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Abstract
Halophilic micro-organisms often synthesize and produce extracellular polysaccharides (EPS), whose 
physical, chemical properties and material properties vary greatly from each other. The extracellular 
polysaccharide (EPS) development of Halomonas sp. MN795630 strain type halophilic bacterium 
(NASH) was investigated and whether biotechnological applications were feasible. After 168 hours of 
incubation, 4 g/L of EPS was produced and all elements from the medium were completely used during 
the growth. Sucrose has been identified as the most favorable carbon source for production of EPS and 
maximum production (6 g/l). Beef extract level was shown to be the best for EPS production among 
different nitrogen sources. Optimum production of EPS (10 g/L) were achieved by supplementing the 
medium with 4M NaCl, pH adjusted at 9 and the medium was inoculated with 7% initial inoculum. 
The purified EPS were characterized chemically. Fourier transform infrared (FTIR) spectrophotometer 
was observed in several functional groups. EPS also demonstrated an significant inhibitor of Candida 
albicans ATCC 10231 and Pseudomonas aeruginosa ATCC 9027 (20.4 and 14.7 mm), respectively. EPS 
show satisfactory results when applied as anti-oxidant, anti-inflammatory and emulsifier. 
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iNtRODUCtiON
 Exopolysaccharides microbial are 
polysaccharides that are extracellularly formed 
as capsules or slimes. Such microbial EPS are 
typically categorized into 2 broader classes: 
homopolysaccharide consisting of a single 
monosaccharide unit and a heteropolysaccharide 
with two or more monosaccharide units. In nature, 
microbial EPS is non-toxic , biodegradable and 
renewable1. They play a major role in the defense 
of desiccation2 and are also useful in the formation 
of biofilms and also useful in forming biofilms3. 
Use as gelling agents, biosurfactants, emulsifiers, 
viscosities4,5, biosorbants6,7 Antimicrobials, Anti-
Cancer Agents and Antioxidants8-10.
 EPS is comparatively less reported 
from extremophilic microorganisms, especially 
halophi l ic  ones.  The generation of  EPS 
from halophilic bacteria in intense marine 
ecosystems and its biological activities have been 
investigated11. Several workers have recorded the 
extracellular polysaccharides formed by halophilic 
archaea and bacteria, and the members of the 
Halomonas genus were classified as the most 
potential producers12,13. The literature survey 
has shown clearly that the knowledge on the 
extracellular polysaccharides development and 
characterization by various halophilic micro-
organisms isolated from hypersalin environments 
is not adequate12,14. However, the demand for 
extracellular polysaccharides of halophiles with 
better properties than existing ones is increasing. 
The present study was carried out with the 
goal of producing EPS by Halomonas sp. NASH, 
optimizing some environmental parameters 
for the production of EPS by Halomonas sp. 
NASH, characterizing the EPS produced and 
finally evaluating its efficacy as an antimicrobial, 
antioxidant and as a biosurfactant.

MATERIALS AND METHODS
Microorganisms and cultural conditions
 Halomonas sp. NASH was provided by 
Dr. Asmaa M. Youssif (Botany and Microbiology 
Department, Faculty of Science, Alexandria 
University) and isolated from sediment sample 
in Wadi El-Natroun lakes, and set in the Genbank 
as Halomonas sp. NASH with accession number 
MN795630. This halophilic isolate was maintained 
on IRAM media15 with the following composition 

