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Abstract
COVID-19 pandemic, which caused by the newly emerged severe acute respiratory syndrome 
coronavirus-2 (SARS- CoV-2), puts the entire world in an unprecedented crisis, leaving behind huge 
human losses and serious socio-economical damages. the clinical spectrum of COVID-19 varies from 
asymptomatic to multi-organ manifestations. Diabetes mellitus (DM) is a chronic inflammatory 
condition, which associated with metabolic and vascular abnormalities, increases the risk for SARS-
CoV-2 infection, severity and mortality. Due to global prevalence, DM effect on COVID-19 outcomes as 
well as the potential mechanisms by which DM modulates the host-viral interactions and host-immune 
responses are discussed in this review. This review also highlights the effects of anti-diabetic drugs on 
treatment of SARS-CoV-2 infection and vice versa.
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INtRODuCtION
 Late 2019, a novel coronavirus (CoV), 
known as severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2, previously 2019-
nCoV), has emerged in Wuhan, Hubei province, 
China. This virus has spread rapidly within and 
between other countries, and causing coronavirus 
disease-2019 (COVID-19). On March 2020, World 
Health Organization (WHO) declared COVID-19 
outbreak as a global pandemic. COVID-19 is 
associated with a wide spectrum of symptoms 
such cough, fever, headache, myalgia, loss of taste 
and smell, respiratory problems and in severe 
cases, it may cause respiratory failure and death1-8. 
 In addition to older ages, certain chronic 
medical conditions such as hypertension, diabetes, 
and cardiovascular diseases increase the risk for 
severe SARS-CoV-2 infection9,10. It is unsurprising 
that diabetic patients are more likely to be infected 
and have a significantly high risk for hospitalization 
and mortality from COVID-19. Similar increased 
risk for other coronaviral infections such as severe 
acute respiratory syndrome (SARS) in 2003 and 
Middle East respiratory syndrome (MERS) in 2012 
has been reported in diabetic patients11,12. 
 Considering global prevalence of diabetes 
mellitus (DM) (about 422 million worldwide, WHO) 
and high transmission rate of SARS-CoV-2, these 
two pandemics cause significant mortality and 

morbidity. So, it is not advised to underestimate 
COVID-19 infection in diabetic patients even if the 
initial symptoms are mild. In this review, medical 
data have been collected to better understand the 
relation between DM and COVID-19 infection and 
severity.
Coronaviruses
 Coronaviruses (CoVs) are enveloped 
positive-sense, single-stranded RNA viruses 
belonging to Coronaviridae family13-15. Most known 
human CoVs are associated with self-limiting 
mild diseases. However, three beta-CoVs, such 
as SARS-CoV, Middle East respiratory syndrome 
coronavirus (MERS-CoV) and novel SARS-CoV-2, 
resulted in major outbreaks with life threatening 
effects16,17. Despite phylogenetic similarity (79.5%), 
SARS-CoV-2 has lower mortality rate but higher 
transmission rate than SARS-CoVs18. The genome 
of SARS-CoV-2 contains several open reading 
frames (ORFs)19,20. Structural proteins of CoVs 
are spike (S), envelope (E), membrane (M), and 
nucleocapsids (N) proteins (Fig. 1)21-23. S protein, 
which is expressed on virus surface, is responsible 
for recognition and binding to host cell receptors 
and it has two conserved domains S1 and S2 15. 
 Genomic analysis revealed that sites of 
receptor binding domains (RBDs) of SARS-CoV-2 
bind angiotensin-converting enzyme 2 (ACE2) 
receptor, which is the same human cell receptor 

