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iNtROduCtiON
 Biotechnology became an alternative 
and conventional trend in the fields of industry 
and analysis. The incorporation of biotechnology 
in these fields has many advantages includes 
production of desirable products which could 
be used in ingredient substitutions, alleviates 
the product yields, less energy consumption and 
ecofriendly1. The microbial enzymes meet the 
industrial demand and now a large number of 
them are commercially available2.
 Following cellulose, xylan is the second 
most available renewable polysaccharide. 
Xylanases are hydrolytic enzymes that cleave the 
b-1,4 glycosidic bonds of xylan. They are applied 
for the production of hydrolysates in food and 
beverage industries, bioethanol and azodye 
removal3. These are used to enhance the nutrients 
digestibility in animal feed4 as well as used for 
biobleaching of kraft pulp in pulp and paper 
industry5. It has also been reported that xylanases 
play a role in a production of natural sweetener6. 
The bioproduction of xylanases was performed by 
bacteria, actinomycetes, yeast and filamentous 
fungi7. However, xylanolytic yeasts have not 

been cited frequently8,9; such as Pichia stiptis10, 
Cryptococcus, Fellomyces 11 and Candida3. The 
optimum activity of fungal xylanases is neutral or 
slightly acidic pH’s12.
 α-Amylases (E.C.3.2.1.1) are enzymes that 
catalyze the hydrolysis of internal α-1,4-glycosidic 
linkages in starch13 to produce dextrin, maltose and 
glucose units. The enzymes are applied in starch 
liquefaction, paper, improving textile fabrics and 
preparing starch coatings of paints industries. In 
addition, α-amylases are applied the detergent 
industry, breweries and in the production of 
syrups. The use of amylase has grown in many 
ways, including scientific, pharmaceutical and 
analytical chemistry2,14,15. Different types of 
amylases can be produced by various organisms16. 
However, microbial amylase is preferred due 
to its biochemical versatility, higher production 
rate, stability, and availability by large number of 
microbial species. α-Amylases is the major type 
of microbial amylases that produced by fungi, 
yeasts and bacteria1. The production of α-amylase 
by submerged fermentation (SmF) and solid-state 
fermentation (SSF) has been depend on some of 
physicochemical factors such as pH, temperature 

Abstract
The xylanolytic and amylolytic yeasts were qualitatively determined by Cong red xylan agar and soluble 
starch agar plates, respectively. The most xylanase and α-amylase inducible strain (AUN-02) was selected 
and identified using PCR amplification of 26S rRNA gene and sequence analysis. The comparison of the 
alignment results and phylogenetic analysis of the sequences of the isolated yeast to published rRNA 
gene sequences in GenBank, confirmed the identification of the isolate as Pichia membranifaciens. 
Xylanase and α-amylase production by isolated P. membranifaciens were investigated at different 
pH values (4-8), temperature degrees (20-45°C), incubation time (1-7 days) and various substrates.A 
higher production of xylanase (38.8 U/mL) and a-amylase (28.7 U/mL) was obtained after 4 days of 
fermentation of P. membranifaciens. Higher activity of xylanase (36.83 U/mL) and a-amylase (27.7 U/
mL) was obtained in the fermentation of P. membranifaciens in a culture medium adjusted to pH 7.0. 
The optimum temperature showed maximum xylanase and a-amylase activity (42.6 and 32.5 units/mL, 
respectively) was estimated at 35 °C. The xylanase and a-amylase activities of P. membranifaciens were 
estimated and compared for the different substrates tested. The strain revealed 100% relative activity 
of xylanase and a-amylase on beechwood and potato starch, respectively. The affinity of enzymes 
towards substrate was estimated using Km values. The Km values of xylanase and α-amylase increased 
in the order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/
mL, respectively). the yeast P. membranifaciensis is suitable for produce neutral xylanase and α-amylase 
enzymes. So, it could be used as a promising strain for production of these enzymes in industrial field. 
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and moisture17,18. The pH is very effective in the 
industry, where α-amylases used in starch industry 
are stable at low pH and in the detergent industry 
the high pH is required19.
 Therefore, this study aimed to isolate 
xylanolytic and amylolytic yeast strain and detect 
the optimum parameter for xylanase any amylase 
production by isolated yeast. 

