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Abstract
During the different waves of the coronavirus (COVID-19) pandemic, there has been an increased 
incidence of diabetes mellitus and diabetic foot infections. Among gram-negative bacteria, 
Pseudomonas aeruginosa is the predominant causative agent for diabetic foot ulcer infections in low-
resource countries. P. aeruginosa possesses a variety of virulence factors, including biofilm formation. 
Biofilm formation is an important benchmark characteristic in the pathophysiology of diabetic foot 
ulceration. The main objective of the current study was to identify the most commonly isolated 
organisms and their antibiotic susceptibility patterns in diabetic foot patients during the COVID-19 
pandemic. We also determined the genes associated with bacterial persistence and biofilm formation 
in the predominantly isolated organism. Accordingly, 100 wound swab samples were collected from 
diabetic foot patients from different hospitals in Alexandria, Egypt. Through phenotypic detection of 
biofilm formation, 93% (40) of the 43 P. aeruginosa isolates examined were categorized as biofilm 
producers. Molecular detection of the biofilm-encoding genes among the 43 P. aeruginosa isolates was 
as follows: algD (100%), pelF (88%) and pslD (49.7%), and this highlights a need for biofilm formation 
inhibitors to prevent the persistence of bacterial pathogens, and thus achieve better clinical outcomes 
in diabetic foot ulcer infections.
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INTRODUCTION
 According to the International Diabetes 
Federation, there has been an increased 
incidence of diabetes mellitus (DM) during the 
different waves of the coronavirus (COVID-19) 
pandemic.1-4 A study in Wuhan reported that 
diabetic patients constituted 2–20% of all positive 
cases, and accounted for 7.1% of intensive care 
unit admissions.5,6 Another study in New York 
reported that 33.8% of COVID-19 positive patients 
were diabetic. Accordingly, several reports have 
attempted to determine the reason for the 
correlation between COVID-19 and DM. One 
hypothesis is that the angiotensin-converting 
enzyme 2 (ACE2) receptor necessary for the entry 
of SARS-CoV-2 is overexpressed in diabetic patients 
taking antidiabetic medications.5,7-9 In addition, 
the use of corticosteroids in COVID-19 patients 
increases blood glucose levels in both diabetic and 
non-diabetic individuals.5,10 Additionally, diabetic 
patients are more vulnerable to viral and bacterial 
infections.5, 11 The COVID-19 pandemic has posed 
many challenges for the diabetic community, 
such as lack of sufficient resources, overworked 
health care workers, and scarcity of proper care 
for diabetic patients to avoid the development of 
infections.12, 13 

 Diabetic foot ulcer (DFU) is a common 
complication of DM, with an increasing prevalence 
worldwide.14 Thirty-three percent of all diabetic 
patients are expected to be diagnosed with DFUs 
at least once during their lifetime. Untreated DFUs 
can result in leg amputations, permanent disability, 
and increased mortality rates in DM patients.13 
DFUs are most commonly associated with clinical 
infections with different etiological agents.15-22 
Microbiological studies have shown that diabetic 
foot ulcers generally have polymicrobial etiologies. 
The etiological agent may differ from one 
individual to another, and from country to country. 
Aerobic gram-positive bacteria that are frequently 
isolated in DFUs include Staphylococcus spp. beta-
hemolytic Streptococcus and Enterococcus spp. 
Escherichia coli, Proteus mirabilis, and Klebsiella 
pneumoniae are among the gram-negative 
bacteria that are most commonly isolated in 
DFUs.23 P. aeruginosa is the predominant causative 
agent for DFUs in low-resource countries.15-22 
Pseudomonas spp. are generally encountered 
in immunocompromised patients due to their 

high pathogenicity and variety of virulence 
factors, including biofilm formation.24 Virulence 
factors and biofilm formation are the benchmark 
characteristics in the pathophysiology of DFUs.25 
The formation of biofilms by bacteria is considered 
to be the cornerstone that provides bacteria 
protection against several environmental factors, 
mediates persistence in medical devices, facilitates 
immune system evasion, and contributes to  
the development of antimicrobial resistance.15,21,22 
Antibiotic resistance is a global public health 
concern, especially in patients with diabetic foot 
infections (DFIs). Multidrug resistance results 
in poor clinical outcomes, financial burden, 
and increased morbidity and mortality in DFU 
patients.23