Fig. 1. Coronavirus structure and spike-receptor binding (Created by Biorender.com).
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for SARS-CoV but with higher receptor binding 
affinity (10- to 20- fold)24,25. Unfortunately, ACE2 
receptors are widely distributed on plasma 
membrane of host cells of many tissues such as 
lungs, heart, kidney and liver18,26-30. This explains 
the multi-organ dysfunction including acute 
respiratory distress syndrome (ARDS), acute 
myocardial and kidney injury31,32. It was found that 
injury of these organs was much more serious in 
diabetes compared to those without diabetes33. 
Furthermore, immunestaining of ACE2 revealed 
significant expression of ACE2 protein in pancreatic 
islets, which also explains that SARS-CoV-2 may 
result in diabetes via damaging the pancreatic 
islets34,35. Nucleocapsids protein (N) in SARS-CoV 
has the ability of neutralizing the host’s immune 
system by acting as an antagonist to IFN-g. If this 
ability proved to be absent in SARS-CoV-2, it would 
present an explanation for the lower mortality rate 
of the novel CoV36. 
Clinical characteristics of COVID-19
 The clinical spectrum of COVID-19 varies 
from asymptomatic to multi-organ manifestations. 
The symptoms start as mild flu-like symptoms, 
and may rapidly develop severe symptoms. The 
different symptoms reported with COVID-19 
include cough, fever, headache, myalgia, loss of 

taste and smell, shortness of breath, sore throat, 
vomiting and diarrhea37-39. However, severe 
cases can develop signs and symptoms of acute 
respiratory distress syndrome (ARDS), respiratory 
failure and failure of other organs. Severe cases 
require supportive treatment and admission to 
intensive care unit39-41. 
Diabetes as a risk factor for COVID-19
 Diabetes, which is a worldwide leading 
cause of morbidity and mortality, has a high 
potential risk for viral infections, mainly due to 
defects of innate and adaptive immunity (Fig. 2). 
 Some potential mechanisms, which 
increase diabetic patients’ susceptibility to 
infection, are discussed in this review. ACE2, as 
the receptor responsible for SARS-CoV-2 binding 
and entry, has an increased expression level in DM 
(Fig. 3) 42. Additionally, Fernandez et al.43 found 
that a cellular protease (furin), which plays a role 
in virus entry through cleavage of S1 and S2, is high 
in DM. Viral clearance is based mainly on T-cell 
action, natural killer cell activity and complement 
action, which are disturbed in diabetes44. Several 
studies reported a significant relation between 
DM and infection severity of different CoVs 
such as SARS-CoVs, MERS-CoVs and SARS-
CoV-245-50. Diabetes, as a chronic inflammatory 

Fig. 2. Different reasons of increased severity of COVID-19 in diabetes (Created by Biorender.com).
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condition associated with metabolic and vascular 
abnormalities, affects the body response to 
pathogens51-54. Accordingly, within hospitalized 
COVID-19 patients, diabetic patients are over-
represented with higher mortality rate reaching 
50% 41,47,55. In diabetic patients, SARS-CoV-2 triggers 
higher stress conditions, inducing hyperglycemic 
hormones (glucocorticoids and catecholamines) 
and elevating blood sugar levels46. Uncontrolled 
diabetes is associated with inhibited lymphocyte 
proliferative response and impaired function 
of monocyte/macrophage and neutrophil (Fig. 
3). A study on diabetic mice showed prolonged 
severe course of COVID-19 infection with delayed 
recovery and further histological study showed 
fewer levels of monocyte/macrophages and 
CD4+ T-cells, CD8+ T-cells, lower chemokine 10 
expression, lower level of tumor necrosis factor 
alpha, IL-6 and IL-12b, but higher levels of IL-7a55. 
 In DM, an inflammatory storm forms after 
SARS-CoV-2 infection due to the delay in initiation 
of adaptive immunity, resulting in respiratory 
failure and rapid deterioration of other organs (Fig. 
3)33. Additionally, in diabetes there is a high level of 
plasminogen, which increases the virus virulence56. 
Further, the inflammation biomarkers (such as IL-6, 
serum ferritin and coagulation index, C-reactive 
protein and D-dimer) were significantly higher in 
DM57-60. Diabetes-associated comorbidities such as 
hypertension, kidney and heart diseases play a role 

