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Abstract
Candida albicans is a yeast that is an opportunistic fungal pathogen and also identified as ubiquitous 
polymorphic species that is mainly linked with major fungal infections in humans, particularly in the 
immunocompromised patients including transplant recipients, chemotherapy patients, HIV-infected 
patients as well as in low-birth-weight infants. Systemic Candida infections have a high mortality 
rate of around 29 to 76%. For reducing its infection, limited drugs are existing such as caspofungin, 
fluconazole, terbinafine, and amphotericin B, etc. which contain unlikable side effects and also toxic. 
This review intends to utilize advanced bioinformatics technologies such as Molecular docking, Scaffold 
hopping, Virtual screening, Pharmacophore modeling, Molecular dynamics (MD) simulation for the 
development of potentially new drug candidates with a drug-repurpose approach against Candida 
albicans within a limited time frame and also cost reductive.
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INTRODUCTION
 Invasive infections caused by fungal 
pathogens are life threatening opportunistic 
infections, having a high rate of mortality 
and morbidity in patients. It infects billions of 
individuals and is responsible for 1.5-2 million 
deaths annually1-4. Fungal infections have risen 
dramatically in patients over the last decades 
which are immunocompromised, because of 
cancer chemotherapy, solid and hematologic 
organ transplantation, broad use of antibiotics, 
surgery, and long-term use of corticosteroids5. 
Invasive fungal infections are particularly exposed 
to patients receiving cancer treatment, transplant 
recipients, intensive care unit (ICU) care, and 
also with acquired immune deficiency syndrome 
(AIDS). The immunocompromised hosts are having 
a great risk of these infections with mortality 
rates from 20% to 40% and it continues to be 
high, which is relied on what kind of infecting 
fungal species and the clinical treatment. Several 
fungal species are present in the world; however, 
some species, including Candida, Cryptococcus, 
as well as Aspergillus, lead to life threatening 
infection in more than 90% of the population. 
One species of fungus well known as Candida 
albicans, an ascomycete, and a polymorphic 
fungus. It is capable of reversibly transforming 
to various morphologies, include (1) yeast 
forms, (2) pseudohyphae forms, and (3) true 
hyphae forms. It’s both commensal as well as 
opportunistic pathogen among humans and ranks 
as the fourth most common threat of nosocomial 
bloodstream infections in modern hospitals with 
roughly 40% death rates3, 6-17. Pathogenicity of 
invasive infection caused by Candida albicans is 
regulated by several factors namely invasive (a) 
filamentation, (b) biofilm development, and (c) 
the ability to escape from the immune system18. 
Studies of metabolic labeling state that Candida 
albicans synthesize protein N-myristoyl (20-kDa). 
Myristoyl-CoA: N-myristoyl transferase (NMT), 
was reported as a target for antifungal as well as 
antiviral treatment19. Antifungal drugs may be used 
to handle such infections; however, the mortality 
rates remain high around 50% and there was also 
a high prevalence of Invasive fungal infections. 
Discussing treatment options, Antifungals Azoles, 
echinocandins, and polyenes are existing for the 

curing of fungal infections which are limited and 
clinically available18. Azoles and polyenes target 
different biological fungal processes relevant to 
ergosterol metabolism as well as echinocandins 
targets cell wall β-1,3 glucan production. 
5-flurocytosine is usually used as adjunctive 
therapy. Fazly et al. described filastatin (a small 
molecule) that prevents filamentation, adhesion, 
and virulence of Candida albicans20. Garcia et 
al. reported (N1-(3,5-dichlorophenyl)-5-chloro-2 
hydroxybenzamide) halogenated salicylanilide 
and its analogs Niclosamide, an antifilament 
molecules that inhibited Candida albicans’ biofilm 
development and had similar antibiofilm and anti-
filamentation activities21. Siwek et al. investigated 
the antifungal effect of 4-arylthiosemicarbazides 
and found the isoquinoline-thiosemicarbazide 
compound to exhibit greater affinity compared to 
the native ligand22. These antifungal agents have 
significant clinical failures such as unfavorable 
pharmacokinetic profiles, restricted antifungal 
range, significant side effects, minimal clinical 
effectiveness, drug-drug interactions, as well as 
increased drug-resistance. Therefore it is an urgent 
need to use all the advanced Bioinformatics tools 
and techniques to improve the existing fungal 
drugs or designing novel drugs against it. Existing 
drugs and the same structural analogous shows 
the resistant problem on the antifungal targets. 
Therefore, searching out the new inhibitor is the 
most promising approach to tackle the resistant 
fungal infections23-35