(g/L); Magnesium sulfate, 20; Potassium 
chloride, 5; Calcium chloride, 0.2; Yeast extract, 
4; Peptone, 5; Sodium chloride 223.3 (4M). 
The pH of the media was changed to 8 before 
sodium bicarbonate sterilization. The medium 
was sterilized immediately after preparation at 
121°C for 20 minutes. For solid media, 20g agar 
was added. Strain was incubated at 35-37 ℃ for 
7 days. The isolate was stored in 20% (v/v) glycerol 
at -20°C for subsequent investigation.
EPS production
 Inoculum was prepared for the production 
of EPS by growing the culture in IRAM medium. 
250 ml Erlenmeyer flask containing 50ml of 
medium consisting of (g/l): Magnesium sulfate, 
20; Potassium chloride, 5; Calcium chloride, 0.2; 
Yeast extract, 4; Peptone, 5; Sodium chloride 
223.3 (4M). The pH of the media had been set 
at 8 before sodium bicarbonate sterilization. This 
flask was inoculated on an IRAM medium grown 
with old stock culture. The flask was incubated in 
a 35-37°C, 200 rpm rotator incubator shaker for 
7 days and then was centrifuged to obtain filtrate 
and extract EPS from it.
Correlation between growth & EPS production at 
different growth phases
 A seed culture was prepared for the not 
each strain by inoculating 250ml conical flask 
containing a 50 ml IRAM medium with a loopful of 
the strain and rotary shaker (200 rpm) incubation, 
until the growth was OD600 = (0.8-1). Inoculate 
flasks each containing 50 ml of the sterilized 
optimized medium in regular 0,5 ml inoculum 
from the seed culture previously prepared. Flasks 
were incubated shacked at 200 rpm at 37°C for 
7 days. Samples were taken at time intervals to 
measure growth at wave length 600nm. Flasks 
were centrifugal for 10 minutes at 10,000 rpm and 
EPS was removed with supernatant.
One-time variable (OVAT) method for optimizing 
EPS production
 The effect of different parameters 
including carbon and nitrogen sources, 
concentrations of inoculum, pH and NaCl were 
the parameters investigated by Halomonas sp. 
NASH for optimum production of EPS. The NASH 
strain was grown in medium IRAM and incubated 
at 37°C, 120 rpm for 7 days. Both experiments 
were performed in 250 ml Erlenmeyer flask using 
a 50 ml IRAM medium. EPS was measured at the 
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end of each trial, and gravimetrically calculated. 
The effect of carbon sources and nitrogen on 
the development of EPS was assessed, organic 
and inorganic sources. Glucose, sucrose, lactose, 
maltose, fructose, galactose, glycerol and sodium 
citrate, respectively, which are organic and 
inorganic sources of carbon. Ammonium chloride, 
ammonium sulphate, sodium nitrate, potassium 
nitrate, yeast extract, tryptone, beef extract and 
casein hydrolysate, which were representative 
of inorganic and organic nitrogen sources. The 
effect of pH on the output of EPS was achieved 
by changing the medium pH at 6, 7, 8, 9 and 10. 
The results of different NaCl (0, 1, 2, 3, 4 and 5 M) 
concentrations have also been studied. Halomonas 
sp. NASH tested the effect of inoculum size on EPS 
production by inoculating the production medium 
with various inoculum sizes from 1 to 10 percent 
(v/v) and shaking at 37°C for 7 days16.
EPS extraction and Purification
 The fermented cells were harvested after 
seven days, and the cell suspension was heated to 
100°C for 10 min to inactivate the enzymes. The 
suspension has been cooled to room temperature 
and centrifuged for 20 minutes to extract biomass 
at 4,000 rpm Sevage reagent (chloroform: 
n-butanol at 5:1 v/v) was further treatment of 
the crude solution three times for removal of 
protein. EPS was precipitated with cold ethanol 
(three times volume) and left at 4°C overnight. 
Centrifugation was used for the precipitation at 
10,000 rpm for 15 min and was dissolved in Milli 
Q water. It was subsequently enveloped into a 
dialysis bag (12-14 KDa) and dialysed with Milli Q 
water at 4°C for 48 hours for partial purification17.
Characterization of partial purified EPS
Carbohydrate and protein contents
 According to the Dubois method the 
total carbon content was measured18. Adding 
25 μl of 85 percent phenol to one ml of the 
sample solution, accompanied by adding 2.5 
ml of concentrated sulphuric acid, shaking the 
mixture after each addition. The mixture was 
put in a boiling water path (100°C) for 10 min, 
then cooled to room temperature before reading 
spectrophotometrically at 488 nm against a blank 
of one ml distilled water The regular solution 
of glucose was used to produce a calibration 
curve which was used to measure the sample 
carbohydrate content. Using the method described 