in worsening the prognosis. Additionally, diabetes 
can result in structural lung changes, leading 
to impaired gas exchange and the pulmonary 
microvasculature may be well prepared to 
COVID-19 infection48,61. A study has been reported 
by Kohio et al.62, showing that the high sugar level 
significantly increases viral replication.
 The possible cause of severe hypoxemia in 
spite of well-preserved lung mechanics that occur 
with COVID-19 infection is the endothelial damage 
and pulmonary micro vascular thrombosis. DM 
affects innate immunity, leading to endothelial 
dysfunction and deregulation of V. D, fibrinolysis 
and anti-aggravations, this results in macrovascular 
diseases or even micro vascular diseases leading 
to pulmonary complications (diabetic lung)63. 
Glycemic instability either hyperglycemia or 
even hypoglycemia may increase the severity of 
COVID-19 64. Another link between COVID-19 and 
DM is down regulation of ACE2, leading to severe 
lung injury 65. Severe cases and dead patients 
of COVID-19 show increase level of TYG (insulin 
resistance marker).
 Interestingly, hospitalized COVID-19 
patients with controlled levels of blood sugar 
showed lower mortality rates than those with 
poorly controlled blood sugar levels 47.
type 1 DM (t1D) versus type 2 DM (t2D)
 Type 1 DM represents 10% of diabetic 
patients and it is mediated by autoimmune 

Fig. 3. Potential mechanisms that increase susceptibility of diabetic patients for COVID-19 infection (Adapted from 
Muniyappa R and Gubbi S 12). 
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reaction to proteins of pancreatic beta cells. 
T2D is due to combination of some genetic and 
environmental factors66-69. Both Type 1 and 2 
increase the risk for SARS-CoV-2 infection and 
related complications. Human immunity against 
CoVs depends mainly on the balance between T 
helper 1 (Th1) and T helper 2 (Th2) immunity. Th1 
immunity, which acts mainly against intracellular 
pathogens such as SARS-CoV-2, mediated by T 
lymphocyte and modulated by IL-6 and interferon 
gamma. T1D shows imbalance between Th1 and 
Th2 immunity in favor of Th1, which may make 
type1 diabetic patients at a lower risk for COVID 
-19 infections 70.
COVID-19 patients and microangiopathy in 
hyperglycemia
 Main reason of morbidity and mortality 
in diabetes is the vascular complications, which 
occur due to systemic metabolic disorders 
(hyperglycemia and dyslipidemia) and tissue 
reactions to toxic metabolites.71 Control of blood 
sugar can delay onset of diabetic microvascular 
complications and slows down progression72. High 
blood sugar level starts its injurious effects by 
raising the amount of its metabolites in vascular 

cells; this can lead to certain changes in its 
functions. Additionally, high glucose metabolism 
can generate specific toxic products, which can 
mediate the specific toxic actions of high blood 
sugar level and lead to microvascular injuries. The 
specific pathologic outcomes are modulated by the 
needs of various tissues, significance of the various 
functions that are changed by high blood glucose 
level, and the protective reactions made by each 
tissue. The main microvascular injuries include 
retinopathy, nephropathy, and neuropathy. Also, 
brain, skin, cardiac muscle and other tissues are 
involved72.
COVID-19 and pulmonary microangiopathy
 C O V I D - 1 9  c a u s e d  p u l m o n a r y 
complications, which is characterized by 
dissociation between severity of hypoxemia and 
maintenance of good respiratory mechanics73. 
Coagulation dysfunction is common in intense 
COVID-19 and thrombogenic microvascular 
injury appeared in fatal cases63,74. Endothelial 
damage and pulmonary microvascular thrombosis 
currently indicate clinical severity of COVID-19 
73,74. SARS-CoV-2 enters into endothelial cells 
through binding of viral entry protein (S protein) 