 This review is the effort to use advanced 
bioinformatics techniques such as Molecular 
docking, Scaffold hopping, Virtual screening, 
Pharmacophore modeling, Molecular simulation 
for developing novel drug candidates with drug 
repurposing approach against Candida albicans 
within a short period, cost-reducing and solve the 
resistant problem in fungal infections.
Candida Albicans: Biofilm Formation
 Earlier, microbiologists have studied 
planktonic cells which are free-floating cells in 
pure culture. Later they have discovered that there 
is a link available between sessile cells, microbial 
pathogenesis, and infections associated with 
humans and it differs basically from a planktonic 
cell present in the same species36. A broad 
variety of fungi alternately connecting planktonic 
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cells (freely suspended cells) and multicellular 
populations, known as biofilms37. Biofilms are 
characterized as well-structured microorganism 
populations that are interconnected with the 
surface as well as enclosed by an extracellular 
matrix (ECM) produced by themselves38. The 
biofilms-associated microorganism is related with 
several human diseases such as cystic fibrosis, 
native valve endocarditis and to colonize an 
extensive range of medical devices which taking 
into consideration that these structures are very 
much associated with antimicrobial-resistant 
and it is very difficult to manage such kind of 
infections within the clinical setting39. A short 
time ago it has been understood that fungal 
species form biofilms and it is associated with 
the escalating clinical problem38,40,41. So many 
Candida Species have been identified but the 
most famous studied species is Candida albicans 
as a well-developed biofilm activity with the 
most adaptable opportunistic pathogen42. There 
have been so many Candida species reported, 

but as a well-developed biofilm operation with 
the most adaptable opportunistic pathogen, the 
most popular species studied is Candida albicans. 
Biofilm is developed on various medical devices 
such as dentures, neurosurgical shunts, speech 
prostheses, breast implants, prosthetic joints, 
endotracheal tubes, intracardiac prosthetic 
devices, urinary catheters, dialysis catheters for 
peritoneal and hemodialysis, peripheral and 
venous catheters43. It exists in various types, 
such as yeast, hyphae, and multicellular biofilm44. 
Candida albicans adherence and colonization to 
denture acrylic substrates as well as oral mucosa 
is the first step of pathogenesis45-48. Candida 
albicans’ initial attachment to the surface is 
limited by the pH, osmolarity, flow of the nearby 
medium, such as urine, antimicrobial agents, 
bacteria, saliva, Mucus, temperature, blood, as 
well as the host immune factors49-54. Candida 
albicans biofilm formation having different phases 
of development. It contains substrate adhesion, 
colonization, extracellular material production, 

Fig. 1. Better describe the development of different phases such as early, intermediate and Mature. Adhesion and 
germination occurred in the early phase. Hyphal development as well as Extra cellular material production in the 
intermediate phase and the last one is maturation phase, in which dispersal occurred. In this Fig. light blue color 
represent ECM, circle correspond to Candida albicans cells, hyphae is also able to be seen.
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and maturation53-62. Biofilm development has been 
shown in Fig. 1.
 The yeast cell’s ability to shape biofilms 
on the implanted medical devices or on the 
surface in the host enhances its virulence. Candida 
albicans adhere to the surface with the support 
of Eap1p (cell wall protein) and Als3p (agglutinin 
like sequence protein)63,64. Als3p and Eap1p are 
initiations to the formation of microcolonies and 
further Efg1 regulatory protein is essential for 
the production of biofilm and its development 
of pseudo-and true-hyphae to form a complex 
association of hyphal structures with budding 
yeast-like cells spread throughout52,65. Further, 
the growth and the maturation of Biofilms, 
Candida albicans biofilm cells encompass a beta-
glucan rich extracellular matrix that protects 
from environmental stresses, antimicrobial 
agents, and host defenses66. The existence of 
the hypoxic environment is correlated with the 
maturation of biofilm and this condition induces 