MATERiALS ANd METHOdS
Yeast isolation, and purification
 A weigh of 5 g of soil samples that were 
collected from various farmlands in Assiut region, 
Egypt were suspended on 45 mL of sterilized 
distilled water to form soil spore suspension. 
Ten-fold serial dilutions of spore suspension were 
prepared. An aliquot of 100µL was withdrawn and 
plated on sterilized yeast extract peptone dextrose 
(YEPD) agar plates as the method described by20. 
The plates were incubated at 28°C for 72 h. The 
grown colonies were picked up, purified and 
preserved in YEPD slant agar tubes at 4°C.
Qualitative screening of xylanase and amylase 
production
 For propagation of inoculum, the pure 
yeast culture was inoculated in liquid medium 
containing per liter glucose; 10 g, NaNO3; 0.3 g, 
KH2PO4; 3g, MgSO4; 0.3 g and yeast extract; g at 
28°C, 140 rpm, for 48 h. Xylanase production was 
qualitatively confirmed by formation of clear halo 

zones around growing colonies that inoculated on 
Congo red-beechwood xylan (1%) agar plates after 
washing with 1M NaCl3. While the screening of 
amylase production was qualitatively confirmed 
by formation of clear halo zones around growing 
colonies that inoculated on soluble starch (1%) 
agar plates after washing with iodine solution 
(10%)21.
Molecular identification of Xylanase and 
α-amylase producing yeast
 Total genomic DNA from xylanase 
a n d  α - a m y l a s e  p r o d u c i n g  y e a s t  w a s 
isolated,  according to 20.  pr imers NL1 
(5′-GCATATCAATAAGCGGAGGAAAAG-3′) and 
NL4 (5′-GGTCCGTGTTTCAAGACGG-3′)22 were 
used to amplify 26S rDNA D1/D2 domain region. 
PCR was carried out in a total volume of 50 μl 
consisting GoTaq green master mix (Promega, 
Madison, WI, USA), 1 µL DNA sample, and 1 µL of 
every primer (0.5 mM)23. The amplification was 
performed under the following conditions: the 
denaturation at 95°C for 5 min, accompanied by 
36 cycles at 94°C for 2 min, 52°C for 1 min, 72°C 
for 2 min; the extension at 72°C for 7 min; and 
then sustained at 4°C. A volume of 5 μl of PCR 
products was then analyzed using 1.5% 0.5× TBE 
agarose gel electrophoresis. A 100-bp DNA ladder 
has been used as a marker. The gel was stained 
with Ethidium bromide and images were captured 
under ultraviolet light.

Fig. 1. Phylogenetic relationships between strain AUN-02 and 26S rRNA gene sequences from other published 
Pichia spp. GenBank accession numbers are given in parentheses.
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Purification of PCR products and determination of 
26S rRNA gene d1/d2 domain sequences
 With a Takara agarose gel DNA purification 
package, the PCR products (~600 bp) were purified, 
and then sequenced using ABI 3730 automated 
sequencer by Macrogen in both directions (Seoul, 
Korea).
Phylogenetic analysis and comparisons of 26S 
rRNA gene d1/d2 domain sequences
 The 26S rRNA gene D1/D2 domain 
sequences yeast generating xylanase and α-amylase 
were searched in the GenBank and matched with 
recognized 26S rRNA gene sequences at the 
National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/BLAST/) using 
the basic local alignment search tool (BLAST). 
To identify the isolated yeast, percent identity 
scores were generated. The phylogenetic tree 
was also established using MEGA version 4.0 
with the neighbor-joining algorithm and Jukes-
Cantor distance estimation, with 1,000 bootstrap 
replicates, to validate the taxonomic classification 
of the xylanase and α-amylase producing yeast.
Quantitative determination of enzymes activities
 A percentage of 10% V/V of propagated 
culture were inoculated on new sterilized 
previously mentioned agar media supplemented 
with birchwood xylan or soluble starch instead 
of glucose and incubated at 150 rpm and 30°C 
for 7 days24. Substrates used were beechwood 

