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Abstract
Keratinase is a proteolytic enzyme capable on degrading the hardy polymeric biomolecule or keratin. 
In recent days, the utilization of keratinolytic microorganisms is seen as a promising way in recycling 
the keratin wastes from the avian and mammalians into valuable derived products. Previous study 
has reported the presence of a keratinolytic bacterium, later identified as Azotobacter chroococcum 
B4 obtained from dump soils. The present study investigates the enzyme characteristics of keratinase 
produced by this strain based on the physical appearance of final degraded product using SEM, the 
molecular weight of keratinase using SDS-PAGE, the effects of nutrition (C/N-source) on strain production 
of keratinase and the enzyme stability in metal ions solution. The molecular weight of keratinase 
produced by A. chroococcum B4 was about 30 kDa. Both sucrose and tryptone supplementation 
increase the keratinase activity by 71.7 and 97.8 U/mL after 96 h of cultivation. Metal ions, Ca2+, Mg2+, 
Mn2+, Na+, and K+ are regarded as activators by increasing the relative activity of keratinase by 117, 166, 
111, 113, and 112% respectively, while phenylmethylsulfonyl flouride (PMSF) is regarded as inhibitor 
by decreasing the relative activity down to 31%. Based on the metal ion characteristics, this strain 
produced a serine-protease type of keratinase which may further studied for its application in the field.
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INTroDUCTIoN
 Poultry-processing industries generate 
more than 4 billion pounds of feathers annually 
as waste. In chicken feather weight accounts up to 
5-7% of its body chicken. Chicken feather contains 
about 90% of keratin1–2. 
 Keratin is a stable and insoluble structural 
protein tightly packed by the numerous polypeptide 
chained with disulfide cross-linkage (S=S bonds) 
which increased the hydrophobic nature of this 
polymer. It is highly resistant to degradation by 
conventional proteases. The stability of keratin 
depends on number of helical chains (a-keratin) 
and β-sheet (b-keratin) of proteins and their 
cystine bridge. Biodegradation of keratin involving 
microbial ketainase is an easy and economical 
method for conversion of keratin waste into useful 
products as source of amino acids and proteins, 
which are typically utilized as animal feed additives 
as well as nitrogen source for plants3–5. Keratinase 
can be utilized as biocatalysts in leather and textile 
industry, and waste recycling4.
 Keratinase is produced by various types of 
fungi and bacteria, including Gram-positive bacteria 
of Bacillus6–7 and Gram-negative, such as Vibrio sp. 
strain kr28, Aeromonas hydrophila strain FB38, 
Stenotrophomonas spp.9–11, Chryseobacterium 
spp12–13. A fungal isolate from crocodilian feces was 
reported to degrade chicken feather waste within 
10 days14. 
 During a screening of keratinolytic 
bacteria from various sources, we reported a new 
strain of Azotobacter chroococcum B411 which 
produced a considerably potential keratinolytic 
activity. The purpose of this study was then to 
obtain the biological characteristics of keratinase 
produced by A. chroococcum strain B4 for a 
better understanding of its nature in the future 
application.
 
MATErIALS AND METHoDS
Isolate and growth medium
 Azotobacter chroococcum B4 was grown 
on feather meal broth (FMB) composed of chicken 
feather powder (15 g), K2HPO4 (0.7 g), KH2PO4 (0.4 
g), NaCl (0.5 g), MgSO4 (0.1 g) in 1000 mL distilled 
water14. Growth medium was sterilized at 121°C, 
1 atm for 15 min.
 Chicken feather waste was collected from 
slaughterhouses. Feathers were washed using 

