.45±0.04b 7.17±0.02b 7.02±0.03b 6.67±0.02b

210 7.96±0.04a 7.38±0.02b 7.09±0.03b 6.95±0.01b 6.58±0.04b

 Values were the mean of three replications; Values in row followed by the same letter/s were not differed significantly (α = P=0.05)

 Table 3. Ascorbic acid (mg/100g) of Enoki mushroom pretreated by corona discharge plasma

Plasma power   Storage (days)
(W) 2 4 6 8 10

Control 16.35±0.04a 16.19±0.03a 15.87±0.02a 15.52±0.04a 15.17±0.05a

120 16.29±0.03a 16.10±0.05a 15.76±0.06a 15.41±0.05a 15.09±0.03a

150 16.01±0.05ab 15.83±0.06ab 15.28±0.04ab 15.03±0.03ab 14.81±0.04ab

180 15.73±0.04b 15.39±0.03b 14.97±0.05b 14.69±0.02b 14.32±0.01b

210 15.08±0.06c 14.60±0.04c 14.04±0.03c 13.18±0.04c 12.27±0.05c

 Values were the mean of three replications; Values in row followed by the same letter/s were not differed significantly (α = P=0.05).

 Table 1. Weight loss (%) of Enoki mushroom pretreated by corona discharge plasma power (W)

Plasma power   Storage (days)
(W) 2 4 6 8 10

Control 0.19±0.11c 0.54±0.06c 1.07±0.05c 1.84±0.06c 2.61±0.03c

120 0.27±0.06c 0.61±0.08c 1.18±0.08c 1.93±0.09c 2.80±0.08c

150 0.63±0.04bc 1.04±0.05bc 1.72±0.07bc 2.41±0.06bc 3.35±0.07bc

180 1.04±0.07b 1.61±0.06b 2.23±0.09b 2.86±0.08b 3.62±0.09b

210 2.12±0.05a 3.25±0.07a 4.17±0.08a 5.06±0.07a 6.10±0.06a

 Values were the mean of three replications; Values in row followed by the same letter/s were not differed significantly (α = P=0.05).

higher in mushroom treated with pressure plasma 
compared to the control.42

Total soluble solid
 Total soluble solid content (8.13±0.01 
oBrix) of Enoki mushroom was analyzed by hand-
held refractometer in the 1st day of storage. 
There was slight degradation of total soluble 
solid content in all groups during storage. At 
the 10th day of storage, the lowest total soluble 
solid content (6.58±0.04 oBrix) was noticed in the 
Enoki mushroom pretreated by corona discharge 
plasma power 210 W; meanwhile the highest 
total soluble solid content (7.37±0.04 oBrix) was 

recorded in the control. There was no significant 
difference of total soluble solid content among 
control sample, sample pretreated at 120 W and 
sample pretreated at 150 W. Under the treatment 
of corona discharge plasma power 150 W, the total 
soluble solid content of Enoki mushroom remained 
6.98±0.03 oBrix the 10th day of storage (Table 2).
Ascorbic acid content
 Total ascorbic acid content (16.49±0.03 
mg/100 g) of Enoki mushroom was analyzed 
by applying a 2,6-dichlorophenol indophenol 
manual titration in the 1st day of storage. There 
was gradual decomposition of ascorbic acid 
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Table 4. Total Aerobic count, coliform count and Enterobacteriaceae count (log CFU/g) of Enoki mushroom 
pretreated by corona discharge plasma power (W) at day zero

Plasma power (W) Control 120 150 180 210

Total Aerobic count  4.81±0.05a 4.19±0.07ab 3.57±0.06b 3.01±0.04bc 2.47±0.05c

(log CFU/g) 
Coliform count  2.09±0.02a 1.87±0.03ab 1.60±0.00b 1.28±0.01bc 1.03±0.02c

(log CFU/g) 
Enterobacteriaceae count 1.67±0.01a 1.43±0.00ab 1.28±0.03b 1.16±0.02bc 1.01±0.01c

(log CFU/g)

Values were the mean of three replications; Values in row followed by the same letter/s were not differed significantly (α = P=0.05)

