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Abstract
Fungal infections have predominantly increased worldwide that leads to morbidity and mortality 
in severe cases. Invasive candidiasis and other pathogenic fungal infections are a major problem 
in immunocompromised individuals and post-operative patients. Increasing resistance to existing 
antifungal drugs calls for the identification of novel antifungal drug targets for chemotherapeutic 
interventions. This demand for identification and characterization of novel drug targets leads to the 
development of effective antifungal therapy against drug resistant fungi. Heat shock proteins (HSPs) 
are important for various biological processes like protein folding, posttranslational modifications, 
transcription, translation, and protein aggregation. HSPs are involved in maintaining homeostasis 
of the cell. A subgroup of HSPs is small heat shock proteins (sHSPs), which functions as cellular 
chaperones. They are having a significant role in the many cellular functions like development, 
cytoskeletal organization, apoptosis, membrane lipid polymorphism, differentiation, autophagy, in 
infection recognition and are major players in various stresses like osmotic stress, pH stress, etc. Studies 
have shown that fungal cells express increased levels of sHSPs upon antifungal drug induced stress 
responses. Here we review the important role of small heat shock proteins (sHSPs) in fungal diseases 
and their potential as antifungal targets.
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InTRoDuCTIon
 Fungi are the most common human 
pathogen that causes severe cutaneous infections 
to life-threatening systemic infections. In the 
United States, hospital born Candida is a major 
pathogen and cause frequent systemic infections 
in the patients. It also causes frequent oral 
infection in immunocompromised individuals. 
There are several virulent factors like an 
expression of adhesion molecules, secretion of 
hydrolytic enzymes, biofilm formation and micro-
environment conditions like pH, nutrients which 
are responsible to convert non-virulent yeast form 
to virulent hyphal form (Polymorphism). 
 In major surgeries, severe cases of 
superficial and systemic infections of C. albicans 
are reported in immunocompromised patients1. 
Several groups of antifungal drugs attack or disrupt 
cell membrane of C. albicans e.g. echinocandins, 
polyenes, and azoles etc.2, which act as stress to 
the pathogen. The severity of stress condition 
depends upon dose and type of drug. Various 
receptors on the membrane of pathogenic fungi 
are involved to perceive this stress by eliciting 
various conserved signaling pathways like MAP 
kinase (MAPK) and calcineurin signal transduction 
pathways etc.3,4

 In drug resistant pathogenic fungi, several 
counter mechanisms exist to minimize or nullify 
the stress produced due to exposure of antifungal 
agents. Fungi static drugs that inhibit growth at 
the minimum growth-inhibitory concentration 
(MIC) did not kill fungal pathogen because of the 
drug tolerance phenomenon5, whereas fungicidal 
drugs that are been used at a higher concentration 
than MIC did not kill drug resistant pathogens. 
Prolonged exposure to different fungistatic drugs 
can cause genetic mutation in fungal cells that 
leads to various mechanisms for drug resistance 
like overexpression of membrane efflux pump 
proteins, mutations in drug target enzymes, and 
upregulation of stress-response genes etc.6-8. 
 Extensive use of these anti-fungal 
drugs in the clinics has increased resistance and 
ineffectiveness against C. albicans infections9,10. 
Therefore it is an emergency to come up with 
new therapeutic targets that can be explored 
for developing novel antifungal agents against C. 
albicans10,11. Occurrences of Heat shock proteins 
(HSPs) are integral to almost every organism and 