xylan and starch for xylanase and α-amylase, 
respectively. One- mL of each culture sample 
was centrifuged at 13000 rpm, 4°C, and the 
supernatants (enzyme crude extract) were stored 
at -20°C for analysis. Xylanase and α-amylase 
activities were assayed by determining the 
liberated reducing end products using xylose and 
maltose as standards, respectively25. one percent 
of substrate, 0.05 M sodium acetate buffer pH 
5.5 and 0.1mL enzyme crude extract were used 
in the reaction mixture (0.5 mL) contained. Assays 
were performed for an hour at 37°C. A volume of 
0.5 mL 3,5-dinitrosalicylic acid (DNS) reagent was 
applied to each tube. Then the reaction mixture 
was vortexed and boiled in a water bath for 10 min. 
The absorbance was determined at 560 nm after 
cooling to room temperature. The reducing sugar 
was estimated from the standard calibration curve 
equation using xylose and D-glucose for xylanase 
and amylase, respectively. The quantity of enzyme 
that released one μmol of reduced sugar per min 
under optimum assay condition is defined as one-
unit enzyme activity.
Optimization factors for xylanase and α-amylase 
production
 The yeast isolate was cultivated in the 
minimal basal slat medium (MBS-g/L) NaNO3; 
3g, MgSO4; 0.3 g, KH2PO4; 0.3 g supplemented 
with birchwood (1%) or soluble starch (1%) for 
7 days at 150 rpm and 30°C. An aliquot of 1 mL 

Fig. 2. Production of xylanase and α-amylase by fermentation of Pichia membranifaciens AUN-02 in Erlenmeyer 
flasks at 30°C and 150 rpm. The data were considered as means ± S.E. (n=3).
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was withdrawn each 24 h interval to perform the 
enzymes assay in order to determine the optimum 
incubation time for maximum production of 
xylanase and α-amylase.
 The effect of temperature on the 
studied enzymes production was determined 
by cultivating the isolate in (MBS) medium at 
varying temperatures (25, 30, 35, 40 and 45°C) 
accompanied by xylanase and α-amylase assays 
at optimum incubation period26. Similarly, optimal 
pH for the xylanase production was investigated by 
cultivating the yeast isolate in the medium with pH 
changed to 4.0, 5.0, 6.0 7.0 or 8.0 at the optimum 
temperature27,28.
 Similarly, the effect of the substrate 
source 1% (birchwood, oat split and beechwood 
xylan) and (potato starch, glycogen, amylose, 
α-Cyclodextrin and β-Cyclodextrin) on the activity 
of xylanase and α-amylase, respectively were 
investigated at optimum time, temperature 
and pH. All determinations were performed in 
triplicate.

Statistical analysis
 The data were statistically analyzed by 
a one-way ANOVA. The data were considered as 
means ± S.E. (n=3).

Results
isolation and selection of yeasts producing 
xylanase and α-amylases
 Twenty yeast isolates were collected 
from various soil samples in Assiut region, Egypt. 
All isolated yeasts were screened for xylanase and 
α-amylase production and one promising isolate 
designated as AUN-02 was selected. The AUN-
02 isolate exhibited large halo zone around its 
growing colony on xylan supplemented medium 
colored with Congo red and soluble starch stained 
with iodine solution. 
Yeast identification using 26S rRNA gene d1/d2 
Region Sequencing and Phylogenetic Analyses
 The phylogenetic location of yeast 
AUN-02 isolate was established and determined 
through molecular techniques. The alignment 
of 26S rRNA gene sequences of the yeast AUN-
02 with the reported 26S rRNA sequences from 
GenBank using BLAST indicates 100% with Pichia 
membranifaciens Phylogenetic tree was developed 
for AUN-02 isolate along with other GenBank 
sequences of the same genus. As shown in (Fig. 
1), strain AUN-02 and Pichia membranifacienssh 
are a node with zero, or near zero, evolutionary 
distance of separation. Therefore, strain AUN-02 
was identified as Pichia membranifaciens. 

Table 1. Km values (mg/mL) of xylanase and α-amylase 
enzymes produced from Pichia membranifaciens 
at different pH values. The data were considered as 
means ± S.E. (n=3)

pH Xylanase α-amylase
 (mg/mL)  (mg/mL)