detergent-water and cut into small pieces (± 2 cm) 
prior soaking in acetone for 24 h. Washed feathers 
were dried in oven at 40°C for 72 h and subjected 
to be grinded to make chicken feather powder. 
observation using scanning electron microscope 
(SEM) 
 Whole chicken feathers were inserted 
into A. chroococcus B4 liquid culture and incubated 
for 48–96 h, 37°C under agitation of 180 rpm. 
After incubation, a feather or strand sample was 
soaked into a 2% (w/v) sodium coccodylate buffer 
for 1 h. The sample was further soaked into a 
1% (w/v) tetraoxide solution for 1 h. The sample 
was removed and dipped into following EtOH 
concentrations of: 70, 80, 90 and 100%, each for 
30 sec. The sample was removed and immersed 
into a n-butanol solution prior coating into gold-
coated metal plate. The plate was placed inside 
SEM apparatus operating at 20 kV while tubes 
were conditioned in vacuum (0 Pa).
Effect of C- and N-sources
 Variation in carbon and nitrogen sources 
was used to promote bacterial keratinolytic 
activity. Glucose, sucrose, starch, fructose, lactose, 
and sorbitol (1% w/v) was tested as C-source, while 
casein, gelatin, KNO3, peptone, tryptone, NaNO3, 
and yeast extract (0.5% w/v) was used as N-source. 
pH and temperature were adjusted as described in 
previous study10. Keratinase activity was measured 
at 24, 48, 72, 96, 120, 144, and 168 hours.
Purification of keratinase
 Crude keratinase was harvested from an 
overnight culture by centrifugation at 8000×g, 4°C 
for 20 min. Supernatant was precipitated using 
70% (w/v) (NH4)2SO4 at 5°C for 24 h and subjected 
to further centrifugation at 8000×g, 4°C for 20 
min. Ten milligrams of pellets were dissolved 
by adding 5 mL buffer A (2:1, 25 mM Tris-HCl, 
pH 8) and dialyzed inside a cellulose membrane 
(10 kDa cut-off). Dialysis membrane was then 
submerged into 600 mL buffer B (50 mM Tris-
HCl, pH 8) following slow stir for 24 h at 5°C. The 
buffer was periodically changed in the interval of 
8 h. Enzyme solution was further purified using 
a Sephadex G-50 (Sigma-Aldrich) gel filtration 
chromatography column (fractionation range 1.5 
to 30 kDa). Partially-purified protein solutions were 
gently poured into the column and eluted with 25 
mM Tris-HCl, pH 8.0. Fractions were stored in vials 
and subjected to further experiments.
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Keratinase assay
 Keratinase assay was performed as 
previously described10 with some modifications. 
Chicken feather powder was used a keratin source 
and substrate in the keratinase assay. The keratin 
substrate (4 mg) was dissolved in 1 mL 50 mM 
Tris–HCl, pH 8.0. Keratin solution (250 µL) was 
reacted with 500 µL enzyme solution in 250 μL 50 
mM Tris–HCl buffer. Solution was placed on a hot 
plate for 30 min at 40°C. The reaction was stopped 
by mixing 1 mL 10% (w/v) trichloroacetic acid 
solution followed by incubation for 10 min at 4°C. 
The reaction mixture was centrifuged for 10 min 
at 10,000×g. Free polypeptides in the supernatant 
were measured at λ 280 nm. A standard was 
prepared using tyrosine. One unit of enzyme 
activity was defined as the amount of keratinase 
that caused an increase of 0.01 in absorbance at 
λ 280 nm12. Measurement of protein content 
was based on colorimetry method using Bradford 
reagent. After mixing 500 µL samples and 750 
μL Bradford reagent, protein concentration was 
determined using a spectrophotometer at A595nm.
Effect of metal and inhibitor to keratinolytic 
activity
 Effect of metal ions on keratinolytic 
activity was examined using 5 and 10 mM 
chloride salts of Ca2+ (CaCl2), Mg2+ (MgCl2), Ba2+ 
(BaCl2), Na+ (NaCl), K+ (KCl), Co2+ (CoCl2), and Mn2+ 
(MnCl2). Solutions of keratinase and ions were 
incubated at 37°C for 1 h in 50 mM phosphate 
buffer (pH 7.5)15. Inhibitors i.e. pepstatin A, 
benzamidine, phenylmethylsulfonyl fluoride 