Tye7p-dependent up-regulation of glycolytic 
genes required to respond to hypoxia and prevent 
uncontrolled hyphal formation67. In the final step, 
planktonic yeast cells dispersed from the mature 
biofilm and established a new colony on a new 
surface to grow a new biofilm from Candida68. 
Candida albicans Biofilm formation has been 
presented in Fig. 2.
 The diverse transcription factors such as 
Efg1p, Ace2p, Zap1p, and Bcr1p are the regulator 
which controlled the formation of Biofilm63, 69-71. 
The various genes have been presented in Fig. 2, 
for controlling and maintaining the development of 
biofilm. The most important thing is to understand 
the mechanism of those genes so inhibition such 
kind of infections in the populations. The key sites 
of the infections are biomaterials43, wounds72, 
Urinary tract73,74, Gastrointestinal tract75, lower 
respiratory tract76, upper respiratory tract77, 78, oral 
cavity79, etc.

Fig. 2. Different genes are presented here which showed function in Biofilm formation. It has four steps (I) Adherence, 
(II) initiation, (III) maturation, and (IV) dispersal. In the right-hand side part of the diagram, the genes are connected 
and involve in pathway but in the left hand side part, the genes may not attach to an established pathway but 
function in a particular step. Arrows signify positive connection, the Dashed line signify repression by an indirect 
mechanism. "+" sign indicates that an upstream gene stimulates the expression of the downstream target and "-" 
sign is opposite of it. "T-shaped" indicated a negative relationship (repression by an indirect process).
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Table 1. Representation of the structures of lipidation attachments

Attachment to the Attachment Post translation

N-terminus  Myristoylation83

Cysteine  Palmitoylation84

N-terminus  Palmitoylation85

Serine   Octanoylation85

Candida albicans: NMT [N-Myristoyl-transferase] 
as a drug target
 Post-translational modification is a 
very important step for proteins to function in 
a specific way through further modification. 
Post-translational modification occurs at the 
protein’s C- or N-terminal or on the amino acid 
side chain80. The modification occurs during the 
post-translational modification are different 
according to the different transformation such 
as C terminal amidation, N-terminal acetylation, 
phosphorylation of threonine, tyrosine or serine 
residues mainly in kinases, methylation of 
arginine and lysine residues mostly in histones, 
acylation of lysine residues and oxidation mainly 
in proline residues81. A less common type of post-
translational modification is lipidation. Lipidation 
is the covalent attachment of the lipid moiety 
to the protein. Lipidation increases stability, 
membrane interaction, protein hydrophobicity, 
changes in conformation, trafficking, etc. Different 
types of lipidation are known, differing according 
to the group being attached and the position of 
attachment82. Lipidation attachment has been 
presented in (Table 1).
 Regarding the attachment of longer chain 
fatty acid acylation, myristoylation (attachment of 
linear chain c-14), and palmitoylation (c-16)86, 87.
Researchers did extensive research and identified 

Candida albicans as an antiviral and antifungal 
therapy target. N-myristoyl transferase is indeed 
a monomeric cytosolic enzyme that is vital for 
the function and growth of fungi88,89. NMT is 
present in eukaryotes such as animals, protozoa, 
and fungi excluding bacteria. Protein N-myristoyl 
transferase is associate with the Gcn5-related 
N-acetyltransferases superfamily90. Candida 
albicans NMT contains 451 residues of amino 
acids and 45% of the human enzyme sequence 
identity. NMT is a compact globular, wedge-formed 
structure in which a big saddle-shaped beta-
sheet present and it occupies the center of the 
protein structure, also, it is surrounded by several 
helices means consisting of an N-terminal strand, 
preceded by two helices, three anti-parallel beta 
strands, preceded by a signature (central helix) 
and last beta-strand91. The NMT protein structure 
has been illustrated in Fig. 3. C-terminal half is 
crucial for the peptide binding site and N-terminal 
half is important to form mainly Myristoyl-CoA 
binding site90. N-Myristoyl-transferase catalysis 
reaction is catalyzed by N-myristoyl-transferase, 
the co-translational addition of myristic acid 
(14-C saturated fatty acid) to the N-terminal 
Glycine (GLY) residue of the substrate protein 
via amide bonding. The N-myristoyl transferase 
catalysis reaction is performed by the ordered 
Bi-Bi reaction mechanism, the enzyme forming 
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a high binary selectivity complex (Myristol-CoA-
NMT). This binary complex is essential to the 
further interaction of N-Myristoyltransferase 
with peptide and produces a ternary complex 
recognized as NMT-Myristoyl-CoA-Peptide, 
following the catalytic transfer of myristate 
to the peptide substrate. The first free CoA is 
released, followed by the N-myristylated protein. 
In general, Myristoylation is irreversible as well 