7.0 0.85±0.05 0.22±0.01
6.0 1.6±0.1 0.43±0.02
4.0 3.4±0.18 2.8±0.13

Fig. 3. Effect of the pH of the culture medium and the temperature of fermentation of Pichia membranifaciens 
AUN-02 on the production of xylanase and α- amylase. The data were considered as means ± S.E. (n=3).
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Accession number of the nucleotide sequences
 In this analysis, nucleotide sequences 
of the xylanase and α-amylase producing AUN-
02 yeast were recorded in the DDBJ (www.
ddbj.nig.ac.jp/), EMBL (www.embl.de/), and 
GenBank (http://www.ncbi.nlm.nih.gov/
genbank/) databases of nucleotide sequences 
under accession number: MH560348.
Kinetics of xylanase and α-amylase production by 
the yeast Pichia membranifaciens AUN-02 
 The time of incubation has a significant 
impact on the stability of enzymes. A higher 
production of xylanase (38.8 U/mL) and α-amylase 
(28.7 U/mL) was obtained after 4 days of 
fermentation of the yeast Pichia membranifaciens 
in flasks stirred at 30°C and 150 rpm. After 5 days 
of fermentation, the activity of xylanase and 
α-amylase decreased to 31.2 and 26%, respectively 
(Fig. 2). Moreover, the significant decrease of 
xylanase and α-amylase to 44.5 and 40.6% after 
7 days compared to the stability at 4 days of 
incubation (Fig.2).
Characterization of pH and temperature profile of 
xylanase and α-amylase activity in crude enzyme 
extract
 The effect of pH on the productivity 

of  xylanase and α-amylase from Pichia 
membranifaciens strain AUN-02 was illustrated 
in (Fig.3a). The activities of enzymes were 
dramatically increased from acidic pH 4.0 to 
neutral pH 7.0. Higher activity of xylanase (36.83 U 
/ mL) and α-amylase (27.7 U / mL) was obtained in 
the fermentation of Pichia membranifaciens AUN-
02 in a culture medium adjusted to pH 7.0. The 
activity was then significantly reduced to 21.2 and 
16.3 U/mL for xylanase and α-amylase at alkaline 
pH 8.0, respectively. The results demonstrated 
that the yeast P. membranifaciensis suitable for 
production of acidic and neutral xylanase and 
α-amylase enzymes although the latter being 
better. 
 The temperature range between 25 
and 45°C was used to study the influence of 
temperature on the studied enzymes (Fig. 3b). The 
temperature profile revealed that, the optimum 
temperature that showed maximum xylanase and 
α-amylase activity (42.6 and 32.5 units/mL/min, 
respectively) was estimated at 35°C. However, 
the xylanase and α-amylase activities showed 
significant 50% decrease at 25 and 45°C, compared 
to the values at 35°C 

Fig. 4. Substrate specificity of xylanase and α-amylase that produced from Pichia membranifaciens.
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Assessment of xylanase and α-amylase activity 
on different substrates
 In order to determine the extracellular 
xylanolytic and amylolytic potential of P. 
membranifaciens AUN-02, were grown in media 
containing (birchwood, oat split or beechwood 
xylan) and (potato starch, glycogen, amylose, 
α-Cyclodextrin and β-Cyclodextrin) (1% w/v 
carbohydrate content) for 7 days at 28°C. The 
xylanase and amylase activities of crude enzyme 
extracts from P. membranifaciens AUN-02 
were estimated and compared for the different 
substrates tested (Fig. 4). The strain revealed 
100% relative activity of xylanase and α-amylase 
on beechwood and potato starch, respectively. 
It also exhibited 75 and 65% of relative xylanase 
activity on oat spelt and birchwood xylan, 
respectively. On the other hand, it exhibited no 
significant difference in the relative α-amylase 
activity on glycogen and amylose (80 and 70%, 
respectively). Comparatively, the significant 
decrease in α-amylase activity was detected on 
α-Cyclodextrin and β-Cyclodextrin (22 and 18%), 
respectively.
Enzymes kinetics at different pH values
 The Km values of xylanase and α-amylase 
from Pichia mebranifaciens strain AUN-02 at 
different pH values are shown in Table 1. The Km 
values of xylanase and α-amylase increased in the 
order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 
mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/
mL, respectively). The low Km indicated the high 
affinity of substrate to the enzyme. Therefore, the 
xylanase and α-amylase produced at pH 7.0 had 
high affinity toward xylan and starch. 