are also highly diverse and widely distributed 
among fungal groups. It is been shown that 
under thermal stress, these proteins are getting 
upregulated. Expression of the heat shock proteins 
under heat stress is regulated by the heat shock 
transcription factor 1 (Hsf1)12. In C. albicans, 
Hsps are important not only for the growth but 
also for developing infection and virulence13-15. 
Stress conditions are inducive to promote the 
expression of heat shock proteins. Hsps interact 
with various cellular signaling pathways like MAPK, 
calcium-calcineurin, cell cycle control signaling, 
etc. regulating homeostasis and virulence in C. 
albicans14,16,17. It is been reported that inhibiting 
or disrupting Hsps causes growth inhibition of 
C. albicans, which leads to reverse tolerance to 
available antifungal drugs. Studies have shown 
their involvement to confer resistance to antifungal 
agents by modulating HSPs associated signaling 
pathways in C. albicans and other pathogenic 
fungi.
 A group of heat shock proteins known 
as small heat shock proteins (sHSPs) with a 
molecular weight ranging from 12 to 43 kDa 
gets upregulated upon non-thermal cues like 
oxidative and heavy metal stress18,19. sHSPs, not 
only act as chaperones but are involved in the 
many biological vital functions like development, 
cytoskeletal organization, apoptosis, membrane 
lipid polymorphism, differentiation, autophagy, 
and infection recognition20,21. These proteins can 
be used as therapeutic targets in the direction of 
the development of antifungal agents.
Heat shock proteins (HSPs) in Fungi
 Hsps are integral and conserved among 
all living species, they respond to heat and 
non-thermal processes like oxidative stress and 
starvation that leads to stress to the organism22. 
These stressful conditions cause the loss of three 
dimensional structures of proteins and their 
aggregations leading to cell death. Hsps are 
molecular chaperones and expression of Hsps 
is a protective mechanism of the cell to combat 
these changes to ensure cell survival under the 
stress. There are two groups of Hsps, First is ATP-
dependent high molecular weight protein Hsps, 
having four different families (Hsp104, Hsp90, 
Hsp70, and Hsp60) and a second ATP-independent 
family of proteins - Hsp12 and Hsp21 having low 
molecular weight proteins ranging between 12-42 
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kDa called Small Heat Shock Proteins (sHSPs) (Table 
1)23. Hsps are expressed in stress and non-stress 
conditions while sHsps are mostly expressed under 
stress conditions24. It has been shown that most 
of the antifungal drugs are perceived as stress by 
the fungal cell25. Thus sHSPs can be explored as 
the putative targets to combat drug resistance 
and the development of effective therapeutics to 
treat fungal infections. 
Roles of Heat Shock Proteins (HSPs) in pathogenic 
fungi
 High molecular weight HSPs are the 
major proteins that are involved in protecting 
cellular proteins by acting as chaperons. HSPs 
in pathogenic fungi are assisting in the process 
of making and maintaining three dimensional 
conformations of proteins during various stress 
and unfavorable conditions to counter the changes 
in the fungal cells. Expression and functions of 
different Hsps are variable with the kind of stress 
to the fungal pathogen. 
Hsp104
 Hsp104  was  f i rst ly  reported  in 
Saccharomyces cerevisiae (S. cerevisiae) and 
induced in elevated temperature23,26,27. It also acts 
as a pro-survival protein under high temperature, 
suggesting its role as thermal tolerance26. Mutant 
of hsp104Δ/Δ have shown morphological defects 
in hyphae28. In C. albicans, Hsp104 has a greater 
role in biofilm formation and virulence28. Cytosolic 
Hsp104 of C. albicans is not equivalent to human 
Hsp104, thus can be used as a promising antifungal 
target against C. albicans.
Hsp90
 Hsp90 determines antifungal drug 
resistance in several diseases causing fungi 
like Candida albicans, A. fumigatus, and C. 
neoformans29-31. Hsp90 is involved in several 

cellular functions like development, regulation, 
homeostasis, and drug resistance in C. albicans16,17. 
A recent report showed that mutations in the 
region of Hsp90, responsible for post-translational 
modifications affect colony morphology32. 
Inhibitors of Hsp90 function have shown 
additive effects with fluconazole (FLC) against 
Fluconazole resistant Candida albicans33,34. In 
yeast, the Hsp90 function is mediated by its 
C-terminal phosphorylation, S-nitrosylation, and 
acetylation35-37. Several findings showed that 
Hsp90 contributes a vital function in confirming 
resistance to antimycotic drugs. Thus inhibiting 
Hsp90 function or development of pathogen 
specific histone deacetylase inhibitor can be the 
effective therapeutics to treat candidiasis.
Hsp70 
 Hsp70 is uniformly present from 
prokaryotes like bacteria to higher eukaryotes 
like mammals. Ssa1 and Ssa2 are two important 
members of the Hsp70 family on the cell surface of 
C. albicans38,39. C. albicans Ssa1/1 mutant showed 
altered virulence in vitro as well as in vivo. Ssa1 
and many antimicrobial peptides have Ssa2 as 
receptors that also have antifungal effects. Hsp70 
alone or in combination with Hsp90 plays a major 
role in morphogenesis and dimorphism. A report 
have shown that the Hsp70 works with the heat 
shock transcription factor 1 (Hsf1) to regulate heat 
shock response in the yeast40.
Hsp60
 Hsp60 encodes a predictive mitochondrial 
heat shock protein, whose function is not known. 
A heterozygous mutant of Hsp60 (hsp60Δ/HSP60) 
has been shown to increase sensitivity with 
increasing temperatures. This is an indication 
of Hsp60 can be essential to overcome thermal 
stress41. Four fold increased expression of hsp60 
in wild type yeast can resist oxidative stress in 
comparison to the mutant of hsp60. It was because 
iron/sulfur containing enzymes were protected 
from oxidative inactivation42. Another study 
showed an increase in the levels of Hsp60 under 
thermal stress and is important for differentiation, 
infection, and colonization43. Expression of hsp60 
mRNA level increased by 5.9-6.9-foldat 40°C in A. 
fumigatus and A. terreus44. Hsp60 functions as an 
immunological trigger and play a role in fungal 
diseases in humans45.

