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Abstract
Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is the most important bacterial 
disease in walnut production worldwide. To seek biocontrol agents against Xaj, we screened 152 
endophytic bacteria isolated from 87 plants. Through dual-culture method screening, we obtained 
four antagonistic bacteria, ATE17, BME17, CIE17, and OFE17 which were isolated from Amaranthus 
tricolor, Bambusa multiplex, Canna indica, and Osmanthus fragrans plants respectively. The inhibition 
ratios of ATE18, BME17, CIE18, and OFE17 against Xaj on plates were 1.5, 1.6, 1.3, and 1.6, respectively. 
These indicated they have good biocontrol potential for walnut bacterial blight. Subsequently, the four 
endophytic bacteria were identified by morphology, Gram staining, Microbial Identification System 
(fatty acid methyl ester analysis), as well as 16S rDNA and gyrB sequencing. It turns out that all four 
strains were identified as Bacillus sp. Furthermore, the two strains BME17 and OFE17 can suppress 
multiple plant fungal pathogens and bacterial pathogens on plates.
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INTrODuCTION
 English walnut or Persian walnut (Juglans 
regia L) belongs to the Juglandaceae family Juglans 
genus. It is an important edible nut, wood oil crop, 
and valuable timber tree species1. Walnut kernels 
are composed largely of polyunsaturated fatty 
acid, alpha-linolenic acid, which gives them anti-
atherogenic properties and brain health benefits. 
Walnut oil may even serve as a helpful natural 
remedy for hyperlipidemic patients with type 2 
diabetes2. So walnuts have both nutritional and 
medicinal benefits3. Walnuts are widely spread 
both natively and commercially in Europe, Asia, 
and part of the United States4.
 Walnut planting areas have increased 
sharply over the past several decades, particularly 
in Asia. In 2018, the global walnut harvest area was 
1159484 ha with production 3 662 507 tonnes. 
China alone has harvested an area of 390 224 ha 
with production 1 586 367 tonnes5. The harvest 
area and production of China accounting for 
33.65% and 43.31%, respectively of global totals.
 With the walnut planting area increasing 
substantially, walnut bacterial blight caused by 
Xanthomonas arboricola pv. juglandis (Xaj) is 
also spreading around the world6,7. Currently, the 
disease is the most important bacterial disease 
affecting walnut production. The disease has 
sparked international concern and has been added 
to CABI (Centre for Agriculture and Bioscience 
International) invasive species list8. Walnut 
bacterial blight negatively affects almost all walnut 
crown tissues. It causes early defoliation, fruit 
blackening and decay, immature dropping, kernel 
drying, oil and yield reducing, then serious walnut 
productivity losing and quality decreasing9.
 The management of walnut bacterial 
blight has to date mainly relied on chemical 
pesticides such as copper-based compounds 
and streptomycin-dominated antibiotics10,11. 
However, these conventional control agents 
are now recognized to produce adverse residue 
and environmental problems, as well as having 
decreased effectiveness due to emerging pesticide 
resistance10,12,13. 
 Using biological control methods based 
on microbes or their derivatives has become 
an important direction in plant disease control. 
Among them, the use of plant endophytes has more 

advantages compared to other microorganisms in 
plant disease control, therefore it is one of the 
current hot spots in biological control research 
14,15,16,17. Endophytes are facultative or obligate 
symbiotic microorganisms that live in apparently 
healthy internal plant tissues, without causing 
disease17. Endophytes have a capacity for disease 
prevention, as well as plant growth promotion, aid 
nitrogen fixation, and are beneficial to host plant 
development18,19,20. 
 There are many research reports on the 
screening, identification, and utilization of plant 
endophytes in plant disease control. For instance, 
there are fungal endophytes for suppression of 
Rhizoctonia solani21. Wheat endophytes inhibit 
the growth of Fusarium head blight. Fusarium 
graminearum inhibition of 30–51% and Fusarium 
culmorum inhibition of 15–53% have been 
established by dual culture assays in vitro22. 
Soybean endophytic bacteria Bacillus sp. and 
Burkholderia sp. have been proved that they 
can control bacterial and fungal pathogens of 
the host effectively in vitro, such as Sclerotinia 
sclerotiorum, Phomopsis sojae, and Rhizoctonia 
solani23. Dogwood (Cornus florida) endophyte 
A22F1 has high potential as a biological control 
agent for Phytophthora capsici in pepper24. Some 
endophytes have been translated into commercial 
products14. 
 The identification of novel biocontrol 
agents is a critical step in the development 
of commercial biocontrol products25. Some 
attempts have been made in walnut bacterial 
blight biocontrol agent exploration. These include 
the examination of medicinal plant essential 
oils and aqueous extracts26 and bacteriophages 
isolated from walnut orchard soils in New Zealand 
and Chile27,28,29. Screening, identification, and 
evaluation for antagonistic bacteria led to four 
Pseudomonas fluorescens strains being identified 
as putative antagonists of Xaj and being shown to 
significantly reduce symptoms on walnut leaves 
(41% to 82%)30. 
 To search for more potential biocontrol 
agent candidates from plant endophytes resources, 
we investigated 50 families and 86 species of plants 
to isolate and screen their antagonistic effects on 
Xaj in vitro. Through conventional and modern 
techniques, we identified four antagonistic 
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endophytes with great potential biocontrol 
capacity against Xaj from four different plant 
species. 

