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Abstract
The production of weak organic acids by microorganisms has been attributed as the prime reason for 
the solubilization of insoluble phosphates under both in vitro and soil conditions. Literature seems 
to be heavily biased towards gluconic acid production by microbes and its subsequent release into 
the environment as the key factor responsible for phosphate solubilization. This has found credibility 
since gluconic acid being a product of the Kreb’s cycle is often detected in large quantities in the 
culture media, when assayed under in vitro conditions. In the present work, the organic acid profiles 
of four elite phosphate solubilising isolates were determined in the presence of different insoluble 
sources of phosphates, under in vitro buffered culture conditions by HPLC (High-Performance Liquid 
Chromatography). While most previous studies did not use a buffered culture media for elucidating 
the organic acid profile of phosphate solubilizing bacterial isolates, we used a buffered media for 
estimation of the organic acid profiles. The results revealed that apart from gluconic acid, malic acid 
is produced in significant levels by phosphate solubilizing bacterial isolates, and there seems to be a 
differential pattern of production of these two organic acids by the isolates in the presence of different 
insoluble phosphate sources.
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INTRODUCTION
 Phosphorus is an essential nutrient for 
plant growth and reproduction. Phosphorus is 
available in soil primarily in  organic or inorganic 
forms,  but most forms are not available for plant 
uptake due to its tendency to form complexes 
with cations such as Calcium (Ca) in alkaline 
soils and Aluminum (Al) and Iron(Fe) in acidic 
soils. Several studies have advocated the use of 
biological formulations to overcome P deficiency 
in soil. Many rhizospheric microorganisms have 
been reported to solubilize mineral phosphates 
by different mechanisms. The most commonly 
encountered phosphate solubilizing bacterial 
genera are Pseudomonas, Bacillus, Rhizobium and 
Enterobacter. Their ability to solubilize phosphates 
has been mainly attributed to their organic acid 
secretion potential1, 2.
 One of the most well-known mechanisms 
of phosphate solubilization is the release of 
weak organic acids by phosphate solubilizing 
microorganisms, which solubilize the elemental-
phosphatic complexes thereby releasing the 
solubilized phosphorus into the culture media. 
Most often different divalent and trivalent organic 
anions such as malate, citrate and oxalate are 
produced by the microbes and are implicated 
to play an important role in the solubilization 
of phosphates 3.  This observation has been 
supported by several studies on the organic 
acid production profile under in vitro culture 
conditions 4-7. Under in vitro culture conditions, 
the production of organic acids by bacterial 
strains is largely influenced either by the growth 
medium or by the presence of insoluble phosphate 
sources. Gluconic acid has been reported as the 
main organic acid secreted by many phosphate 
solubilizing microorganisms under laboratory 
conditions and is well known for its chelation 
abilities 8,9. Gluconic acid is produced by the direct 
extra-cellular oxidation of glucose catalysed by 
enzyme glucose dehydrogenase coupled with the 
co-factor pyrroloquinoline quinone (PQQ) 10,11. 
The oxidation of gluconic acid gives rise to the 
production of 2-ketogluconic acid, a substantial 
carboxylic acid that can chelate calcium ions and 
dissolve hydroxyapatites12.. Though there have 
been reports of other organic acids viz., oxalic acid, 
citric acid, acetic acid, malic acid, succinic acid, 
tartaric acid, propanoic acid, lactic acid, fumaric 