by19, the total soluble protein was determined 
quantitatively. The 100 μl sample was thoroughly 
mixed with 3 ml of the alkaline solution and 
allowed to stand in room temperature for at least 
ten minutes. An amount of 0.25 ml of the diluted 
Folin-Ciocalteau reagent (2:1, v/v) was added 
rapidly to the mixture and mixed immediately. The 
mixture was left to stand for 30 min. Thereafter, 
the extraction was measured at 760 nm against 
the blank. Using a calibration curve, constructed 
with Bovine Serum Albumin as a reference, the 
protein concentration of the unknown samples 
was estimated.
FT-IR analysis
 In transmission mode, The FT- IR (BRUKER, 
Vertex 70) and OPUS pellets in the 4000 400 
cm-1 range were used to obtain IR transmission 
spectroms using potassium bromide (KBr)20.
Biotechnological applications of EPS
Antimicrobial activity
 For  EPS  ant imicrobia l  potent ia l 
determination, two tested Gram-positive bacteria 
Bacillus subtilis ATCC 6633, Staphylococcus aureus 
ATCC 6538, as well as two Gram negative bacteria; 
Escherichia coli ATCC 19404, Pseudomonas 
aeruginosa ATCC 9027 and one yeast strain 
Candida albicans ATCC 10231 were selected as 
indicator strains. These strains were cultivated 
in the medium Lauria Broth (LB) overnight at  
30 °C. The culture was then diluted by LB media 
and incubated at an acceptable temperature at 
5 hours under a 200-rpm agitation to an initial 
OD 600 of 106 CFU/mL indicator strain. The 
measurement inoculum for the indicator strain 
was based on the cell counts ‘growth curve and 
optical diameter. By the agar diffusion test, the 
antimicrobial activity was detected21. 50 mm of 
agar nutrient are poured on all plates inoculated 
by a predictor microorganism. Upon solidification 
wells are punched and two drops of sterile water 
agar have been applied to each of their bodies with 
a 055 cm corkborer. 100 ul of filtered EPS were 
transferred to a well after sterilization by using  
0.22 μl filters. All the plates were incubated for 
24-48 h at the appropriate temperature. The 
clear zone radius around each well (Y) and the 
well radius (X) are measured linearly in mm after 
incubation, whereby Y2 is divided by X2 and 
determines an absolute unit (AU) for clear zone. 
According to the following equation: AU= Y2/X2, 
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The absolute unit of each EPS which implies a 
positive antibiotic action result22.
Antioxidant activity
 Free radical 1,1-diphenyl 2-picrylhydrazyl 
scavenging activity (DPPH) was assessed as 
a measure of antioxidant activity using the23 
approach of partially purified exopolysaccharide. 
Generic polysaccharides were used as a reference 
compound, such as ascorbic acid. Scavenging effect 
(%) = (Ac –As)/Ac× 100. Ac is control absorption, 
As is the sample absorption.
Anti-inflammatory assay
 The Mizushima technique was tested in 
albumin denaturation inhibition24,25 to test the 
anti-inflammatory function.
Biosurfactant
 Applying the same amount of paraffin oil 
to an EPS sample (v/v), then vortexing with high 
speed (2 min) and permitted to stand at 24 hours, 
the EPS emulation index (E24) was calculated. 
The percentage of E24 was calculated using the 
following equation: E24 = Height of emulsion 
formed (cm) ×100 / Total height of solution (cm)26.