MATErIALS AND METhODS
Plants and target pathogen strains
 Ninety-four samples from various parts 
and tissues of healthy plants were collected 
from Xiaogan city, Hubei province from May to 
September in 2017. They are distributed across 50 
families, 84 genera, and 86 species (Supplement 
Table 1). Screening target pathogen strain Xaj 
BW3F331 was isolated in 2015 from Baokang 
county, Hubei province, and maintained on YPGA 
(Yeast powder 5 g, peptone 5 g, D-glucose 10 g, 
deionized water 1000 mL, agar 15 g, pH 7.2)32 and 
storage at -80 °C in 30% glycerol. More plant fungal 
and bacterial pathogens for antagonistic spectrum 
tests are listed in Table 1.
Isolation of plant endophytes
 Plant samples were washed with tap 
water and sterilized water three times. They 

were then cut into around 1 cm2 patch, surface 
disinfected in 75% ethanol for 3 min then in 
0.1% HgCl2 for 1 min. These were mashed up and 
suspended in ddH2O. The tissue debris suspension 
was spread onto a selective medium plate based 
on YPGA supplement with Cephalexin (30 μg/L) 
and Cycloheximide (100 μg/L)33, incubated at 28 °C 
for 2 days. Endophytes were picked for purification 
and cultured on a YPGA plate at 28 °C. 
Screening of antagonistic bacteria
 The antagonistic effect was tested 
via the dual culture method34. In short, fresh 
endophyte suspension 5 µl (OD600=0.5) inoculate 
to the center of the plate spread with 200 µl Xaj 
DW3F3 (OD600=0.5). After incubating for 2-3 d at 
28 °C, the inhibitory zone and endophyte colony 
size are measured. Inoculation of ddH2O (2 µl) 
and Kanamycin (50 µg/mL) (2 µl) as the negative 
and positive control, respectively. The inhibitory 
rate (D/d) is calculated by dividing the inhibitory 
zone diameter (D, mm) by the endophyte colony 
diameter (d, mm). Each treatment was conducted 

table 1. Two endophytes against different plant pathogens on plates

Diseases Pathogens OFE17 BME17

Wheat Fusarium Head Blight Fusarium graminearum 0.63  0.55 
Orchid black spot Alternaria alternata 0.72  0.65 
Walnut anthracnose Gloeosporium fructigenum. 0.63  0.67 
Maca root rot F. avenaceum. 0.51  0.53 
Camellia black spot A. alternate 0.61  0.48 
Citrus scab Sphaceloma fawcettii 0.30  0.33 
Corn ear rot F. graminearum 0.76  0.78 
Gray leaf spot of corn Cercospora sorghi 0.66  0.68 
Corn northern leaf blight Setosphaeria turcica 0.52  0.67 
Rice blast Magnaporthe grisea 0.73  0.74 
Rice bacterial leaf streak Xanthomonas oryzae pv. oryzae 2.45  1.21 
Rice bacterial blight X. oryzae pv. oryzicola 1.86  2.18 

Note: The values for fungal pathogens mean suppression ratio; for bacterial pathogens means D/d ratio. Each value represents 
the mean of three replicates.

Fig. 1. Antagonistic effects of four endophytes against Xaj DW3F3 on YPGA plates.
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in triplicate with three plates. Those endophytes 
with obvious inhibitory zones on plates were 
stocked in 30% glycerol at -80 °C.
Identification of antagonistic bacteria
 Four strains with strong antagonistic 
effects against Xaj DW3F3 on YPGA plates were 
chosen to identify. They were denoted as ATE17 
(Amaranthus tricolor endophyte isolated in 2017), 
BME17 (Bambusa multiplex endophyte isolated in 
2017), CIE17 (Canna indica endophyte isolated in 
2017), and OFE17 (Osmanthus fragrans endophyte 
isolated in 2017).
 The cellular morphology of these strains 
was observed by Gram staining. The strains were 
then subjected to identification by the Microbial 
Identification System (MIDI Inc) based on Fatty 
Acid Methyl Ester (FAME) profiles. Bacterial 
genomic DNA was then extracted using EZ-10 Spin 
Column Bacterial Genomic DNA Mini-Preps Kit 
(Sangon Biotech Shanghai Co., Ltd.) for subsequent 
molecular identification. The PCR procedure and 
two sets of primers were used, 16S rDNA 27 
F：5'-AGAGTTTGATCCTGGCTCAG-3' and 1492R：5'-
GGTTACCTTGTTACGACTT-3', and gyrB UP-1: 