Fig. 4. Potential repositioned drug candidates for COVID-19 (Created by Biorender.com)
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to ACE2 receptor and then virus replication 
occurs. Replication of the virus results in cellular 
injury and release of proinflammatory signals. 
Additionally, virus binding to ACE2 results in 
increase in the level of local angiotensin-II, which 
results in vasoconstriction, endothelial activation, 
and proinflammatory cytokine release, causing 
damage for alveolar epithelial and vascular 
endothelial cells. Endothelial cell involvement 
may then spread across the vascularity of different 
organs63.
COVID-19 and diabetic nephropathy
 Nearly 25% of patients with T2D are 
affected by diabetic nephropathy, which is 
considered as main cause of end-stage renal 
disease. Additionally, diabetic nephropathy is 
associated with elevated cardiovascular risk75. 
Despite acute respiratory failure being main 
feature of COVID-19; it was found out that other 
organs affection might occur. Following SARS-
CoV-2 infection of lungs, the virus may reach the 
circulation and then the kidney, causing renal cells 
injury. In a Chinese study, around 7% of patients 
infected with SARS-CoV suffered from acute kidney 
injury75. For this reason, knowing how the kidney 
is affected by SARS-CoV-2 is urgently needed. 
More than 40% of hospitalized COVID-19 patients 
developed kidney disease, which was linked 
with greater hospital mortality. Some patients 
with COVID-19 had a pre-existing chronic kidney 
disease, which makes it a possible justification 
of the high pervasiveness of kidney involvement 
at hospital admission. Such patients have a 
proinflammatory state with functional defects in 
immune cell and may develop upper respiratory 
tract infection and pneumonia more favorably76.
 Impact of both anti-diabetic treatments 
on COVID-19 outcomes, as well as therapeutic 
approaches for COVID-19 on management of 
diabetes requires further study. 
Management of COVID-19 in diabetic patients
 Diabetic patients have more risk for CoVs 
infection and mortality, this may be due to the 
poor glycemic control, which increases risk for 
secondary infection77. Combined with the latest 
guidelines of washing hands, social distancing and 
lockdown, good glycemic control help in reducing 
the risk for infection and even severity of the 
disease78,79. No specific treatment is approved for 
COVID-19 and only symptomatic and supportive 

treatment are applied17,80. Therefore, development 
of effective vaccine and specific antiviral treatment 
is the ultimate aim to fight CoVs81-89.
 Nowadays, medical institutions and 
companies are recruited to design and produce 
effective vaccines for COVID-19 using whole virus 
(attenuated or inactivated)90-92, plasmid encoding 
viral antigens93,94 or viral proteins95-99. On 2020, 
several promising vaccine candidates have entered 
clinical phase such as Ad5-nCoV from CanSino 
Biologics (NCT04313127)28, INO-4800 from Inovio 
(NCT04336410)100, PiCoVacc from Sinovac Biotech, 
mRNA-1273 from Moderna (NCT04299724)101, LV-
SMENP-DC (NCT04299724) and pathogen-specific 
aAPC (NCT04276896) from Shenzhen Medical 
Institute. 
 Moreover, repositioning of drugs is fast 
option to find clinically effective agents against 
COVID-19. Several approved antiviral drugs 
(Fig. 4) were re-tested against COVID-19 such 
as remdesivir, favipiravir, ribavirin81-88, lopinavir-
ritonavir and chloroquine81,89,102-107. Despite their 
potential ability to inhibit viral replication, these 
repositioned drugs might show adverse effects 
with diabetic patients and overall outcomes have 
not yet been fully evaluated. 
 The low-cost proven antimalarial drugs, 
chloroquine and its derivative hydroxychloroquine, 
are tested clinically against COVID-19 and 
showed promising efficacy and safety81,89,102-108. 
Chloroquine acts via several mechanisms such 
as preventing endosomal acidification, inhibiting 
virus-host cells fusion/replication, interfering 
glycosylation of cellular receptors and inhibition 
of MAP-kinase altering virus assembly and 
budding81,89,109-110. Chloroquine has hypoglycemic 
effects and has been approved for diabetes since 
201465,111. This hypoglycemic effect could be 
attributed to improvement of insulin sensitivity, 
increase of insulin secretion, reduction of hepatic 
insulin clearance and reduction of systemic 
inflammation112. Therefore, diabetic patients 
infected with SARS-CoV-2 should be monitored 
for hypoglycaemia during and even after the use 
of chloroquine with other anti-hyperglycaemic 
drugs111,113.
 However, some studies revealed that 
clinical trials of hydroxychloroquine did not show 
significant improvement in hospitalized COVID-19 
patients compared to standard approaches114,115. 