as a significant post-translational modification is 
defined as N-terminal lipidation of eukaryotic and 
viral proteins92. Myristoylation mechanism has 
been shown in Fig. 4.
 Myristoylation involved in anchoring and 
directing proteins to membranes and their effects 
such as signal transduction, cellular regulation, 
numerous pathologic processes caused by viruses, 
apoptosis, and translocation93, 94. The binding of 

Fig. 3.  PDB ID [1NMT] represents NMT from Candida albicans species at 2.45Ao  and PDB ID [1IYL] represents 
Candida albicans NMT with Non-peptidic Inhibitor. The Ligplot interaction diagram has been generated using the 
Schrodinger software suit. The ligand is showing its major interaction with a certain amino acid such as PHE 240, 
TRY 225, and LEU 451.

Fig. 4. The catalytic mechanism (Bi-Bi Reaction) of NMT.
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myristoyl residues enables hydrophobicity to affect 
protein partitioning to the cell membrane and 
promote the interaction of protein-proteins. It is 
important for the overall biological expression of 
viral and cellular protein activity95-97. In Fungi, the 
myristoyl is associated with the cellular membrane 
and myristoyl-protein interactions. This protein 
takes part in protein and vesicular trafficking and 
signals transduction cascade. In Candida albicans 
with defective NMT unable to infect mice98,99. 
Genetic studies showed that the enzyme is 
important for pathogenic Candida albicans to grow 
vegetatively100. NMT is a good antifungal agent 
target because it is responsible for systemic fungal 
infections and lacking its expression is related to 
significantly decrease cell growth and increased 
cell death.
Candida albicans: NMt inhibitors
 Several potent and selective inhibitors 
have been identified against Candida albicans 
NMT which showed low inhibitory activity 
against hNMT. All NMT polypeptides have 
similar folding but different inhibitor binding 
sites because of their particular amino acid 

differences90,101-104. As we studied earlier that 
NMT is responsible for the survival and growth 
of diverse fungal species, therefore so many 
different inhibitors have also been identified for 
reducing its fungal activity such as Benzofurans 
inhibitors101-103, Benzothiazole inhibitors104, Myristic 
acid analogs105,106, Peptidomimetic inhibitors88,107, 
p-toluene sulphonamide inhibitors108, etc. Devadas 
et al. reported a peptidomimetic inhibitor 
against Candida albicans NMT. This inhibitor was 
structured dependent on octapeptide substrate 
GLYASKLS-NH2 that was obtained from the 
N-terminal fragment of ARF2 (ADP ribosylation 
factor 2) and its analogous ALYASKLS-NH2107. Due 
to the lower antifungal activity of peptidomimetic 
inhibitors, Devadas et al. explored new forms of 
non-peptide inhibitors which represent simply 
one chiral core and demonstrate fungicidal 
activity109. Parang et al. have tested myristic acid 
analogs as putative inhibitors of NMT. Quite a 
lot of (+)-2-halotetradecanoic acids including 
(+)-2-bromotetradecanoic acid presented strong 
activity against Candida albicans (MIC = 39μM). 
These compounds illustrated antifungal action 

Fig. 5. Candida albicans NMT inhibitors.
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Table 2. List of the protein-ligand docking software

