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Abstract
Rhizospheric soils from cultivated olive (Olea europaea) trees of Chemlali, Chetoui, Quaissi, and Djalat 
cultivars were assessed for their bacterial abundance and diversity and were further screened for 
production of exopolysaccharides and exoenzymes (cellulase, chitinase, amylase, protease, lipase, and 
peroxidase). The results of the present study indicate that Chetoui cultivar revealed higher diversity, 
followed by Chemlali > Quaissi > Djalat, wherein, bacilli, enteric bacteria, and pseudomonads were 
abundantly present as specific bacterial groups associated with the Chetoui rhizosphere. Moreover, 
the exopolysaccharide (EPS)-producing bacteria of Chetoui cultivar (68.4%) presented the highest 
efficiency, followed by Djalat (23.5%) > Chemlali (7 %) > Quaissi (1%). These results revealed that the 
Chetoui cultivar presented highest enzyme activities, followed by Chemlali > Djalat > Quaissi, with a 
distinct abundance of peroxidase- and chitinase-producing bacteria, which may play a pivotal role in 
adapting olives to the environmental stresses. From this preliminary study, we confirmed that olive 
rhizosphere microbial diversity is essentially driven by the geographical origin and genotype of olive 
cultivars. Furthermore, we recommended the Chetoui olive cultivar rhizosphere as a potential reservoir 
for exoenzyme- and EPS-producing bacteria useful for future biotechnological applications.
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iNtRODUCtiON
 Olea europaea L. (olive tree), is one 
of the oldest domesticated oil trees in the 
Mediterranean area since several millennia 
and has acquired undisputable ecological and 
socioeconomic importance, over its longevity and 
genetic diversity. Its rhizosphere is considered an 
unexplored source for novel bioactive compounds 
produced by various bacteria1.
 Limited research is available on olive 
rhizosphere associated microbiota due to the 
lack of robust assessments methods; however, 
several studies were conducted to explore the 
olive rhizosphere microbial diversity, structure, 
and complexity2-4.
 Various techniques have been used to 
investigate both endophytic and rhizospheric 
olive microbiota, including media culture, fatty 
acid methyl ester (FAME) or phospholipid fatty 
acid analysis (PLFA)5, denaturing gradient gel 
electrophoresis (DGGE)6, fluorescent terminal 
restriction fragment length polymorphism (FT-
RFLP)2, and high-throughput sequencing7.
 Microbial communities inhabiting 
the interior of olive root (endophytic) are less 
diverse than those living in the vicinity of their 
roots (rhizospheric) and are mainly shaped 
by the olive cultivar genotype; moreover, the 
environmental, pedological, and agricultural 
practices such as tillage, irrigation, fertilization, 
and pesticide application also influence the 
microbial presence. Thus, information regarding 
the microbial communities associated with organic 
rhizospheres will help farmers in selecting efficient 
and sustainable agropractices and management8. 
 Olive was initially cultivated in 1980, 
in the Al-Jouf region, north Saudi Arabia, by 
the biggest Saudi agricultural companies. The 
seedlings were mostly imported from Syria, Italy, 
and Spain. The dominant cultivars are Arbequina, 
Arbosana, Cornicabra, Manzanillo, Nabbali, Picual, 
and Sorani9. Olive cultivation in the Kingdom of 
Saudi Arabia has increased rapidly; however, 
research on the olive rhizosphere microbial 
communities is limited, as reported in a previous 
study10.
 In some previous studies, the phenotypic 
bacterial diversity of certain North African plant 
rhizospheres was studied and screened for 
amylase production11. The present study is the 

first to assess the rhizospheric bacterial diversity of 
some olive tree cultivars in Al-Jouf state and screen 
for exoenzymes and exopolysaccharide production 
for future biotechnological applications.