 The main objective of the current study 
was to identify the commonly isolated organisms 
and their antibiotic susceptibility patterns in 
DFU patients during the COVID-19 pandemic. In 
addition to phenotypic detection of biofilms, we 
also determined genes encoding biofilm formation 
in the predominantly isolated organism.

MAteRiAls ANd MethOds
 One hundred wound swab samples were 
collected from DFU patients at the Vascular Surgery 
and Diabetic Foot Unit of Abou Hommos Central 
Hospital, Alexandria Main University Hospital, 
Mowasat Hospital, Abou Qir Central Hospital, and 
Medical Research Institute, in Alexandria, Egypt, 
between January 2020 and January 2021. The study 
was approved by the Ethics Committee in Pharos 
University in Alexandria, and all procedures were 
performed according to Helsinki ethical standards. 
Specimens were subjected to Gram staining, and 
were cultured in mannitol salt agar, MacConkey 
agar, blood agar, and Sabouraud dextrose agar 
(Oxoid, Cambridge, UK). Isolates were identified 
using standard biochemical methods,26 and P. 
aeruginosa isolates were confirmed with MALDI-
TOF/MS (Bruker, Billerica, MA, USA). The identified 
stock cultures were preserved at −80 °C in 15% 
glycerol.
Antimicrobial susceptibility test
 Antibiotic susceptibility tests were done 
by disc diffusion method on Mueller–Hinton agar 
plates (Oxoid) according to Clinical Laboratory 
Standards Institute (CLSI) 2019 guidelines.26 The 
antibiotic discs include: Ceftazidime (CAZ, 30 μg), 
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Cefepime (FEP, 30 μg), Piperacillin-tazobactam 
(TZP, 100 μg/ 10 μg), Aztreonam (ATM, 30 μg), 
Levofloxacin (LEV, 5 μg), Amikacin (AMK, 30 μg), 
Azithromycin (AZM, 15 μg), Erythromycin (E, 15 
μg), Gentamycin (CN, 10 μg), Tetracycline (TE, 30 
μg), Cefoxitin (FOX, 30 μg), Chloramphenicol (C, 30 
μg), Ampicillin (AMP, 10 μg), Imipenem (IPM, 10 
μg), Linezolid (LZD, 30 μg), Amoxicillin-clavulanate 
(AMC, 20 μg/10 μg), and Methicillin (MET, 5 μg).
Quantification of Biofilm formation by P. 
aeruginosa
 200 µL of overnight broth subculture of 
the tested isolates in sterile trypticase soy broth 
(TSB) (Oxoid), equivalent to 1.5×108 CFU/mL, was 
added to each well of a 96-well flat-bottomed 
microtiter plate, in triplicates. The plates were 
then incubated at 35 °C for 24 h. The next day, 
the medium was discarded, and the wells were 
washed with phosphate-buffered saline (PBS, pH 
7.2) (Sigma-Aldrich, Milan, Italy). Biofilm fixation 
was performed by incubating the 96-well plates 
at 60 °C for 1 h. 0.1% (w/v) Crystal violet was 
used for staining, and was extracted with 99.5% 
ethanol.27 The optical density (OD) value of each 
well was measured at 620 nm on a microtitre 
plate ELISA reader (STATFAX2100, Fisher Bioblock 
scientific, France). The isolates were characterized 
according to their biofilm-forming ability as strong, 
moderate, weak, or non-biofilm producers, as 
previously described by Stepanovic et al.28