S. No. Docking Conformational searching Scoring Investigated by
 Programs methods Function

1. AutoDock Genetic algorithm Empirical (Morris et al., 1998)120

2. Dock Incremental construction Force field (Ewing et al., 2001)121

3. FlexX Incremental construction Empirical (Rarey et al., 1996)122

4. Glide Incremental construction /  Empirical (Friesner et al., 2004)112

  Monte Carlo optimization
5. Gold Genetic Algorithm Force field (Jones et al., 1997)123

6. Surflex Incremental construction,  Empirical (Jain, 2003)124

  surface-based molecular 
  similarity  
7. ICM Monte Carlo simulation Force field/  (Abagyan et al., 1994)125

   Empirical 
8. LigandFit Monte Carlo Simulation Empirical (Venkatachalam et al., 2003)126

9. eHiTS Exhaustive systematic Knowledge- (Zsoldos et al., 2007)127

   based/  
   Empirical

in vitro but not showed in vivo106. A new class of 
inhibitor was also reported named as p-toluene 
sulfonamides110. 
 In the journey of finding out the novel 
compounds with high selectivity, Benzofurans 
and Benzothiazoles are more promising than the 
previously reported compounds102-104. From the 
viewpoint of the development of antifungal drug 
candidates, other inhibitors were also developed 
such as 4-arylthiosemicarbazides derivatives22, 
novel benzofuran-semicarbazide hybrids and 
1,3-dialkoxybenzene-semicarbazide hybrids, 
etc.111. Candida albicans NMT inhibitors are 
presented in Fig. 5.

MATERIALS AND METHODS
 Computational drug discovery approaches 
really works for finding out the novel agents as 
new medications. Day by Day pharmaceutical 
and biotech companies are growing to help the 
society but the major problems we have to face 
today is the cost of the drugs are increasing and the 
expenses which we have to pay for the medicine 
are increasing. The drug productivity measures 
are unable to meet the increasing demands. Thus, 
advanced bioinformatics tools and techniques 
were discussed to find out the novel antifungal 
agents using drug repurposing approach.

Virtual Screening and molecular docking 
 Protein-ligand docking is a technique 
commonly used to determine a drug candidate’s 
binding orientation to their specific target. In 
our survey, we are in consideration of Candida 
albicans NMT as a drug target for drug designing 
purpose. Typically molecular docking technique 
is performed either to searched out that how a 
specific ligand molecule bind to a target protein 
or illustrate binding interaction with the target-
specific amino acid residues either H-bonding, 
Hydrophobic interaction, disulfide bond formation, 
salt bridge, pi-pi interaction or to find out the 
potent compound from the available databases 
that can bind with the target protein112-119. The 
docking can be categorized into two key steps, 
the initial positioning of the ligand structure at the 
active site of the target protein using the docking 
algorithm. followed by uses of the scoring function 
to assess the potency of the binding interaction.
There are a huge number of docking algorithms, 
tools, techniques are available to highlight the 
diverse orientation of the interaction between 
the ligand and the target structure as shown in 
(Table 2).
 In the early days, the docking algorithm 
did not treat the protein and ligand as flexible 
objects, only the six translations and also the 
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rotational degree of freedom was incorporated. 
Currently, we are having more consistent docking 
methods which give the options for flexible 
docking that the target protein is treated as fixed 
during the docking process, but the ligand is 
capable to move around the target. 
 In this situation, the active site of the 
protein shall not be considered to undergo any 
significant changes in conformity with the binding 
of the ligand. The flexible docking is broadly used 
with parallel computing resources to relatively, 
accurately, and quickly search databases for 
potential ligands to a target protein. The more 
precise algorithms which consider both ligand 
and receptor flexibility are very time-consuming, 
therefore have not been developed extensively. 
The algorithm which treats flexibility of the ligand 
is partitioned into three categories, for example, 
stochastic methods, systematic methods, and 
simulation methods. The docked poses are ranked 
and assessed using docking scoring functions 
which estimate a ligand’s binding free energy to a 

receptor, which is very important to differentiate 
the right poses from incorrect ones. The scoring 
function incorporates diverse sorts of terms 
that express electrostatic interactions, solvation 
effects, non bonded interactions, and van der 
Waals interactions128. The structure-based virtual 
screening framework was presented in Fig. 6.
Pharmacophore modeling
 The initial idea of a pharmacophore was 
developed by Paul Ehrlich during the late 1800s. 
The theory in the past was that in a molecule there 
were some chemical groups or functions that were 
responsible for a biological effect and that certain 
effect molecules even had similar functions. Fig. 7, 
revealed the pharmacophore, with its applications.
Later in 1960, Schueler coined the term 
pharmacophore in his book "Chemobiodynamics 
and Drug Design".  I t  e lucidated that  a 
molecular structure that expresses the essential 
characteristics liable for the biological activity of 
the drug. The Pharmacophore has been illustrated 
by IUPAC since 1997129. 