acid, pyruvic acid etc9,13-18 being produced by 
phosphate solubilizing bacterial strains, gluconic 
acid has gained much importance due to  its ability 
to solubilise phosphates under in vitro conditions  
12,16,18-20.
 Arvind & Gulati13 were the first to 
decipher the organic acid profile of phosphate 
solubilizing Pseudomonads using multiple 
insoluble substrates. But this study was carried 
out in a non-buffered medium.They presented a 
detailed description of organic acids produced by 
different strains of Pseudomonas that solubilised 
Udaipur rock phosphate (URP), Mussorie rock 
phosphate (MRP) and North Carolina rock 
phosphate (NCRP) under non- buffered in vitro 
conditions and concluded that gluconic acid 
and 2-ketogluconic acid are the major organic 
acids responsible for  phosphate solubilization 
under in vitro conditions. A   positive correlation 
between the levels of phosphate solubilisation 
and the quantity of gluconic acid produced by 
Enterobacter cloacae EB 27, Serratia marcescens 
EB 67, Serratia sp. EB 75, Pseudomonas sp. CDB 
35 and Pseudomonas sp. BWB 2 was established 
by  Hameeda et al21. The bacterium Azospirillum 
has been reported to release gluconic acid at high 
concentrations under in vitro conditions which was 
implicated in the solubilization of phosphates14.
 While several studies in the past have 
focussed on utility of gluconic acid in phosphate 
solubilization, they seem to have missed the 
significant levels of another important organic acid 
viz., malic acid in the solubilization of phosphates. 
The present study highlights the extra cellular 
release of malic acid in significant quantities by 
strains of three different bacterial genera viz., 
Pseudomonas, Bacillus and Paraburkholderia 
species under in vitro conditions. The isolates were 
carefully chosen from a collection of phosphate 
solubilizing microbes in order to represent the 
three major soil genera that play a vital role in 
phosphate solubilization in the soil. Malic acid 
has been reported as a crucial metal chelator 
that is released majorly by fungal species such as 
Aspergillus niger while solubilizing rock phosphate 
under in vitro conditions20. There are very few 
reports about the utility of malic acid production  
in significant levels by bacterial species and its 
utility in  phosphate solubilisation, nor is its 
mechanism of phosphate solubilization has been 
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clearly defined. Also concentrations of malic acid 
equivalent to or at par to gluconic acid have never 
been reported. This study mainly focuses organic  
acid production profiles of elite bacterial isolates in 
a buffered medium under in vitro conditions in the 
presence of three different insoluble substrates 
viz., tricalcium phosphate (TCP), Aluminium 
phosphate Al-P and  Ferrous phosphate Fe-P. 

MATERIALS AND METHODS
Bacterial strains and determination of the 
phosphate solubilization potential of the isolates
 Four efficient phosphate solubilizing 
bacterial isolates were included in the present 
study viz.  Pseudomonas sp (BAN-4) isolated from 
Banana (Musa sp.) rhizosphere, Pseudomonas sp 
(DIN-5) isolated from Sapota (Manilkara zapota) 
rhizosphere , Bacillus sp (NE-4) isolated from Rice 
(Oryza sativa) and Paraburkholderia tropica (P-31) 
isolated from Pomegranate (Punica granatum) 
rhizosphere.These strains were characterized 
based on their phenotypic characters and 16S 
rRNA gene sequencing. The bacterial strains were 
maintained at -70°C in 50 % gycerol stocks.
 The phosphate solubilization potential 
of the elite bacterial strains was studied using  
three insoluble phosphate sources viz., Tricalcium 
phosphate ( TCP), Aluminium phosphate Al-P, Iron 
phosphate Fe-P in a buffered medium. The media 
contained 100 mM glucose, 25 µM Magnesium 
sulphate (MgSO4, 10 mM Ammonium chloride 
(NH4Cl) and the following micronutrients (mg/l) 
viz., Ferrous sulphate (FeSO4)-3.5; Zinc sulphate 
(ZnSO4)-0.16; Copper sulphate (CuSO4)--0.08; Boric 
acid (H3BO3)- 0.5; Calcium chloride (CaCl2) - 0.03; 
Manganese sulphate (MnSO4) - 0.4 and it was 
buffered with 100 mMTris Hydrochloride (HCl) 
(pH 8.0)22-24. The elite bacterial strains were grown 
in 100 ml minimal buffered broth supplemented 
with either  0.5% tricalcium phosphate (TCP) 
or Aluminium phosphate (Al-P) or Ferrous 
phosphate (Fe-P) separately and incubated at 
30°C for 7 days under shaking conditions. On 
completion of the incubation period the culture 
was centrifuged at 10,000 rpm for 10 min and 
the pH of the culture supernatant was recorded. 
Subsequently the soluble P released by the 
bacterial isolates was determined quantitively by 
the spectrophotometric method25. All the studies 
were conducted in triplicate.