Table 1. Different types of heat shock proteins (HSPs)

 HSPs  sHSPs
 (ATP-Dependent (ATP-Independent 
 High Molecular Low Molecular 
 Weight Proteins)  Weight Proteins)

 Hsp104 Hsp12
 Hsp70 Hsp21
 Hsp60
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Role of Small Heat shock proteins (sHSPs) in C. 
albicans
 Reports have shown that sHSPs of 
different species function as molecular chaperones 
and have conserved the a-crystallin domain 
(ACD). sHsps are cellular chaperones, involve 
in the proper folding of proteins during normal 
and extreme conditions. Under stress conditions, 
sHSPs contribute in refolding of partially unfolded 
proteins. They bind to the irreversible aggregation 
of denaturing proteins and are prevented in an 
ATP-independent fashion46-49. Exposure to a variety 
of stresses like elevated temperature or oxidative 
stress causes unfolding of proteins and form early 
intermediates that can aggregates. These partially 
unfolding protein molecules are stabilized by 
the sHSPs48,50-52. Early expression of sHSPs allows 
rescuing proteins that are getting unfolded under 
stressed conditions. Completely unfolded proteins 
and pre-aggregated proteins are not refolded by 

sHSPs. Thus, sHSPs protect unfolding proteins that 
otherwise become irreversible aggregates under 
stressful conditions to maintain homeostasis 
within the cell (Fig. 1).
 Various studies have shown a link between 
HSPs and virulence potential of pathogenic 
microorganisms18,53-58 including Hsp90 and 
Hsp70 in Candida albicans33,59. Biofilm formation 
is an important virulence phenomenon in C. 
albicans infection and HSPs are required for its 
progression14. In C. albicans have reported three 
sHSPs i.e. Hsp10, Hsp12, and Hsp30/Hsp31.
Hsp12
 Small heat shock protein (Hsp12) 
contributes to heat-shock resistance and 
hybridization of hsp12 mRNA analysis demonstrated 
its co-regulation with environmental pH and CO2  in 
C. albicans60-63. Intracellular amount of trehalose 
(Protectant against cell freezing) was minimized 
in C. albicans by TPS1 deletion. TPS1 deletion 