Fig. 6. Structure-based virtual screening Framework.
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Fig. 8. Basic Pharmacophore features of a molecule.

Fig. 7. Pharmacophore modeling and its application.
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Fig. 9. Structure-based Pharmacophore modeling and its applications.

 It projected that a pharmacophore is the 
collection of features known steric and electronic 
that are original to ensuring the mainly desirable 
supramolecular contacts linked with the desired 
protein target and blocking its biological activity130. 
The pharmacophore reveals an abstract idea. it 
relies on the features shared by a group of active 
molecules or it is the pattern of the features of 
a molecule that is responsible for a biological 
effect. Forms of molecular features patterns are 
hydrogen-bond acceptors, hydrogen-bond donors, 
hydrophobic, anionic, cationic, aromatic plus any 
such type of possible combinations presented in 
Fig. 8.
Pharmacophore modeling (Structure-based)
 The structure-based approach to 
pharmacophore modeling describes the relevant 
presentation of important interactions in a protein-
binding pocket. This pharmacophore modeling 
is appropriate in aspects of a free structure 
or a complex target-ligand structure. The free 
structure is classified as apo, and the holo known 
as the target-ligand complex. The structural 
pharmacophore modeling was performed using 
free ligand without protein, using only protein-
active site details and when the pharmacophore 
modeling uses protein-ligand structure complexes 

utilize the possible interactions involving protein 
and ligand, shown in Fig. 9. Structure-based 
pharmacophore modeling is a very effective tool 
for virtual screening such as multi-target drug 
design, scaffold hopping, parallel screening, QSAR, 
and multi-target drug development131, 132.
Pharmacophore modeling (Ligand-Based)
 Pharmacophore modeling based on 
ligand structure is a powerful computational tool 
of great importance for helping to discover a 
new drug compound. It is done by extracting the 
important and crucial chemical features, among 
the set of ligands. The ligands have been divided 
into training and test for alignment and generating 
a pharmacophore model, presented in Fig. 10. 
This model can be utilized further for the virtual 
screening process for finding a similar feature 
molecule that behaves like a drug133, 134.
Software available for performing pharmacophore 
modeling
 There are diverse software and tools 
are available to perform structure and ligand-
based pharmacophore modeling, presented in  
(Table 3–4).
Scaffold Hopping
 Schneider et al. (1999) presented Scaffold 
hopping, in 1999. It is a method for the discovery 
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Fig. 10. Representation of ligand-based Pharmacophore modeling.

Table 3. Structure-based pharmacophore modeling software

S. No. Software Molecular Alignment Commercialization References

1. LigandScout Complex-based Marketed by Inte: Ligand 135
2. GBPM Complex-based Not commercialized 136
3. Pocket v.2 Complex-based Not commercialized 137