https://clinicaltrials.gov/ct2/show/NCT04313127
https://clinicaltrials.gov/ct2/show/record/NCT04336410
https://clinicaltrials.gov/ct2/show/NCT04283461
https://clinicaltrials.gov/ct2/show/NCT04299724
https://clinicaltrials.gov/ct2/show/NCT04276896
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Additionally, several adverse effects were reported 
with high doses of chloroquine with severe 
COVID-19 cases as well as life-threatening 
arrhythmias was reported when chloroquine is 
coadministered with azithromycin116. World Health 
Organization (WHO) has recently declared an 
official statement to prevent further clinical trial 
testing chloroquine and hydroxychloroquine on 
COVID-19 patients.
 Corticosteroids could be used in COVID-19 
for management of ARDS and sepsis, but they 
would negatively affect the glycemic levels.
Effect of diabetes treatment on COVID-19
 The effect of oral anti-hyperglycemic 
drugs on the severity of COVID-19 is not fully 
studied. However, metformin and sodium glucose 
cotransporter (SGLT) inhibitors increase risk of 
lactic acidosis and should be stopped in sever ill 
patient with hemodynamic instability. Additionally, 
SGLT inhibitors (such as gliflozins) might result in 
over expression of ACE2 receptors, increasing risk 
of diabetic patients to have more complications if 
infected with SARS-CoV-2 (111). Therefore, SGLT2 
inhibitors, which are used in management of T2D, 
may exacerbate the clinical outcomes of COVID-19.
Sulfonylureas are effective in diabetes treatment 
but there is an increased risk of hypoglycemia 
in patients with irregular food intake64. 
Thiazolidinediones and glucagon-like peptide-1 
agonists increase levels of ACE2 proteins117,118. 
Increasing ACE2 expression may not increase 
the entry of SARS-CoV-2 into host cells and 
this is because virus binding is also dependent 
on availability of transmembrane protease 
serine 2 (TMPRRS2)119. Thiazolidinediones is not 
recommended with COVID-19 patients due to risk 
of fluid retention and heart failure. 
 Although, insulin increases the expression 
of ACE2 protein via attenuation of disintegrin and 
metalloprotease effect, it is still the first choice 
to adjust blood sugar in hospitalized COVID-19 
patients, especially patients in the intensive care 
units 120. Patients with mild COVID-19 can normally 
use their anti-hyperglycaemic drugs as long as they 
have mild infection and with normal oral intake 77.
On other hand, dipeptidyl peptidase 4 (DPP4) 
inhibitors, which are used for oral management 
of T2D, may have advantages in treatment of 
COVID-19121. DPP4 is a serine exopeptidase 
receptor expressed ubiquitously in many organs 

and tissues such as lung, liver and kidney and 
has increased activity in T2D. DPP4 is the main 
entry receptor for MERS-CoVs and some studies 
described DPP4 as a co-receptor for SARS-CoV-2 
entry121,122. DPP4 inactivates glucagon like peptide1 
(GLP-1) and gastric inhibitory polypeptide (GIP), 
which are responsible for stimulation of insulin 
release and inhibition of glucagon release so 
lowering blood glucose123. If DPP4 enhances 
entry of SARS-CoV-2, DPP4 inhibitors (such as 
teneligliptin, vildagliptin and saxagliptin) could be 
repurposed for treatment of COVID-19 patients 
with diabetes.
Vaccines against COVID-19
 Several vaccines have been developed 
against CoVs either via exposing the human body 
to viral antigens or to neutralizing antibodies. 
There are now several vaccines that are in use. 
The first mass vaccination programme started 
in early December 2020 and as of and as of 15 
February 2021, 175.3 million vaccine doses have 
been administered. At least 7 different vaccines (3 
platforms) have been administered. WHO issued 
an Emergency Use Listing (EULs) for the Pfizer 
COVID-19 vaccine (BNT162b2) on 31 December 
2020. On 15 February 2021, WHO issued EULs for 
two versions of the AstraZeneca/Oxford COVID-19 
vaccine, manufactured by the Serum Institute of 
India and SKBio. WHO is on track to EUL other 
vaccine products through June124,125.

CONCluSIONS
 Tremendous international efforts are 
carried out to contain COVID-19 pandemic, which 
caused by the newly emerged SARS-CoV-2. Since 
DM is associated with high risk for SARS-CoV-2 
infection and mortality, special attention should be 
given for diabetic patients. Potential mechanisms, 
which increase susceptibility of diabetic patients 
to viral infection, include defects of innate and 
adaptive immunity, efficient virus entry, delayed 
viral clearance, decreased T cell function and 
cytokine storm syndrome. Drugs of DM affect 
on the control of COVID-19 and vice versa, so, 
screening for (pre) diabetes in COVID-19 patients 
is critical as well as blood glucose monitoring and 
management during treatment of the infection. 
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