MAteRiAl AND MethODs
Olive Trees Cultivars and Soil Sampling
 Olea europaea var. europaea trees of 
Chemlali, Chetoui, Quaissi, and Djalat cultivars 
used in the present study were supplied from the 
experimental field situated in the Olive Research 
Unit, Camel and Pasture Research Center (ORU/
CPRC) (Skaka, Al Jouf area, Northern Saudi Arabia). 
Rhizospheric soil samples were collected from the 
four olive tree cultivars at 20-30 cm depth from the 
circumference of the tree canopy2. The samples 
were stored at a cool temperature for future lab 
processing.
Total Rhizospheric Bacteria and Fungi Isolation
 Total viable counts (TVC) of bacteria and 
fungi were assessed with the dilution plate method 
by suspending the rhizospheric soil samples in 
a sterile saline solution; the suspensions were 
serially diluted, and triplicates of 100 µl samples 
were plated on nutrient agar (NA) and potato 
dextrose agar (PDA). The plates were incubated 
at 28°C for 48 h for bacteria and 1 week for fungi.
Specific Bacterial Group Isolation
 Olive rhizosphere bacterial diversity was 
evaluated via specific bacterial group isolation on 
selective media as follows: bacilli on nutrient agar 
after boiling the soil samples for 10 min at 80°C; 
enteric bacteria on MacConkey agar medium; 
pseudomonads on Kings B agar medium containing 
gram per liter (20 peptone, 1.5 K2HPO4, 20 
agar, 1.5 g MgSO4 × 7 H2O, and 15 mL glycerin). 
Actinomycetes on modified glycerol yeast extract 
agar medium (MGYEA) containing gram per liter 
(25 peptone, 2 yeast extract, 15 agar, and 5 ml 
glycerol) at 28°C for 1 week.
Screening for Exopolysaccharide-Producing 
Bacteria
 Exopolysaccharide (EPS)-producing 
bacteria were screened by spreading 100 µl 
rhizospheric samples, prepared as aforementioned, 
on nutrient agar sucrose 1% medium (NAS), and 
incubated for 24-72 h at 28°C, for developing 
mucoid colonies with steaky texture that indicated 
EPS production. To confirm the presence of gram-
negative EPS-producing bacteria, the colonies 
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were subcultured on MacConkey agar medium, 
and the positive results were characterized by the 
appearance of mucoid colonies.
Screening for Exoenzyme-Producing Bacteria
 Rhizospheric samples collected from the 
four olive cultivars as described in the sampling 
section were serially diluted and screened for 
several enzymatic activities using semiquantitative 
plate assay. Amylase, cellulase, and chitinase were 
assessed separately on 0.5% starch, cellulose, and 
colloidal chitin agar plates, respectively; whereas, 
protease, lipase, and peroxidase were assessed on 
0.5% skim milk, tributyrin, and Congo red agars, 
respectively. The plates were incubated for 24-48 
h at 28°C for amylolytic, lipolytic, and proteolytic 
activities, and for 5 days for cellulase, chitinase, 
and peroxidase activities, expressed by clearing 
zone appearance surrounding the colonies.

ResUlts AND DisCUssiON
Olives Rhizosphere Bacterial Abundance and 
Diversity 
 The olive rhizosphere microbiological 
study illustrated in Fig. 1 revealed variable 
results between the investigated cultivars. 
Considering the TVC of bacteria, we observed 
that the bacteria were present in the following 
order: Chetoui > Chemlali > Quaissi > Djalat; 
moreover, fungi in all cultivars were scarce and 
were completely absent in the Chetoui cultivar 
rhizosphere. This was presumably due to the 
presence of endophytic arbuscular mycorrhiza or 
other antagonistic microorganisms as reported by 
several researchers2,8,13.
 Comparable results were obtained with 
olive rhizosphere bacterial diversity illustrated 
in Fig. 2, where the Chetoui cultivar revealed 

Fig. 1. Total viable counts of bacteria and fungi in the rhizosphere of the four olive cultivars.

Fig. 2.  Olives rhizosphere bacterial diversity.
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highest diversity, followed by Chemlali > Quaissi 
> Djalat, with a large abundance of bacilli, enteric 
bacteria, and pseudomonads as specific bacterial 
groups associated with the Chetoui rhizosphere. 
These findings were in accordance with studies 
that confirmed the occurrence of Proteobacteria 
presented by pseudomonads and enteric bacteria 
as well as Firmicutes presented by bacilli as natural 
inhabitants of olive rhizosphere, which act as 
effective antagonists against phytopathogens14,15. 
Furthermore, Fernandez-Gonzalez, et al. (2019)8 
reported the dominance of Actinobacteria and 
Proteobacteria as root endophytes by average 
relative abundances of 64% and 26%, respectively, 
thus highlighting that cultivars Chemlal de Kabylie 
(Algeria), Llumeta (Spain), and Mavreya (Greece), 

may play pivotal role in adapting olive cultivars to 
difficult environmental stresses. Moreover, Mridha 
et al.)10 emphasized the role of both arbuscular 
mycorrhizal fungi and plant growth-promoting 
rhizobacteria in enhancing olive growth and health 
when used as microbial inoculants.
 Chetoui and Chemlali are Tunisian 
cultivars, whereas Quaissi and Djalat were of 
Syrian origin. Considering the aforementioned 
results, we noticed that the Tunisian cultivars 
were superior to the Syrian cultivars in bacterial 
counts and diversity, which proves the role of the 
olive genotype in shaping the rhizospheric and 
endophytic microbial communities, as reported 
by Muller et al.3.