Molecular detection of biofilm encoding genes 
in P. aeruginosa
 DNA was extracted from the P. aeruginosa 
isolates using the boiling method.29 DNA 
amplification was performed using Master Mix 
(iNtRON biotechnology, Seongnam, South Korea). 
The primers30 (SBS GeneTech, Beijing, China) and 

the annealing temperatures used are listed in Table 
1. PCR program was as follows: initial denaturation 
at 95 °C for 5 min, followed by denaturation at 95 
°C for 1 min, 30 cycles at 58 °C for algD, pelF and 
56 °C for pslD gene for 40 seconds, then 72 °C for 
45 seconds, and a final elongation at 72 °C for 5 
min. 
 PCR products were separated on 2% 
agarose gel in TBE buffer, stained with 2 μg/mL 
ethidium bromide, and visualized under ultraviolet 
transillumination (BIORAD, Italy).30,31

Statistical analysis
 Statistical analysis of the data was 
performed using IBM SPSS software version 20.0. 
(IBM Corp, Armonk, NY, USA). The chi-square 
test and Fisher’s exact test were used. Statistical 
significance was set at a p-value of 5% or lower.

RESUlTS
 The present study included swabs 
from 100 DFU patients (75 male and 25 female) 
admitted to the Vascular Surgery and Diabetic Foot 
Unit of Abou Hommos Central Hospital, Alexandria 
Main University Hospital, Mowasat Hospital, 
Abou Qir Central Hospital, and Medical Research 
Institute, Alexandria, Egypt, between January 2020 
and January 2021. The ages ranged from 44 to 76 
years.
Microbiological Culture Results
 The microbiological culture of the 100 
DFU swabs yielded monomicrobial bacterial 
growth in 76 samples (76%), polymicrobial 
bacterial growth (2–3 microorganisms) in 20 
samples (20%), and Candida albicans in 4 samples 
(4%) (Table 2).
 The microbial species isolated from 
the DFU specimens are listed in Table 3. The 

Table 1. Primers used for detection of genes involved in Biofilm formation by Pseudomonas aeruginosa

Gene Primers Annealing Band 
  Temp.  Size

algD F-CTACATCGAGACCGTCTGCC  58 593
 R-GCATCAACGAACCGAGCATC 
pelF F-GAGGTCAGCTACATCCGTCG 58 789
 R-TCATGCAATCTCCGTGGCTT 
pslD F- TGTACACCGTGCTCAACGAC  56 369
 R- CTTCCGGCCCGATCTTCATC 
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majority of the isolates were gram-negative 
(88%), and P. aeruginosa was the predominant 
gram-negative bacteria isolated (43%), followed 
by K. pneumoniae (21%), P. mirabilis (11%), E. coli 
(9%), and Serratia marcescens (4%). The gram-
positive bacteria isolated were S. aureus (5%) and 
Enterococcus spp. (2%). C. albicans was the only 
fungal species isolated (5%).
Antibiotic Susceptibility Profile
 Antibiotic susceptibility in the forty-
three P. aeruginosa isolates was as follows: 
Ampicillin (100%), followed by Aztreonam 
(74%), Amikacin (72%), Levofloxacin, Amoxicillin-
clavulanate (69.7%), Cefoxitin (46.5%), Ceftazidime 
(41%), Imipenem (32.5%), and varied degrees of 
resistance to other antibiotics (Table 4).  
 Ant ib iot ic  suscept ib i l i ty  prof i le 
of the twenty-one K. pneumoniae isolates 
was as follows: Ampicillin (95%), followed 
by Amoxicillin-clavulanate, Levofloxacin and 
Cefoxitin (76%), Amikacin (71.4%), Aztreonam 
(57.1%), and varied degrees of resistance to other 
antibiotics. The eleven P. mirabilis isolates were 
resistant to Aztreonam, Cefoxitin, Cefazolin and 
Chloramphenicol (72%), Ampicillin, Piperacillin-
tazobactam and Levofloxacin (63%), Amikacin 
(54%), and varied degrees of resistance to other 
antibiotics. Of the nine E. coli isolates, 77% were 
resistant to levofloxacin, followed by amoxicillin-
clavulanate, gentamycin, amikacin and cefoxitin 
(66%), and ampicillin (55%). Four isolates of S. 
marcescens were resistant to ampicillin (25%) 
(Table 4).
 Of the five S. aureus isolates, 96% were 
resistant to tetracycline and methicillin and with 
varying degree of resistance to other antibiotics. 
Of the two Enterococcus spp. isolates, 50% were 
resistant to cefoxitin, as shown in Table 4.