Identification and quantification of the organic 
acid profile of the promising isolates under using 
high performance liquid chromatography (HPLC)
 The cell free culture supernatant obtained 
mentioned above was filter sterilized using a 0.22 
µm nylon filter. The detection and quantification of 
organic acids was done using a  HPLC (Shimadzu, 
Japan), equipped with photodiode array detector 
(SPD-M2OA) and Synergi 4µm RP-C18 column 
(Phenomenex, USA, 250X4.6mm). The mobile 
phase consisted of 1mM Sulphuric acid (H2SO4) + 
8mM Sodium sulphate (Na2SO4) (1:1v/v) containing 
0.1% orthophosphoric acid at 0.5ml/min flow rate. 
The organic acids present in the culture filtrate 
were quantified at 210 nm using standards of 
different organic acids viz., tartaric acid, formic 
acid, malic acid, malonic acid, lactic acid, citric acid, 
succinic acid, propionic acid, gluconic acid, oxalic 
acid, Keto-D glutarate. The elutates were detected 
and quantified with reference to the peak areas 
obtained by using the respective standards.

RESULTS AND DISCUSSION
Phosphate solubilizing potential of the bacterial 
strains
 Among four strains Paraburkholderia 
tropica P-31 released the highest levels of 
soluble P (50.0 μg/ml) when TCP was used as 
insoluble source of phosphorus and drop in pH 
was observed from 7.0 to 4.4.  The isolate Bacillus 
sp. NE-4 released the highest levels of soluble P 
(19.0 μg/ml) when Fe-P was used as insoluble 
source of phosphorus and a drop in pH  was 
observed from 7 to 5.0. Pseudomonas sp DIN-5, 
released the highest levels of soluble P i.e. 21.9 
(μg/ml) when Al-P was used as insoluble source 
of phosphorus in the medium but a concomitant 
drop in pH was not observed (Table -1). It should 
be noted here that solubility of Calcium phosphate 
(Ca- P) increases exponentially with decreasing 
pH whereas solubility of Iron phosphate (Fe-P) 
decreases with the decrease in the  pH in the range 
of  4.5 to 3.5 and solubility of Aluminum Phosphate 
( Al-P) is  lowest in the   pH range of  5.5-4.522-24. 
The results of the present study  are  therefore in 
accordance  with the observations of  Merbach23 
and Henry24. Microorganisms have been known to 
deploy different mechanisms for the dissolution of 
different phosphate complexes. Acidification of the 

medium is proposed as a major mechanism for the 
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Table 1. Quantitative estimation of the P solubilising abilities of the elite phosphate solubilising bacterial 
isolates under in vitro conditions

Isolate                           TCP                     Fe-P                       Al-P
 pH Soluble  pH Soluble  pH Soluble 
  P (μg/ml)  P (μg/ml)  P (μg/ml)

Pseudomonas sp.(DIN-5)  4.6 46.4 7.3 6.0 7.4 21.9
Paraburkholderia tropica (P-31) 4.4 50.0 7.3 6.7 7.3 8.2
Bacillus sp.(NE-4) 5.2 20.3 5.0 19.0 5.0 6.3
Pseudomonas sp. (BAN-4) 4.6 35.6 5.2 1.0 4.8 7.3

dissolution of the Ca-P complex, this mechanism 
results in the acidification of the medium, 
due to the release of protons. Alternatively  

metal complexing and metal reduction are the 
possible mechanisms of dissolution of  Al and 
Fe phosphates. By forming metal complexes the 