Fig. 1. Total Aerobic count (log CFU/g) of Enoki mushroom pretreated by corona discharge plasma power (W)

content in all groups during storage. At the 10th 
day of storage, the lowest ascorbic acid content 
(12.27±0.05mg/100 g) was noticed in the Enoki 
mushroom pretreated by corona discharge plasma 
power 210 W; meanwhile the highest ascorbic acid 
content (15.17±0.05 mg/100 g) was recorded in 
the control. There was no significant difference 
of ascorbic acid content among control sample, 
sample pretreated at 120 W and sample pretreated 
at 150 W. Under the treatment of corona discharge 
plasma power 150 W, the ascorbic acid content of 
Enoki mushroom remained 14.81±0.04 mg/100 g 
at the 10th day of storage (Table 3).
 As above mentioned, table 1-3 showed 
the impact of corona discharge plasma treatment 
to physicochemical characteristics like weight loss, 
total soluble solid, and ascorbic acid content of 

Enoki mushroom during storage. Stability of total 
soluble solid and ascorbic acid could be varied 
depending on the plasma operating variables; 
power was a case in point.10,47 The low penetration 
depth of the plasma radiation was beneficial 
to retain more thermal-sensitive constituents 
inside the matrix. Plasma treatment at high 
dosage could negatively affect to physicochemical 
properties and shelf-life of products as well as 
consumer acceptability.48 Plasma treatment 
released the reactive oxygen-based species 
and reactive nitrogen-based species which 
directly altered biochemical processes like higher 
growth hormones and metabolites induced to 
biosynthesis more total soluble solid and ascorbic 
acid.49 Corona discharge of plasma treatment was 
demonstrated to effectively eliminated ethylene 
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accumulation thus limiting senescence.50 Short 
plasma treatment duration caused no significant 
difference on ascorbic acid content in treated 
fruits and vegetables.51 Ascorbic acid loss of fresh-
cut fruit and vegetable was noticed by plasma 
treatment.52 Applied voltage and treatment 
duration had significant impact on the ascorbic 
acid content.53 No significant reduction of ascorbic 
acid content in kiwifruit after plasma treatment.54 
The stability of cherry tomatoes was greatly 
prolonged while organoleptic attributes was 
maintained in a reasonable degree after corona 
discharge plasma treatment.55

 Plasma treatment retained the 95% 
ascorbic acid in beverage.56 96% retention of 
ascorbic acid content in banana was noticed after 
plasma treatment.57 Decomposition of ascorbic 
acid could be due to the reaction of reactive 
plasma species, light sensitive oxidation during 
the treatment.58-59

Microbial load
Total Aerobic count
 The effect of corona discharge plasma 
power (control, 120, 150, 180, 210 W) on the total 
plate count of Enoki mushroom was reported in 
Fig. 1. There was increasing trend of total plate 
count during storage. The lowest total Aerobic 
count was noticed on Enoki mushroom pretreated 
at 210 W (2.47±0.05 to 4.17±0.04 log CFU/g) while 
the highest total Aerobic count was shown on 

control sample (4.81±0.05 to 6.91±0.03 log CFU/g) 
at day zero (f 4). There was significant difference of 
total plate count between the control sample and 
sample pretreated at 150 W. Although treatment 
at 210 W showed the lowest total Aerobic count, 
we did not choose this parameter for application 
as it would negative impact to physicochemical 
attributes of Enoki mushroom (as presented in 
above experiments). Under the treatment of 
corona discharge plasma power 150 W, the total 
Aerobic count of Enoki mushroom increased from 
3.57±0.06 log CFU/g at the initial day to 4.71±0.05 
log CFU/g at the 10th day.
Coliform
 The influence of corona discharge plasma 
power (control, 120, 150, 180, 210 W) on the 
Coliform load of Enoki mushroom was presented 
in Fig. 2. There was gradual ascending trend of 
Coliform load during storage. The lowest Coliform 
load was noticed on Enoki mushroom pretreated 
at 210 W (1.03±0.02 to 2.08±0.03 log CFU/g) 
while the highest Coliform was shown on control 
sample (2.09±0.02 to 3.98±0.02 log CFU/g) at day 
zero (table 4). There was significant difference 
of Coliform between the control sample and 
sample pretreated at 150 W. Under the treatment 
of corona discharge plasma power 150 W, the 
Coliform of Enoki mushroom increased from 
1.60±0.01 log CFU/g at the initial day to 3.17±0.02 
log CFU/g at the 10th day.