Quantification of Biofilm formation by P. 
aeruginosa
 Of the forty-three P. aeruginosa isolates 
examined, twenty-three (53.5%) were strong 
biofilm producers, ten (23.2%) were moderate 
biofilm producers, seven (16.3%) were weak 
biofilm producers, and just three isolates (7%) 
were non-biofilm producers. 
Molecular detection of Biofilm encoding genes 
in P. aeruginosa
 The following genes encoding biofilm 
exopolysaccharides were identified in the 43 P. 
aeruginosa isolates: algD (100%), pelF (88%) and 
pslD (49.7%). The presence of algD, pslD, and pelF 
genes was noted in a large proportion of the 43 
P. aeruginosa isolates. Our findings revealed that 
82.6 % of the 23 strong biofilm producers had the 
genotypic pattern algD +/pslD +/pelF +, while the 
rest were algD −/pslD −/pelF −. On the other hand, 
66.6% of the three non-biofilm producers carried 
the biofilm encoding genes, as shown in Table 5.

DISCUSSION
 DFU is a debilitating consequence of 
DM with an increasing prevalence worldwide.14 
During the different waves of the COVID-19 
pandemic, DM was increasingly diagnosed 
worldwide. Based on the recommendation of 
the International Diabetes Federation, increased 
care should be given to diabetic patients to avoid 
the devastating complications of DM.1-4 Among 
the hypothesized reasons contributing to the 
increased incidence of DFIs during the COVID-19 
pandemic is the increased expression of the ACE2 
receptor necessary for the entry of SARS-CoV-2 

Table 2. Culture results of 100 diabetic foot ulcers 

Growth pattern in culture No. %

Bacterial growth 96 96.0
Monomicrobial 76 76.0
Polymicrobial microorganism (2 – 3) 20 20.0
Fungal growth  
Candida albicans 4 4.0
Total 100 100.0

Table 3. Frequency of microbial isolates from 100 
diabetic foot ulcers 

Gram reaction  No. %

Gram negative P. aeruginosa 43 43.0
 K. pneumoniae 21 21.0
 P. mirabilis 11 11.0
 E. coli  9 9.0
 Serratia marcescens 4 4.0
Gram positive S. aureus 5 5.0
 Enterococcus spp. 2 2.0
Fungi C. albicans 5 5.0
Total  100 100.0
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) in diabetic patients.5,7-9 Other reported reasons 

include the rise in blood glucose levels noted in 
patients receiving corticosteroids.5,10 Additionally, 
diabetic patients are more vulnerable to viral 
and bacterial infections.5,11 Other challenges 
contributing to the increased incidence of DFIs 
include a lack of sufficient resources, overworked 
health care workers, and a scarcity of proper care 
for diabetic patients to avoid the development of 
infections.13