Fig 1. Model showing working of Small Heat Shock Proteins (sHSPs) system as chaperone.  Protein folding is mediated 
by the cellular chaperon molecules(Protein folding substrate complex) which are active under the normal state 
of cell. sHSPs are expressed under the stress and they stabilize and assist the protein folding substrate complex 
to form proper confirmation and folding of the proteins. Loss of function of sHSPs in stress leads to formation of 
nonfunctional unfolded protein aggregates which can cause cell death, therefore sHSPs are rescuing cell under stress.
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showed overexpression of Hsp12 in C. albicans. 
C. albicans have shown increased cell adhesion 
and decrease susceptibility to the quorum sensing 
molecule, farnesol64,65. SSK1 mutant of C. albicans 
was susceptible to several oxidative agents like 
H2O2 and has also shown a high level of HSP1266. 
This shows Hsp12p has a crucial role in combating 
various kinds of stresses. Another study showed 
that increased expression of Hsp12 leads to 
sensitivity to itraconazole, ketoconazole, and FLC 
in C. albicans65.
Hsp21
 Small heat shock protein 21 (Hsp21p) 
is another protein which plays an important 
role under various environmental stress for C. 
albicans61,67-72. It was found that Hsp21 promotes 
virulence of C. albicans. Tolerance to heat and 
oxidative stress requires Hsp21 in C. albicans73. 
Activation of the mitogen activated protein 
(MAP) kinase and normal filamentation require 
Hsp21. Hsp21 mutant and chemical inhibitors 
have shown a correlation in inhibiting germ tube 
formation and filamentation at the initial time 
point73. In-vitro, analysis of hsp21 Δ/Δ mutant 
strain showed an inability to damage endothelial 
and oral epithelial cells73. Growth of Hsp21 
mutant was significantly reduced when treated 
with membrane perturbing agents that target 
ergosterol biosynthetic pathway i.e. terbinafine, 
caspofungin73. At high temperatures, it is involved 
in maintaining homeostasis of glycerol, glycogen, 
and trehalose73. Susceptibility to various antifungal 
drugs was seen in the deletion mutant of hsp21of 
C. albicans74. Hsp21 can be an effective target 
to develop a treatment strategy for C. albicans 
infection.
Hsp10
 Hsp10p is present in association with 
Hsp60p and assisting Hsp60 function75. In-vivo 
Hsp60p and Hsp10p did not always act as a 
single functional unit in-vitro. Hsp10p is crucial 
for cell survival and acting as a co-chaperon 
to assist the folding of the proteins in the 
mitochondrial matrix76. Functionally defective 
protein aggregation was seen in the mutant of 
Hsp10. It imparts in the sorting of the RieskeFeS 
protein during the transport from the matrix to 
the intermembrane space77.
Hsp30/31
 In C. albicans, oxidative stress upregulates 

Hsp30p besides other heat shock proteins61. A 
gene of A. nidulans, Hsp30 is homologous to the 
Hsp26 gene of Saccharomyces cerevisiae and 
found upregulated in numerous stress conditions 
including low pH18,78. In another study, Iron 
deprivation is sensed as the nutritional deficiency 
in Candida cells, leading to the upregulation of 
Hsp30p79.
 Targeting small heat shock proteins 
(sHSPs) can be an effective combat strategy to 
overcome drug resistance in pathogenic fungi. 
Sequence alignment analysis of sHSPs showed 
no similarity in the nucleotides or protein 
sequences with that of humans (data not shown). 
Understanding sHSPs and its interactive partners 
not only allow us to study drug resistance but also 
can be the promising lead therapeutic molecules. It 
will be an interesting study to see their expression 
pattern during the progression of drug resistance 
in pathogenic fungi.

DISCuSSIon
 Pathogenic fungi are a major cause 
of secondary infection and hospital-acquired 
infections. Drug resistance in fungi is the major 
setback in the treatment of these infections. 
Several studies have shown the promising 
role of sHSPs as novel targets to develop an 
effective treatment against these drug resistant 
fungal infections. A study showed that potential 
antifungal treatment of C. albicans is achieved 
by over-expressing Hsp1265. Role of Hsp10 and 
Hsp30/Hsp31 are still not very clear, while on 
the other hand it will be fascinating to find the 
crucial function of Hsp21 in the understanding 
of antifungal drug resistance development. Hsps 
are not only playing vital roles in many major 
cellular pathways, such as calcium-calcineurin, 
MAPK, Ras1-cAMP-PKA, and cell cycle control 
signaling but several client proteins of Hsps are 
signaling molecules. Moreover, different groups 
have reported the involvement of Hsps to confer 
antifungal drug resistance by modulating these 
signaling pathways in C. albicans. Thus, developing 
new effective antifungal targets are required to 
investigate HSPs and other signaling molecules 
of HSPs-associated pathways in C. albicans. 
Therefore, the study of HSPs expression and the 
functional role will help us better in exploring 
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not only their roles as chaperones but also their 
indulgent in disease development and progression 
caused by fungal parasites.

ConCluSIon
 This review summarizes some of the 
explored functions of sHSPs in direction of drug 
resistance in fungal biology and indicating that 
available information is insufficient to understand 
the in-depth role of these sHSPs in drug resistance. 
Hence sHSPs provide a new horizon to explore the 
unexplored heat shock molecules to understand 
their regulation and function in the interactome 
of cell molecules and could be promising targets 
to develop new therapeutics to combat drug 
resistance in pathogenic fungi. Moreover sHsps 
have not been given enough attention for a long 
time to understand their biological roles and 
targeting them for therapeutic use for overcoming 
fungal drug resistance.
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