Fig. 3.  Rhizospheric exopolysaccharide (EPS) producing bacteria isolated from olive cultivars.

Fig. 4.  Rhizospheric exopolysaccharide producing bacteria grown on NAS medium (A) MacConkey agar medium 
(B) mucoid colonies with steaky texture indicated (EPS) production.
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EPS-Producing Bacteria
 The results illustrated in Fig. 3 revealed 
variable counts of EPS-producing bacteria between 
the investigated cultivars, based on the following 
descending order: Chetoui (68.4 %) > Djalat (23.5%) 
> Chemlali (7 %) > Quaissi (1%), whereas Fig. 4 
clearly illustrates the mucoid colonies with steaky 
texture on MacConkey agar medium indicated 
(EPS) production and confirmed the negativity 
of their Gram, and may have failed, Erwinia, 
Enterobacter, Klebsiella genera or Pseudomonas 
aeruginosa, Ralstonia, and Azotobacter vinelandii. 
As reported in a previous study16, the genus 
Paenibacillus presented maximum rhizospheric 
and endophytic EPS-producing bacteria17. In 
contrast, Fhoula et al. (2013)18 isolated good 
EPS-LAB producers from olive rhizosphere, 
mainly belonging to the species W. confusa, W. 
paramesenteroides, and Ln. mesenteroides. 
 EPS-producing bacteria improve the soil 
texture and aggregation, and also attach bacteria 
to plant roots19, thus protecting bacteria and plants 
from drought and oligotrophy by augmenting the 
absorption of water and nutrients from the soil. 
Moreover, this may help in relieving the saline 
stress by reducing the sodium content available for 
plant absorption20. Furthermore, EPSs are typically 
correlated with bacterial and plant resistance and 
protection against biotic and abiotic stress factors 
such as pathogens, salinity, desiccation, drought, 
heavy metals, and UV radiations21,22. 

Exoenzyme-producing bacteria
 As illustrated in Fig. 5, the rhizospheric 
exoenzyme-producing bacteria isolated from 
olive cultivars revealed the superiority of the 
Chetoui cultivar in all tested enzyme activities, 
followed by Chemlali > Djalat > Quaissi. Distinct 
differences were found in microbial enzyme 
activities of the investigated rhizospheres in the 
following order: peroxidase > chitinase > amylase 
> protease > lipase > cellulase. Considering that 
the chitinase and peroxidase-producing bacteria 
(stress enzymes) were higher in Chetoui and Djalat 
cultivars, they may presumably play a pivotal role 
in adapting the olives to difficult environmental 
stresses. From the enzymatic profiles, it can be 
concluded that hydrolytic enzymes (cellulase, 
amylase, lipase, chitinase, and protease) linked 
to carbon and nitrogen cycles represent a 
useful index for soil organic matter evolution, as 
reported by Geissler et al.23. In contrast, Sofo et 
al. (2014)24 assessed the soil enzyme activities of 
β-glucosidase, dehydrogenase, FDA hydrolase, and 
protease sampled from olive orchard soil subjected 
to classical and sustainable practices. The results 
revealed that proteases and glucosidases activities 
were higher in the groves managed by sustainable 
agricultural treatments.

CONClUsiON
 Olive rhizosphere microbial communities 
are remarkably complex and diverse, and are 

Fig. 5.  Rhizospheric exoenzymes producing bacteria isolated from olive cultivars.
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mainly shaped by the olive cultivar genotype. 
Culture-dependent techniques are less efficient 
for understanding this high complex diversity 
and interactivity, whereas culture-independent 
approaches such as high-throughput sequencing 
technologies and rhizosphere microbiomics 
may provide the full microbial composition at 
the species level. Moreover, they offer wealth 
information for comprehending the complex 
interactions implicated in olive tree rhizosphere 
microbial ecology.
 Furthermore, we conclude that the 
Chetoui olive cultivar rhizosphere was the most 
diverse and the best potential reservoir for 
exoenzymes and EPS-producing bacteria useful 
for future biotechnological applications; however, 
future work is necessary to screen other plant 
growth-promoting traits or to test their biological 
control activities against major olive pathogens.
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