Fig. 1(a). Relative concentrations of malic and gluconic acids produced by the phospate solubilzing Pseudomonas 
sp. DIN-5 under in vitro conditions in the presence of different insoluble phosphate  sources

Fig. 1 (b). Relative concentrations of malic and gluconic acids produced by the phospate solubilzing Bacillus sp. 
NE-4under in vitro conditions in the presence of different insoluble phosphate  sources
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organic acids reduce   metals from their variable 
oxidation states to lower oxidation states thereby 
resulting in the release of soluble P forms26. 
 There are many reports of PSB’s which 
solubilize TCP but do not dissolve Fe-P and Al-P 
complexes and are therefore of not much utility 
under dynamic field conditions27,28 because of two 
major reasons, viz.,  a contrasting range of soil pH 
levels and is the strong  buffering capacity of soils 
29. The experimental framework of the present 
study therefore took cognizance of the above 
factors. Though, buffering of media drastically 
lowers the phosphate solubilizing capacity of 
microbes the elite phosphate solubilisers are 

likely to sustain their performance under buffered 
conditions30.
Deciphering the organic acid profile of the 
phosphate solubilizing bacterial isolates under 
in vitro conditions by High Performance Liquid 
Chromatography (HPLC)
 When the organic acid produced by 
the isolates were quantified under in vitro 
conditions,the concentration of organic acids viz., 
gluconic acid and malic acid were found to be 
higher compared to other acids (Table 2). Apart 
from  and gluconic acids, succinic acid was the 
other predominant organic acid produced across 
substrates and isolates. Closer scrutiny of the 

Fig. 1 (c). Relative concentrations of malic and gluconic acids produced by the phospate solubilzing Pseudomonas 
sp. BAN-4  under in vitro conditions in the presence of different insoluble phosphate sources

Fig. 1 (d). Relative concentrations of malic and gluconic acids produced by the phospate solubilzing Paraburkholderia 
tropica. P-31 under in vitro conditions in the presence of different insoluble phosphate sources
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data revealed a differential pattern of organic acid 
release by the isolates in the presence of different 
insolube sources of phosphates. The extracellular 
concentrations of malic acid were higher when 
Pseudomonas sp. (DIN-5) was cultured in the 
presence of TCP and Al-P whereas gluconic acid 
was detected in higher concentrations when 
Fe-P was used as a an insoluble substrate of P. 
Conversely in the case of  Bacillus sp. (NE-4) the 
gluconic acid concentrations were higher in the 
presence of TCP and Fe-P   while extracellular  malic 
acid levels were higher when Al-P was used as an 
insoluble substrate of P. The strain Pseudomonas 
sp. (BAN-4) released highest  concentrations 
of malic acid compared to gluconic acid across 
insoluble substrates of P, while  Paraburkholderia 
tropica (P-31) released highest levels of malic 
acid when Fe-P and Al-P were used as insoluble  
substrates of P, while the   highest  concentrations 
of gluconic acid was recorded when  TCP was used 
as an insoluble source of P. It could be concluded 
that the highest levels of malic acid were detected 
in eight of the twelve scenarios under which the 
organic acid profiles were estimated (Fig. 1 a, b, 
c, d).
 The earlier studies on the in vitro 
organic acid production by phosphate solubilizing 
bacterial isolates have reported that gluconic 
acid is produced by several  bacterial genera in 
significant quantities  while  malic acid is  produced 
by phosphate solubilizing fungal genera like 
Aspergillus1,20,31-35. The   novelty of this study rests 
in the fact that it has been proved conclusively   
that  bacterial genera apart from Pseudomonas 
produce malic acid in higher or equivalent 
quantities to that of gluconic acid across insoluble 
phosphate sources in a buffered  media. 
 In general malic acid has applications in 
the liquor, food, synthetic and pharmaceutical  
industries33 but its agricultural usage is not well 
known.  L-malic acid is known to be produced 
majorly by species of Aspergillus, Schizophyllum34-36 
, Penicillium, Aureobasidium1,30,34, an engineered 
strain of E.coli35,  species of Penici l l ium, 
Aureobasidium36-40, and Bacillus subtilis35,41. 
The literature suggests that the most probable 
mechanism of malic acid production is the increase 
in utilisation of glucose via carboxylation of 
pyruvate, followed by reduction of oxaloacetate36.  
Saccharomyces cerevisiae isolated from Sake 