ResUlts AND DisCUssiON
Correlation between growth & EPS production at 
different growth phases
 The correlation between growth and 
EPS production was planned to be investigated 
at different growth phases. In this experiment 
the growth of the bacterium was controlled 
in incubated at 37°C in batch cultures in IRAM 
medium shacked. Standard inoculum (1%) is taken 
from seed cultures previously prepared (OD600∼ 
0.8-1) and used to inoculate 50 ml of media in 100 
ml flasks. Then, the flasks were shaken at 120 rpm 
at 37°C. Timely samples were used to measure 
spectro-metrical growth at wavelength 600 nm 
and output of EPS at regular intervals. Data in  
Fig. 1 reveal that cells of Halomonas sp. NASH 
entered the exponential phase of growth after 
2 days of incubation and the stationary phase 
of growth after 9 days of incubation. EPS was 
growth phase dependent, low production was 
detected at the beginning of exponential growth, 
and increased exponentially with bacterial growth 
till it become constant at stationary phase. The 
maximum EPS production was recorded in the 
middle of exponential phase recording 4g/l. 

Fig. 1. Correlation between growth of  Halomonas sp. NASH grown in IRAM and incubated at 37°C under shaken 
conditions for 10 days and EPS production

One-time variable (OVAT) method for optimizing 
EPS production
Effect of different carbon sources
 Halomonas sp. NASH has shown that the 
addition of sucrose, glucose, and sodium citrate at 

the average level of 1% has resulted in different 
bacterium rates of growth and EPS production. 
Sucrose was most effective in EPS production 
(6g/l) followed by glucose (5g/l) and sodium citrate 
(4.4g/1). However, compared to sucrose, glucose 
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and sodium citrate exerted maximum influence 
on the growth of the isolate. Carbon sources 
like maltose, glycerol, fructose, lactose along 
with galactose produced poor to moderate EPS  
(Fig. 2). Similar results were obtained by Biswas 
and paul27 who mentioned that glucose was one of 
the carbon sources which affected on the growth 
and production of EPS by Halomonas xianhensis 

SUR308. Also, Llamas13 proved that EPS production 
and maximum growth by Halomonas almeriensis 
was obtained by using 1% glucose as a carbon 
source. Glucose has been reported to influence 
EPS production in a number of bacterial species 
including Halomonas spp, glucose at >1.0% level 
retarded the EPS production28-30.

Fig. 2. Effect of various sources of carbon on growth and EPS production by Halomonas sp. NASH. Fermentations 
were carried out in IRAM medium supplemented with 1% carbon source under continuous shaking (200 rpm) at 
37°C and pH 8 with 1% (v/v) initial inoculum for 7 days.

Effect of different nitrogen sources
 Ammonium sulfate, peptone, sodium 
nitrate, urea and yeast extract, however, are 
known to encourage both a rate of growth 
and the EPS production due to the presence of 
organic nitrogen sources31. From the results as 
illustrated in Fig. 3, it was evident that all the 
organic nitrogen sources like peptone, yeast 
extract, casein hydrolysate, beef extract, tryptone 
have positive influence on the EPS synthesis. In 
presence of organic nitrogen sources, the isolate 
was capable of accumulating remarkable amounts 
of EPS (5–7g/L). However, amongst the different 
organic nitrogen source, beef extract was most 
preferred one which led to the production of 7 g/L 
of EPS. This may be due to vitamins and cofactors 
present in organic nitrogen sources which could 
have played the key role in inducing growth and 
EPS production32. Biswas and paul27, proved that 
organic nitrogen sources promote both growth 
rate of Halomonas xianhensis SUR308 and the 
EPS production than inorganic nitrogen sources 