5’-GAAGTCATCATGACCGTTCTGCAYGCNGGNGGN
AARTTYGA-3’ and UP-2:5’-AGCAGGGTACGG 
ATGTGCGAGCCRTCNACRTCNGCRTCNGTCAT-3’ 
sequences came from Bavykin et al35. The 16S 
rDNA and gyrB amplicons were sequenced by 
Sangon Biotech (Shanghai) Co., Ltd. Then the 
sequences were subjected to phylogenetic tree 
construction using the MEGAX software36.
Test of BME17 and OFE17 against multiple plant 
pathogens
 To assay the potential ability of the 
endophytes against other plant pathogens, we 
selected two endophytes BME17 and OFE17 which 
showed a high inhibition ability isolated from 
two different plants. We tested the antagonistic 
effects of the two endophytes on 10 different plant 
fungal pathogens and two bacterial pathogens 
collected in our laboratory. The method used was 
the same as described above except the fungal 
confrontation culture was carried out on PDA 
plates. The suppression effect on fungal pathogens 
was calculated by (negative control radius-treat 
radius)/negative control radius (radius in mm). 

table 2. Endophytic bacteria identification by microbial identification system based on Fatty Acid Analysis (MIDI)

Antagonistic Entry Percent Sim Library
bacteria Name Named Index

ATE17 Bacillus subtilis  91.70% 0.583 RTSBA6 6.21
BME17 Bacillus subtilis  94.14% 0.777 RTSBA6 6.21
CIE17 Bacillus subtilis  93.52% 0.77 RTSBA6 6.21
OFE17 Bacillus subtilis  93.31% 0.756 RTSBA6 6.21

Fig. 2. Inhibitory zone size of four endophytes against Xaj DW3F3 on YPGA plates.
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Obtained four potential biocontrol agent 
endophytes
 One hundred fifty-two endophytic 
bacterial strains were isolated and purified from 86 
species of plants. Through dual culture screening 
of the target pathogen Xaj DW3F3 one by one, 
four strains with significant antagonistic effects 
on Xaj DW3F3 were obtained and verified more 
than five times (Fig.1). The inhibition ratio (D/d) of 
four endophytes ATE17, BME17, CIE17, and OFE17 
were 1.5, 1.6, 1.3, and 1.6, respectively (Fig.2).
Morphology and fatty acid identification
 After being cultured on YPGA plates for 
24 to 48h, four antagonist strain colonies were 
nearly round, light white, or slightly yellow. Taking 
a fresh colony to Gram staining and observing it 
under a microscope (Nikon ECLIPSE Ni-U), the cells 
are rod-shaped and the Gram stain is positive. 
 The microbial identification system 
based on fatty acid is fully automated for bacterial 
identification. It showed that the strains ATE17, 
BME17, CIE17, and OFE17 were most similar to 

Bacillus subtilis in the software's library database 
(Table 2). 
16S rrNA and gyrB molecular identification
 The 16S rDNA partial sequences of four 
antagonist strains ATE17, BME17, CIE17, and 
OFE17 were run through the Blastn against the 
NCBI Standard databases (nr, etc.) Nucleotide 
collection (nr/nt). These four strains are judged 
to be similar to dozens of different Bacillus sp., 
with query coverage 100%, E value 0.0, and 
percentage identity 100%. A phylogenetic tree was 
constructed based on 17 Bacillus species and one 
out group species Virgibacillus halodenitrificans 
through the Neighbor-Join algorithm (bootstrap 
=500) (Fig. 3). Their classification position cannot 
be inferred yet on this basis.
 The gyrB partial sequences of four 
antagonist strains ATE17, BME17, CIE17, and 
OFE17 were sequenced. These sequences were 
subjected to an NCBI Blastn search as above. They 
are judged to be highly similar to many different 
Bacillus sp. with query coverage 100%, E value 
0.0, and percentage identity 100% as well. A 