mash was reported to produce very high levels 
of  malic acid by downregulating the production 
of thymine genes (THI4) and upregulation of 
stress genes (HSP12)37. Similarly among bacteria 
a mutant strain of Thermobifida fusca muC 
accumulated malic acid on a medium containing 
cellulose where phosphoenolpyruvate is known to 
get converted to oxaloacetate in the presence of 
phosphoenol carboxylase and further oxaloacetate 
being reduced to malate in the presence of malate 
dehydrogenase39-41. Microorganisms utilising the 
reductive pathway are known to secrete maximum 
concentrations of malic acid qualitatively and 
quantitatively 42-44. Fungal strains of Aspergillus, 
Ustilago trichophora and Aureobasidium pullulans 
are  known to secrete good quantities of malic acid  
from biofuel related coproducts and biomass42 . 
Alternatively, other methods have been mentioned 
in literature for the increased synthesis of malic 
acid like in case of Saccharomyces cerevisiae whose 
cells contained overexpressed gene for fumarate 
hydratase catalysed the conversion of fumarate to  
malate43.
 Several enzymes are known to play 
a role in metabolising malic acid. The  NADP-
malic enzyme (NADP-ME), has been  known to 
produce the essential components of energy and 
for the biosynthesis of  defense components. 
These defense compounds are implicated in 
the  malate metabolism in plant defense44. Malic 
enzymes have also been found in Sinorhizobium  
meliloti45,46, Bacillus stearothermophilus,47 
Streptococcus bovis 48,  Corynebacter ium 
glutamicum49, Lactococcus lactis50  and B. 
subtilis51,52. The list is exhaustive when it comes 
industrial production of malic acid and its utility but 
from the agriculture point of view, we have seen 
two main studies, one is based on metal chelation 
and other is known for eliciting plant defences, 
yet another study focusses on demonstrating 
the role of malic acid released from the roots of 
Arabidopsis (Arabidopsis thaliana) which attracts 
the useful rhizobacterium Bacillus subtilus FB17 
and assisted in biofilm formation53. Thus far, no 
study demonstrated the possible pathway of malic 
acid production by Gram negative bacteria which 
is good enough to bring about the solubilization of 
phoshates. While gluconic acid is known as one of 
the key organic acids released by several species 
of Pseudomonas54 and  many Gram negative 
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and Gram positive bacterial genera  and  fungal 
genera  for phosphate solublization55-60.  The role 
of malic acid in phosphate solubilization has not 
been well documented. This study opens up the 
exploration of the utility and role of malic acid is 
the solubilization of phosphates, under in vitro 
conditions. 

CONCLUSION
 This study has shown that under in vitro 
buffered condiitons apart from gluconic acid, malic 
acid is also produced in significant levels by the 
Gram negative phosphate solubilizing bacterial 
isolates belonging to various genera. There seems 
to be a differential pattern of the production of 
theese two major organic acids across isolates and 
insoluble sources of phosphates. But nevertheless 
in eight of the twelve scenarios explored in this 
study, malic acid concentrations were higher 
than the gluconic acid concentrations, thereby 
conslusively establishing the role of malic acid in 
phospahte solubilization. Previous studies have 
not determined the possible pathways of malic 
acid production by Gram negative bacteria, which 
is likely to influence phosphate solubilization. 
Threfore future work has to be initiated in this 
direction to explore the pathways of malic acid 
production in Gram negative bacteria and to 
further elucidate its role in bacterial phosphate 
solubilization.  
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