 The present study included swab samples 
from 100 patients with DFUs (75 male and 25 
female). Other studies have also supported the 
male predominance of foot ulceration and its 
associated complications.32,33 Culture results of 
the 100 specimens showed 76% monomicrobial 
bacterial growth, 20% polymicrobial bacterial 
growth, and 4% fungal growth. Hitam et al. 
also reported a similar percentage (28.8%) 
of polymicrobial infections in DFI patients.34 
Additionally, culture results showed that the 
majority of isolates were gram-negative (88%) 
bacteria, and P. aeruginosa was the predominant 
microorganism isolated (43%), followed by K. 
pneumoniae (21%), P. mirabilis (11%), E. coli 
(9%), and S. marcescens (4%). Among gram-
positive bacteria, S. aureus was the most common 
isolate. Pseudomonas spp. was regarded as the 
main causative agent of DFI by Hitam et al.,34 
Hatipoglu et al.,35 Hobizal et al.,36 and Ramakant 
et al.37 P. aeruginosa is also reported to be the 
most predominant causative agent for DFIs in 
low-resource countries.15-22 P. aeruginosa should 
not be regarded as a normal flora in burn wounds 
and diabetic foot patients. P. aeruginosa can cause 
extensive tissue damage in diabetic patients and 
result in sepsis.24 Additionally, S. aureus has been 
reported to be the most common gram-positive 
etiological pathogen of DFI.34-37

 Antibiotic susceptibility testing revealed 
that 100% of the forty-three P. aeruginosa 
isolates were resistant to Ampicillin, followed by 
Aztreonam (74%), Amikacin (72%), Levofloxacin, 
Gentamycin and Amoxicillin-clavulanate (69.7%), 
Cefoxitin (46.5%), Ceftazidime (41%), Imipenem 
(32.5%), and varied degrees of resistance to 
other antibiotics was observed. Multidrug 
resistance (MDR) was observed in 30 (69.7%) 
of the P. aeruginosa isolates. Sivanmaliappan et 
al.24 reported that 55.5% of P. aeruginosa were 
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multidrug resistant (MDR); 100% were resistant 
to ampicillin, 83.3% to piperacillin, and 66.6% to 
ceftazidime, gentamycin and imipenem. However, 
our results show that ceftazidime, imipenem, 
and piperacillin/tazobactam combination display 
higher activity as antipseudomonal agents. Banar 
et al.30 also stated that ceftazidime displayed 
high activity in P. aeruginosa isolates. In a study 
on DFI in Tanzania, resistance was noted for all 
commonly used antibiotics, except imipenem 
(100% sensitivity). This can be attributed to the 
fact that imipenem is expensive in low-resource 
countries.38 Previous reports described the 
increased efficacy of piperacillin-tazobactam 
against several virulence traits, such as adhesion, 
biofilm production, and flagellin production.39 
The increased prevalence of MDR has been 
noted in different studies worldwide.30,31,40,41 This 
can be attributed to extensive use of antibiotics, 
which gives a selective advantage for survival of 
pathogenic bacterial strains. MDR P. aeruginosa 
guarded by biofilms that are difficult to penetrate 
can survive and develop more resistance.41,42 
 Biofilm production is the benchmark 
characteristic for the development of DFIs, and 
provides a balance between colonization and 
infection.25 Bacteria within biofilms produce 
their own matrix of extracellular polymeric 
substances (EPS). EPS contains glycoproteins and 
polysaccharides that provide protection against 
several environmental factors, mediate persistence 
in medical devices, facilitate immune system 
evasion, and contribute to the development of 
antimicrobial resistance.15,21,22 There are three 
major exopolysaccharides that significantly 
contribute to the formation and stabilization 

of the biofilm matrix of P. aeruginosa. The 
pentasaccharide Psl is essential to promote 
both cell–cell and cell–surface interactions, 
thereby initiating biofilm formation and providing 
structural support to the formed biofilm. The PslD 
protein is encoded by the pslD gene, a part of 
the psl operon. The PslD protein is located in the 
periplasm/outer membrane and contributes to 
the export of essential biofilm exopolysaccharides. 
Alginate is another important polymer that 
significantly stabilizes biofilm formation and 
provides additional protection. The synthesis 
of alginate protein is mediated by the algACD 
operon. The algD gene controls the synthesis of 
the alginate proteins. The algD gene controls the 
production of the final precursor, GDP-mannuronic 
acid, one of the two monomers of alginate. The 
pellicle operon controls the synthesis of the third 
major exopolysaccharide, the Pel protein, which 
is responsible for pellicle formation.30,31