Fig. 2. Coliform (log CFU/g) of Enoki mushroom pretreated by corona discharge plasma power (W)
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Enterobacteriaceae
 The impact of corona discharge plasma 
power (control, 120, 150, 180, 210 W) on the 
Enterobacteriaceae load of Enoki mushroom 
was presented in Fig. 3. There was gradual 
ascending trend of Enterobacteriaceae load during 
storage. The lowest Enterobacteriaceae load was 
noticed on Enoki mushroom pretreated at 210 
W (1.01±0.01 to 1.73±0.02 log CFU/g) while the 
highest Enterobacteriaceae was shown on control 
sample (1.67±0.01 to 2.60±0.03 log CFU/g) at day 
zero (table 4). There was significant difference of 
Enterobacteriaceae between the control sample 
and sample pretreated at 150 W. Under the 
treatment of corona discharge plasma power 150 
W, the Enterobacteriaceae of Enoki mushroom 
increased from 1.28±0.00 log CFU/g at the initial 
day to 2.13±0.01 log CFU/g at the 10th day.
 Ta b l e  4  s h owe d  t h e  i m p a c t  o f 
corona discharge plasma to microbiological 
criteria like total Aerobic count, coliform and 
Enterobacteriaceae count of Enoki mushroom 
at day zero. Mechanism of microbial inactivation 
could be due to emission of reactive oxygen and 
nitrogen species showing a strong antimicrobial 
validity by hurting macromolecules via oxidizing 
proteins, nucleic acids, and lipids. Radiation 
emitted from corona discharge also could demolish 
the microbial membranes, structural cell operation 
and genetic ingredient of pathogens.48 Moreover, 
microorganism were abrasive by cell shooting of 

electrical elements, disrupting the proper chemical 
links and widening the cell membrane to the 
intrusion of reactive species into the internal body 
of microbe. Molecular pieces were formed inducing 
to morphological modification of the tissue, and 
oxidation of cytoplasmic membrane, protein and 
DNA hence ending microbial inactivation.60 The 
antimicrobial effect of the plasma treatment 
greatly relied on the layer texture and layer to 
volume proportion of the sample.11,60 Different 
literatures mentioned the effectiveness of plasma 
treatment to microbial decontamination. A 
significant reduction of Pseudomonas load was 
noticed after 10 min plasma treatment.61 Listeria 
monocytogenes in ham was inactivated by 2 
log after plasma treatment.62 In another report, 
Bacillus subtilis spores were completely inhibited 
by low plasma power density in short treatment 
duration.63 Some spoilage and pathogenic 
microorganisms colonized on the food surfaces to 
form biofilm. Biofilm elimination could be achieved 
by attacking extracellular substrate, cells and cell 
accessories, and thinning biofilm covering.60 Plasma 
treatment had little impact on biofilm removal.64 
Besides, high dosage of plasma treatment made 
protein denaturation leading to inhibition of 
thermophilic bacteria.49 45 s plasma treatment 
significantly inactivated aerobic microorganisms 
on blueberries.65 Respiration rate of button 
mushroom was effectively retarded with a delay 
in softening and better shelf-life extension without 

Fig. 3. Enterobacteriaceae (log CFU/g) of Enoki mushroom pretreated by corona discharge plasma power (W)
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any serious impact on color, acidity, antioxidant 
capability after plasma treatment.41 Enterobacter 
aerogenes on fruit was remarkably inactivated 
by acidified buffer previously initiated by plasma 
treatment.66 Plasma treatment preserved higher 
contents of total soluble solid and ascorbic acid 
in Shiitake mushroom.67 Pressure plasma was 
effective in inactivation of microorganism on 
mushroom surface with 60–75% reduction of 
Escherichia coli.42

 
CONCLUSION
 Corona discharge plasma technology was 
effective to achieve food stability at ambient or 
sub-lethal temperatures to minimize the negative 
thermal impacts on the bioactive ingredients. The 
most important advantages of corona discharge 
plasma treatment in this research we could see 
that there was minimal water usage, free from 
hazardous solvents or preservatives. Corona 
discharge plasma treatment should be conducted 
at power 150 W, treatment time 3 min and oxygen 
flow rate 0.6 mL/min to maintain physicochemical 
properties of weight loss, total soluble solid, 
ascorbic acid while slowing down microbial 
proliferation of total Aerobic count, Coliform and 
Enterobacteriaceae during 10 days of ambient 
storage.
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