Table 4. Ligand-based pharmacophore modeling software

S. No. Software Molecular Alignment Commercialization Reference
  (methods)

1. DISCO Bron-Kerbosh Clique
  detection algorithm Tripos Inc., Sybyl interface 138
2. APOLLO Feature-based Not commercialized 139
3. GALAHAD Atom-based Tripos Inc., Sybyl interface 140
4. HipHOP Feature-based Discovery Studio (Biovia) 138
5. MOE Property-based Chemical Computing Group 141
6. MPHIL Atom-based Not commercialized 142
7. HypoGen Feature-based Discovery Studio (Biovia) 143
8. HypoRefine Feature-based Discovery Studio (Biovia) 144
9. Apex-3D Feature-based Catalyst (Biovia) 145
10. CLEW Feature-based Not commercialized 146
11. GAMMA Atom-based Not commercialized 147
12. GASP Atom-based Tripos Inc., Sybyl interface. 138
13. PHASE Feature-based Schrodinger Inc. 148-149
14. PharmaGist Feature-based http://bioinfo3d.cs.tau.ac.il/PharmaGist/ 150
15. LigandScout Matching pattern- Marketed by Inte: Ligand 151
  based alignment
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of isofunctional molecular structures by way of 
considerably different molecular backbones152. 
Traditionally, a large fraction of the medicines 
produced is extracted from natural hormones, 
other medications, and natural products by 
scaffolding modification153. Recently published 
papers and reviewing these relevant examples 
provide useful guidance for a medicinal chemist 
for developing a new bioactive molecule. Scaffold 
hopping, also known as lead hopping154, 155. 
It is one of those approaches for finding out 
the new lead candidates156. Scaffold hopping 
intends to discover a structurally novel substance 
structure starting from previously identified 
active compounds by altering the center core 
structure of the molecule157. Scaffold hopping 
is commonly used in lead optimization. Since 
using HTS, so many compounds are unsuccessful 
compounds with poor PK properties and poor 
physiochemical properties. To overcome this, 
side-chain modification is sufficient sometimes, 
the core structure of the parent molecule or the 
scaffold may often be changed152,158-160.
Why Scaffold hopping is so important
• Central scaffolds are also specifically involved 

in target protein interactions. An enhanced 

binding affinity can result from a change in 
the scaffold.

• Replacing a lipophilic scaffold by an extra 
polar one could enhance the solubility of the 
compounds (lipophilic compound soluble in 
fats, oils, lipids etc. for increasing solubility, 
lipophilic scaffold can be change by an extra 
polar side chain or fragment).

• Replacing a very flexible scaffold known as 
peptide backbone by an inflexible central 
scaffold would also considerably advance 
the binding affinity and on the total DMPK 
characteristics. 

• Changes in the core of the structure may lead 
to a patentable novel compound.

• Replacing a metabolically labile scaffold via a 
reduced amount of toxic, and an additional 
stable one will improve pharmacokinetic 
properties.

Insilico approaches for scaffold hopping 
 There are different approaches are 
available for scaffold hopping but the main idea 
behind is (1) matching of shape, (2) searching for 
pharmacophores, (3) replacement of fragments, 
(4) looking for similarities, and (5) machine 
learning, etc. 

Fig. 11. Scaffold hopping: Computational Approaches.
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 The Shape matching approach describes 
if the compounds are structurally related means 
display similar biological activities and if the 
compounds are more distantly related, the less 
probable to show the same biological effects. 
In shape matching, it is possible to find out 
the compounds which mimic accurately this 
structure, but it is not possible to get the same 
features that are significant for binding to the 
target structure161,162. If the ligands are structurally 
different however, can adopt similar shape and 
share common features, It is possible to derive 
3D pharmacophores, which is used for shape 
matching scaffold hopping.
 But the drawback is for searching out 
the 3D pharmacophore using different chemical 
structure databases is not sufficient to find out the 
novel scaffold because it searches from the known 
compound databases163-166. Another approach 
to scaffold hopping is fragment replacement, in 

which no need for the replacement of the entire 
compounds but searching for a replacement of 
fragment of an active compound167-169. Similarity 
searching is also used for scaffold hopping. The 
chemical structures are assembled in these 
algorithms using fragment joining as well as 
the novel scaffolds are resolved by their match 
to the query170-172. Also, machine learning 
methods are used for scaffolds hopping, methods 
together with self-organizing maps that allow 
compound distributions to be visualized173, 174. The 
computational methods of scaffold hopping are 
shown in Fig. 11. The software tools is listed out 
in (Table 5).
Molecular Simulations And Advancement
 Since the first protein (folded globular 
protein) MD simulation is discussed in 1977186. In 
December 1999, IBM declared a five-year intend 
to build up a massively parallel computer for 
studying biomolecular phenomena, in which they 

Table 5. List of Software and tools for scaffold hopping

S.No. Software & tools Applications Ref.