 In this context, biofilm formation was 
evaluated both phenotypically using the crystal 
violet assay, in addition to molecular detection 
of genes responsible for biofilm formation, algD, 
pslD, and pelf . Phenotypic characterization 
revealed that 93% (40) of the 43 P. aeruginosa 
isolates examined were biofilm producers; 53.4% 
(23) of P. aeruginosa isolates were strong biofilm 
producers, 23.3% (10) were moderate biofilm 
producers, 16.3% (7) were weak biofilm producers, 
and only 6.9% (3) were non-biofilm producers. 
Kamali et al. reported that 83.75 % of their P. 
aeruginosa isolates were biofilm producers with 
variable degrees of biofilm production.31 Banar et 
al.30 reported that out of 57 P. aeruginosa isolates 
tested 55 (96.5%) isolates were biofilm producers 

Table 5. Relationship between phenotypic biofilm characteristic and genotypic biofilm characteristic among 
P. aeruginosa isolates (Manual)

Phenotypic pattern      Genotypic pattern of biofilm, no. (%) χ2 FEp
of biofilm, no. (%) AlgD +/pslD +/pelf + AlgD -/pslD -/pelf -  

Strong 23 (53.5%) 19 (82.6%) 4 (17.4%) 0.953 0.473
Moderate 10 (23.2%) 7 (70%) 3 (30%) 0.332 0.674
Weak 7 (16.3%) 5 (71.4%) 2 (28.6%) 0.132 0.656
Non 3 (7%) 2 (66.6%) 1 (33.4%) 0.184 0.558
Total 33 10  

χ2:  Chi-square test, FE: Fisher Exact, p: p-value for comparing between the studied groups
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with variable degrees of biofilm production, and 
only 2 (3.5%) isolates were regarded as non-biofilm 
producers.
 The frequency of genes encoding biofilm 
exopolysaccharides among the 43 P. aeruginosa 
isolates was as follows: algD (100%), pelF (88%) 
and pslD (49.7%). The present study showed a high 
prevalence of all three genes, algD, pslD, and pelf, 
in a considerable proportion of the P. aeruginosa 
isolates. Approximately 82.6 % of the 23 strong 
biofilm producers showed a algD +/pslD +/pelF + 
genotypic pattern, while 17.4 % showed algD −/
pslD −/pelF −.
 Banar et al.30 also reported similar 
frequencies of biofilm genes: pelF (93%), pslD 
(54.65%), and algD (100%), with algD +/pslD +/
pelF + being the predominant genotypic pattern 
among their isolates. Another study by Kamali et 
al.31 reported that algD +/pslD +/pelF + genotypic 
pattern (87.5%) was the predominant pattern 
among their isolates. Pournajaf et al.43 reported 
that the frequency of pslD and pelF genes was 
89.5% and 57.3%, respectively, in their isolates. 
Ghadaksaz et al.44 reported a frequency of 83.7% 
for pslD and 45.2% for pelF in their isolates. 
However, to the best of our knowledge, only a few 
studies have investigated the presence of biofilm-
encoding genes, algD, pslD, and pelf.31

CONClUSION
 During the different waves of the 
COVID-19 pandemic, there has been an increased 
incidence of DM and DFIs. P. aeruginosa is the 
predominant etiological agent for DFIs. In the 
present study, the majority of P. aeruginosa 
isolates were MDR and biofilm producers. A 
high prevalence of biofilm-encoding genes were 
identified in this study, highlighting a need for 
inhibitors of biofilm formation to prevents the 
persistence of bacterial pathogens, and thereby 
achieve better clinical outcomes.
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