especially casein hydrolysate gave maximum EPS 
production reached 6.5g/l. Gu and his team also 
said that the production of EPS from halophilic 
Kocuriarosea ZJUQH was influenced by organic 
nitrogen such as peptone, yeast extract and casein 
hydrolysate33.
Effect of pH
 The figure 4 showed that both growth 
and output of EPS were significantly increased by 
growing the medium pH until 9. The maximum 
output of EPS at the pH 9 was reached, reaching 
7.5g/L and gradually decreased by a pH rise of 
over 9. This is means that EPS production by 
Halomonas sp. NASH preferred alkaline condition. 
On the other hand, Biswas and paul27 mentioned 
that maximum EPS production by Halomonas 
xianhensis SUR308 was 2.99g/l at pH 7.5. Also, 
Gu et al.33 stated that maximum EPS production by 
halophilic Kocuria rosea was obtained at neutral 
pH. While16, proved that pH 6 was the suitable 
pH for the maximum production of EPS (23g/l) by 
Halomonas smyrnensis SVD III.
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Fig. 4. Effect of pH on growth and EPS production by Halomonas sp. NASH. Fermentations were carried out in 
IRAM medium under continuous shaking (200 rpm) at different initial pH ranging from 6-10 and temperature at 
37°C with 1% (v/v) initial inoculum.

Fig. 3. Effect of different sources of nitrogen on growth and EPS production by Halomonas sp. NASH. Fermentations 
were carried out in IRAM medium supplemented with 9g/l nitrogen source under continuous shaking (200 rpm) 
at 37°C and pH 8 with 1% (v/v) initial inoculum for 7 days.

Effect of NaCl concentrations
 As a halophilic organism, the isolate 
NASH showed a wide degree of tolerance to 
NaCl for growth and EPS production was more 
or less constant in the range of 2 to 4M NaCl in 
the medium, where by EPS production varied 
from 6.5 to 8 g/L. It was evident from the results 
(Fig. 5) that the production of EPS was maximum 
(8 g/L) at 4M NaCl. Similarly16, mentioned 
that maximum production of EPS (23g/l) by 

Halomonas smyrnensis SVD III obtained by adding 
20% NaCl in the medium. Arias28 reported that 
optimum salt concentrations for EPS production 
by Halomonas maura was 2.5%, While the best 
for maximum production of EPS was 7.5 percent 
salt concentration by Halomonas eurihalina, 
Halomonas ventosae and Halomonas anticariensis. 
Influence of initial inoculum dose
 Since the initial inoculum added to this 
medium is known to affect the development of 



  www.microbiologyjournal.org2751Journal of Pure and Applied Microbiology

Youssif et al. | J Pure Appl Microbiol | 14(4):2745-2756 | December 2020 | https://doi.org/10.22207/JPAM.14.4.51

Fig. 6. Influence of initial inoculum dose on growth and EPS production by Halomonas sp. NASH. Fermentations 
were carried out in IRAM medium 4M NaCl at different inoculum dose of 1–10% (v/v) under continuous shaking 
(200 rpm) at pH and temperature of 9 and 37°C.

Fig. 5. Influence of NaCl concentration on growth and EPS production by Halomonas sp. NASH. Fermentations were 
carried out in IRAM medium under continuous shaking (200 rpm) at NaCl concentrations ranging from 0–5M, pH 
and temperature of 9 and 37°C with 1% (v/v) initial inoculum

the EPS, the IRAM medium added to 4M NaCl, 1% 
sucrose and 9g of beef at pH 9 were inoculated in a 
newly cultivated isolate level at 1–10 percent (v/v) 
and incubated in a continuous shaking (200rpm), 
at 37°C. As shown in Fig. 6, 10 g/L of EPS was 
produced by inoculating the medium with an initial 
inoculum of 7%. At this stage, the culture density 
(OD) turned so thick and prevented normal shaking 
of the medium. To extract the EPS, the culture 
medium was initially diluted to separate the cell 
mass by centrifugation. Our results are similar to 