1. 1-Click Scaffold It is ready to use drug discovery platform for scaffold hopping 175
 Hop
2. Spark™ Spark works in Shape space and electrostatic so it can go with the 176
  nature of reference molecules 
3. Core Hopping The core-hopping technique is to test several possible scaffolds 177
   as protocores) against a template and look for alignments of possible 
  (also known attachment points on the scaffold with the attachment 
  points on the template. 
4. LigCSRre LigCSRre is a modern effective and standardized method for 3D 178
  matching screening of tiny compounds, the modular plan of which 
  opens the door to lots of improvements. 
5. e-LEA3D The approach is perfectly appropriate for scaffold-hopping, this section 179
   moreover permits a search for potential substitutes to a selected scaffold. 
6. ChemMapper ChemMapper using the user given the chemical structure of the molecules 180
   as the query, the highest alike structure in respect of 3D similarity is sent 
   back using related pharmacology annotations. 
7. SHOP It is a grid-based technique for Scaffold bouncing. In a database, scaffolds 181
   were predictable utilizing 3 types of 3D-descriptors. 
8. LeadGrow+ Creating a molecular library for efficient scaffold hopping. 182
9. Recore Recore is a rapid and flexible scaffold hopping method based on 183
   conformations of small molecule crystal structures. 
10. HTSFPs (HTSFPs), It is a method that matches patterns of actions in investigational 184
   screens. 
11. MORPH MORPH is a software tool for scaffold hopping which can scientifically 185
   alter aromatic rings in molecular 3-dimensional models exclusive change 
   of the non-hydrogen atom co-ordinates in the rings. 
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have discussed for increasing longer simulation 
time as well as developing computing software 
and hardware for bimolecular MD simulation187. 
Certain software packages were also developed 
for simultaneously scales well-organized MD 
simulation very well on machines188. A massively 
parallel machine such as Anton was introduced 
which was able to reach millisecond time-scale 
simulation for biomolecular systems189. In recent 
times graphical processing unit which is known 
as GPU achieved remarkable progress with 
high-performance computing capability for MD 
simulations190,191. currently, MD simulation is very 
important for studying protein, DNA, and RNA 
systems. In the MD simulation so many terms are 
used in which force field is very significant where 
a protein force field included bonded (bond angle, 
dihedral angles, bond length) and also non-bonded 
interactions (electrostatic, van der Waals). The 
development of improved sampling methods and 
escalating computational performance came with 
more inaccuracies in the protein force field192. In 
these aspects, the classical protein field has been 
improved with Gromacs188, AMBER193, CHARMM194, 

and NAMD195. A basic algorithm for MD simulation 
has been represented Fig. 12 and a list of software 
has been shown in (Table 6). apart from this MD 
simulation software, there are other software also 
available such as Desmond196, TINKER, DL_POLY197, 
ESPResSo198, etc. so that it is understood that MD is 
already an important tool in serving to understand 
biology. 

RESULTS AND DISCUSSION
 The anticipated outcome could be 
development and searching out the novel, specific 
inhibitors for Candida albicans MyristoylCoA: 
Protein N-Myristoyltransferase as anti-fungal 
agents using advanced computational approaches. 
A humble beginning made towards this end 
needs patronage for further development. All 
the more interesting on this aspect is, still as 
on date, no successful attempt has been made 
towards development of a best, specific inhibitor 
for Candida albicans MyristoylCoA: Protein 
N-Myristoyltransferase which again augments 
support.

Fig. 12. A Basic algorithm for Molecular Dynamics.
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CONCLUSION AND FUTURE PERSPECTIVE
 N-myristoyl transferase is a monomeric 
cytosolic protein that is vital for the function and 
growth of fungi. There are so many inhibitors that 
have been designed against Candida albicans NMT 
for reducing fungal infections in humans but at 
present antifungal drugs are not perfect in the 
expressions of the antifungal spectrum, efficacy, 
and protection. Drug repurposing is one of the 
most significant, more affordable, and increasingly 
proficient techniques in drug discovery. So right 
now, we have examined in silico drug repurposing 
approach which joins Molecular docking, Virtual 
Screening, Pharmacophore demonstrating, 
Scaffold hopping, and Molecular dynamics (MD) 
simulation for the advancement of a novel Candida 
albicans NMT inhibitors.
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