Fig. 3. Phylogenetic tree based on Neighbor-joining tree of 22 16S-rRNA gene partial sequences.
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phylogenetic tree was constructed based on highly 
similar sequences with more than 98% identity 
and 98% query coverage (bootstrap =1000) (Fig. 
4). Based on the tree, we cannot infer species 
positions for these strains.
 Hereby, we tentatively identified the 
four antagonist bacteria as Bacillus sp. based on 
combined morphology, microbe identification 
system, and housekeeping genes.
Inhibition of different pathogens by BME17 and 
OFE17
 We selected the two endophytes BME17 
and OFE17 for assessing their antagonistic 
properties against various plant pathogens. The 
two endophytes presented antagonistic effects on 
all 10 crop fungal pathogens and two rice bacterial 
pathogens (Table 1). The result suggests the strains 
have broad-spectrum antagonistic roles instead of 
specific functions and have potential biocontrol 
roles against both fungal and bacterial diseases.

DISCuSSION
 Developing novel, economical, and 
environment-friendly walnut bacterial blight 
biocontrol agents is challenging. Amongst, 
exploiting plant endophytes is an important 
methodology in this direction.
 Screening biocontrol agents from 
many plant resources is the first step in this 
important work. However, to date, only a few 
plant endophytes have been screened for the 
treatment of disease. Ozaktan et al30 assayed 29 
epiphytes from healthy walnut leaves against Xaj, 
18 strains have antagonistic effects with inhibitory 
zone 3.0 to 13.0mm. Bacteria measured as around 
60% antagonistic, have decreased walnut bacterial 
blight 41-77% on walnut seedlings.
 In this study, we screened 152 endophytes 
from 86 plant species, and obtained four strains 
with strong antagonistic effects on the target 
pathogen Xaj. Through multiple identification 
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methods, we determined that they are all 
Bacillus sp. (this identification is tentative, due 
to Bacillus genera classification complexity). 
These antagonistic bacteria do not belong to the 
same genera as those identified as P. fluorescens 
against Xaj30. The in vitro inhibition provides the 
first evidence that these endophytes are potential 
biocontrol agents of walnut bacterial blight. Our 
research has added to the potential arsenal of a 
biological agent in combating walnut bacterial 
blight. 
 Although we screened 152 endophytes, 
only four potential biocontrol agent strains 
were discovered (their effects verified through 
experimental replication). The positive selection 
frequency is 2.6%. This low frequency is similar 
to that found in research in coffee berry disease 
antagonistic bacteria screening, in which from a 
total of 4 323 microorganisms isolates around 3% 
exhibited detectable inhibition37.
 We obtained antagonistic bacteria 
isolated from four plants common in our location, 
A. tricolor, B. multiplex, C. indica, and O. fragrans. In 
each of these plants, only some endophytes were 
studied for their biocontrol ability. For example, 
there were 46 endophytic bacteria and 17 fungi 
isolated from amaranth plant, among them six 
bacterial endophyte isolates and one fungal 
endophyte were found to be efficient in inhibiting 
the growth of its leaf blight pathogen Rhizoctonia 
solani in vitro38. Endophytic fungi isolates from 
bamboo (Phyllostachys edulis) branches were 
found to have high bioactivity against Botryotinia 
fuckeliana and Thanatephorus cucumeris39. 
Endophytic bacteria were isolated from C. indica 
proved to be P.fluorescens, Enterobacter sp., 
Erwinia sp. and all of them have plant growth 
promoting ability40. There were two endophytes 
isolated from O. fragrance that were identified 
as Bacillus sp. too. One endophyte Bacillus sp. 
isolated from O. fragrance can be used in honey 
wine41. Another endophyte strain B. safensis B21, 
isolated from O. fragrans fruits, showed antifungal 
activity against Magnaporthe oryzae42. These are 
thus broad antimicrobe spectrum bacteria we 
tested in this study. These Bacillus spp. are not 
only antagonistic against bacteria but also fungi. 
 In our search process, we only isolated 
152 endophytic bacteria from 86 plant species. On 
one hand, we added antibiotics into the isolation 

medium and on the other hand, the bacterial 
colony was hard to distinguish. We simply picked 
up those distinct single colonies obvious to the 
naked eye. Possibly we ignored some isolates on 
the plates with similar colony morphology. 
 Bacillus bacteria is one of the most 
important biocontrol resources. Many active 
substances have been discovered, and even 
already used in the field. In our projects, the 
evaluation of biocontrol effectiveness on plants, 
and active substances are under investigation. 
Although we obtained four potential antagonistic 
bacteria, there is much additional work to be done 
on the way to developing powerful biocontrol 
agents for disease control. The present results will 
lay a foundation for further exploring the function 
and application of such agents in the future. 
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