Biswas27, who mentioned that 7% of Halomonas 
xianhensis SUR308’s inoculum size was optimal for 
7.87 g/L EPS. While16, mentioned that maximum 
production of EPS (23g/l) by using 10% inoculum 
size of Halomonas smyrnensis SVD III.
Characterization of EPS produced by Halomonas 
sp. NAsh
Carbohydrate and protein contents
 The study showed that the EPS from 
Halomonas sp. NASH are acidic in nature, with 
a total content of 80,5±4 mg/g of carbohydrates 
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and a total protein content of 9±2 mg/g. In 
similar results, the Bacillus subtilis basal medium 
and the malt medium respectively, had total 
carbohydrate of 0.91 mg/100 ml and 0. 43 mg/100 
ml, which indicates his presence significantly in the 
extract34. In all samples examined, a low protein 
content (around 1%) makes the methods used to 
differentiate proteins against polysaccharides to be 
more effective35. Maalej ‘s tests for EPS extracted 
from Pseudomonas stutzeri AS22 (1 percent of 
protein) were identical36.
The FTIR Spectrum
 The exopolysaccharide spectrum FTIR 
(Fig. 7) displays different bands concentrations. 
The FTIR of exopolysaccharide spectrum (Fig. 
7) shows different rates of bands. The spectrum 
shows characteristic absorption peaks at 3448.72, 
2970.38, 2252.86, 1643.35, 1381.03, 1134.14, 
640.96 and 617.22 cm-1; at 3448.72 cm-1 the 
large vibration of the O-H stretch suggested that 
carbohydrates were in free hydroxy classes. The 
band at 2970.38 cm-1 approves the stretching 
vibration of C–H stretching of alkane group. 

 A very spectral peak of 2252,86 cm-1 
was reached, which suggested –C≡C– stretched 
alkyne vibration. At 1643.35 cm-1, the sharp band 
indicated C=C deepening vibration, indicating 
the ring of phenyl or the presence of conjugated 
carbonyl groups. The peak at 1381.03 cm-1 identifies 
the vibration bending of O-H alcohol group. The 
band is 1134.14 cm-1 in which the vibration (CO, 
alcohol, ester, ether and phenol) groups are 
extended. Alkyne in the exopolysaccharide can 
occur at bands 640,96 and 617,22 cm-1. As a 
Fourier infrared spectroscopy transform, a fast 
and sensitive analysis technique was used to 
qualitative microbial and cell components such 
as EPS37. The broad FTIR peaks (Fig. 7), 3448,72, 
2970,38, 2252,86, and 1381,03 cm-1 of EPS were 
obtained from Halomonas NASH have confirmed 
the carbohydrate presence. Orsod and his team 
stated that marine bacteria had extracted EPS from 
which alkenes, ketones and isocyanate, alcohols 
and ethers, carboxylic acid ester and phenol 
groups were indicated for absorption of the EPS38.

Fig. 7. FTIR spectra of the EPS produced by Halomonas sp. NASH

Biotechnological applications of EPS
Antimicrobial activity
 EPS revealed a wide spectrum of 
antimicrobials against measured Gram positives 
Bacillus subtilis ATCC 6633, Staphylococcus aureus 
ATCC 6538, Gram negative bacteria; Escherichia 
coli ATCC 19404, Pseudomonas aeruginosa ATCC 
9027 and yeast strain Candida albicans ATCC 
10231. Table 1 data shows that EPS has specific 
antibacterial activity levels [Table 1].

Table 1. Antimicrobial activity of the EPS produced by 
Halomonas sp. NASH expressed as absolute unit (AU)