disCussiON
 Xylanase along with different enzymes are 
important for the lignocellulosic based biorefineries 
to convert complex substrates. Amylases and 
xylanases are amongst the most studied enzymes 
that attracted worldwide attention due to their 
physiological and biotechnological applications29.
 Screening xylanase and amylase with 
Congo red and Iodine solution, respectively are 
common methods in which the Congo red dye 
remains attached to xylan polymer while the 
iodine solution forms a blue complex with starch 
polymer. So, the formation of the halo zone around 
the growing colonies is indicating the hydrolysis of 

xylan or starch which are directly related to the 
region of action of the corresponding enzymes21,30. 
Relatively less abundance 23 strains of yeasts 
out of 119 of yeasts strains has been reordered 
positive xylanolytic activity as described by31. 
 Xylanase producing yeasts can be used 
in biorefineries for subsequent steps. They are 
however, still the focus of intensive research. 
The xylanolytic and amylolytic yeast strain AUN-
02 was isolated from farmland in this sense 
because it consists of various types of cellulosic, 
hemicellulosic, and lignocellulosic matters.
 As a valuable identification tool, The 
26S rRNA gene D1/D2 domain has acquired 
recognition in yeast taxonomy32-34. D1/D2 domain 
sequence databases are available for all currently 
recognized ascomycetous and basidiomycetous 
yeasts. This makes it much easier to classify species 
and serves as a valid and functional criterion for 
identification of most recognized yeast22,34,35. Yeast 
strain Pichia membranifaciens was isolated from 
different sources and it has many biotechnological 
applications. 1,3-dihydroxyacetone producing P. 
membranifaciens was isolated from soil sample 
and identifies based on ITS rDNA gene sequence 
analysis36. Pichia membranifaciens was among the 
abundant yeast species that isolated from directly 
brined olives of Alorena37,38 reported the purified 
1,4-β-xylosidase from P. membranifaciens that 
has been cultivated on xylan as a substrate and 
this enzyme is used in the bioethanol production 
process.
 xylanase showed optimum at or near 
mesophilic temperatures between 30-60°C7,13 
and slightly acidic pH. Similarly, the pH value 
for maximum production of α-amylase by 
microorganisms ranged from 6.0 to 7.039,40. 
Optimum neural pH was recorded for xylanase 
from Aspergillus caespitosus (pH 6.5–7.0)41. At pH 
4.5, the maximum production of α-amylase was 
detected for Trichoderma harzianum42. α-amylase 
producing yeast strains such as Saccharomyces 
cerevisiae and S. kluyveri exhibited maximum 
enzyme production at pH 5.043. The maximum 
amylase production from Bacillus cereus IND4 at 
45°C on starch agar medium44, whereas maximum 
amylase production at moderate temperature 
(30°C) from the fungal strain45.
 Depending upon the substrates, 
xylanolytic enzymes are normally inducible 
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under normal conditions. However, a few species 
demonstrate constitutive production of the 
enzyme and are consumed it as carbon sources46. 
In certain cases, xylan has been found to be the 
best inducer of xylanase production12. Xylan, is a 
high molecular weight polymer, that os unable to 
enter the microbial cell directly. Low molecular 
weight of xylan fragments induce the production 
if enzymes7. Xylanase induction can be performed 
on a number of low cost lignocellulosic ingredients, 
such as wheat bran, wheat straw, rice husk, rice 
bran, rice straw and corncob have been shown to 
be most appropriate substrates for fermentation 
in some microbes47.
 The induction of a-amylase production by 
microorganisms is stimulated by potato and corn 
starch, and soluble starch. The rate of hydrolysis 
by Bacillus sp. BCC 01-50 of soluble starch, wheat, 
potato, and corn starches at 1% concentration was 
73.43, 60.81, 55.26, and 67.81%16.
 The Km values of xylanase from P. 
membranifaciens were similar to Km’s of xylanases 
from Anoxybacillus kamchatkensis (0.7 mg xylan/
mL;48) and Aspergillus ficuum AF-98 (Km 3.267 mg 
xylan/mL;49). For the Km values of α-amylase from 
P. membranifaciens, they similar to the Km values 
of α-amylase from Cryptococcus flavus (0.056 mg 
starch/mL;50) and Lipomyces kononenkoae CBS 
5608 (Km 0.8 g starch/L;51).
 It could be concluded that, the yeast 
isolate AUN-02 is a promising strain for production 
of xylanases and α-amylase. The optimum 
production conditions were neutral pH and 35°C. 
The induction of xylanases and α-amylase are 
substrate dependent.
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