Pathogens AU

Bacillus subtilis ATCC 6633 10.5
Staphylococcus aureus ATCC 6538 12.6
Escherichia coli ATCC 19404 8.5
Pseudomonas aeruginosa ATCC 9027 14.7
Candida albicans ATCC 10231 20.4
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 The highest antibacterial activity (14.7 
and 12.6 AU) was recorded against Pseudomonas 
aeruginosa ATCC 9027 and Staphylococcus aureus 
ATCC 6538 respectively (Fig. 8). On another hand, 
antifungal activity of EPS produced by Halomonas 
sp. NASH against Candida albicans ATCC 10231 
was (20.4 AU). Nwodo states that surface 
active EPSs contain molecules with amphiphilic 
behaviour, have various chemical and surface 
structures and can include bio-film formation 
and/or have antibacterial oranti-fungal activity 
at times39. Several studies have shown that EPS 
from microbial organisms have high antibiotic 
activity and several antibacterial mechanisms for 
EPS have been suggested, including cell division, 
cell wall destruction, cytoplasmic membrane 
decomposition and DNA decomposition40,41. While 
the antagonistic function of polysaccharides had 
not been identified in these studies, protocols 
of these studies may lead to new areas where 
antibacterial activity of polysaccharide’s can be 
studied42.
Antioxidant activity
 The obtained data indicate that EPS from 
Halomonas sp. NASH has good antioxidant activity. 
Exopolysaccharides demonstrated 61.38±0,22% 
antioxidant activity at a 2 mg/ml concentration, 
while ascorbic acid had 83.08±0,30% antioxidant 
activity at a 2 mg/ml concentration. The findings 
show that EPS can be used as a natural antioxidant 
alternative to synthetic antioxidants. EPS also 
exhibited free radical scavenging activity for 
DPPH from various micro-organisms43-46. Free 
radicals, which lead to chronic conditions, 
such as atherosclerosis, diabetes, rheumatoid 
arthritis, post-infarction, heart disease and 

cancer, stroke and septic shocks, aging, and other 
human degenerative diseases can damage bio-
molecules such as lipids, protein and DNA47. The 
antioxidant and free radical scaving behavior of 
exopolysaccharide isolated from the Pseudomonas 
AB1 was observed by Abdrabo and his team22. 
Challouf and his team was found to have moderate 
antioxidant activity through the use of the 
Trolox Equivalent Antioxidants activity check for 
exopolysaccharide extract from Cyanobacterium 
Arthrospira platensis48.
Anti-inflammatory Assay
 Anti-inflammatory agent EPS from 
Halomonas sp. NASH was tested with an albumin 
denaturation assay inhibition. Tests showed 
that EPS displayed anti-inflammatory activity 
(66.04%) compared with ascorbic acid as control. 
Exopolysaccharides which produced by Cordyceps 
sinensis Cs-HK1 have significant anti-inflammatory 
activities49. Several EPSs have been identified 
as being anti-inflammatory50. Normal EPS can 
be isolated from Bacillus circulants with anti-
inflammatory activity51. In addition, the marine 
bacterium Bacillus amyloliquefaciens 3MS2017 
can generate an acidic EPS with anti-inflammatory, 
antioxidant and antitumor activity52. An EPS 
provided by Lactobacillus paraplantarum BGCG11 
also showed anti-inflammatory action in rats, by 
decreasing regulations for the IL-1β and iNOS 
mRNA and increasing levels of IL-6 and IL-10 anti-
inflammatory cytokines53.
Biosurfactant activity
 Biosurfactant activity of EPS which 
production from Halomonas sp. NASH was 
tested by emulsifying capacity and calculation of 
emulsification percentage. The findings suggest 

Fig. 8. Illustration of the antimicrobial activity of the EPS production by Halomonas sp. NASH against Candida 
albicans ATCC 10231 and Pseudomonas aeruginosa ATCC 9027.
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high levels of biosurfactant activity for Halomonas 
sp. NASH with 74.74 percent emulsification index, 
67.47 and 54.96 percent respectively for paraffin oil, 
xylene and benzene. The biotechnological potential 
of microbial polysaccharides is demonstrated as 
immunomodulators and healers in Pharmaceutical 
and Gelling and Thickening Industries in food 
processing industries. In detoxifying areas 
contaminated with petrochemical oil, some EPS 
are used as biosurfactants54. EPSs are also used 
as surfactants and emulsifiers noted for the 
biodegradability of these agents55.

CONClUsiON
 Halomonas sp. NASH synthesized large 
quantities of exopolysaccharide when grown 
under the best growth conditions, and this EPS 
is suitable as an antimicrobial, antioxidant , anti-
inflammatory and emulsifier.
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