(PMSF), ethylenediaminetetraacetic acid (EDTA), 
dithiothreitol (DTT), 2-mercaptoethanol, soybean 
trypsin inhibitor, N-tosyl-L-lysine chloromethyl 
ketone (TLCK), bromoacetic acid, chymostatin, 
and iodoacetic acid were tested. Inhibitor was 
mixed with purified keratinase at 1 and 5 mM 
concentration. All reactions were stopped using 
500 µL of 10% (w/v) TCA16. Pellet was separated 
by spinning at 8000×g for 30 min at 4°C. Reaction 
with no metal and inhibitor addition was used as 
a control.
Determination of keratinase molecular weight
 Molecular weight was measured using 
SDS-PAGE. SDS-PAGE was conducted in 10% 
(w/v) polyacrylamide resolving and 5% (w/v) 
stacking gel. Sample of 15 µL (protein conc. 2 µg/
mL) dissolved in a loading dye were incubated at 
±100°C for 5 min for protein denaturation. The 
samples were inserted into wells and run at 110 
V for 90 min. After separation, gel was removed 
and stained using Coomassie® Brilliant Blue (CBB) 
R-250 in orbital shaker. Consecutively, the gel 
was soaked in methanol acetate solution (250 
mL distilled water, 200 mL methanol, and 50 mL 
acetic acid). The molecular weight (kDa) of purified 
keratinase was determined by measuring the 
relative migration distance (Rf) between protein 
standards and the unknown protein analysed using 
linear regression method. The presence of multiple 
bands was confirmed through Zymogram analysis 
using keratin as specific substrate for enzyme 
detection. Zymogram was performed using a 
10% separating gel added with 0.2% (w/v) keratin 

Fig. 1. SEM images (Magnification at 1000×) of feather degradation by A. chrocoocum B4. (A) Barbules and barbs 
degradation after 5 days; (B) Colonization of Azotobacter chrocoocum B4 on feather surface in 5 d (yellow circles); 
(C) Whole chicken feather and feather barbs being uninoculated.
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powder. The gel was immersed in 2.5% Triton® 
X-100 for 1 h at 37°C and subsequently in a 50 
mM Tris-HCl buffer (pH 8) overnight. The gel was 
stained using 0.05% (w/v) CBB for 2 h followed by 
destaining until white band was formed visually.

rESULTS AND DISCUSSIoN
Chicken feather degradation by Azotobacter 
chroococcum B4
 Newly keratinolytic bacterial isolate A. 
chroococcum B4 ability in degradation of chicken 
feather keratin and production of keratinase activity 
was assessed in this study. A. chroococcum B4 was 
inoculated in liquid media containing chicken 
feathers as nutrient sole source. It was observed 
that A. chroococcum B4 successfully colonized and 
degraded chicken feathers starting from 2-days 
of incubation until 5 days of observation. Gupta 
and Singh5, and Fakhfakh et al.16 reported similar 
result in Bacillus pumilus A1. However, Jeong et 
al.10 showed that their isolate Stenotrophomonas 
maltophilia R13 took 6 days to completely degrade 
chicken. Feather degradation was observed using 
scanning electron microscopy. Visualization of the 
chicken feather degradation during cultivation was 
observed by scanning electron microscopy (SEM) 
(Fig. 1).
 Bacterial ability in degrading feather 
was associated with two enzymes, serine 
protease and disulphide reductase as showed by 
Stenotrophomonas sp. D-15,17,18. As far as we know, 
no report of A. chroococcum was as keratinolytic 
bacteria. Microbial degradation of keratin releases 

peptides and amino acids including lysine, 
alanine, glycine, cysteine, valine, serine, and small 
quantities of tryptophan and methionine19, which 
can be used as N and C sources, and ultimately 
producing ammonium20.
SDS-PAGE and zymogram analysis of B4 keratinase
 Molecular weight of keratinase was 
measured using SDS-PAGE method. The keratinase 
samples were from 23, 24, 25, and 35 fractions 
of Sephadex G-50 chromatography. SDS-PAGE 
analysis showed two major bands corresponding 
to fractions 24 and 25 (Fig. 2a). No protein bands 
were observed from other samples. SDS-PAGE 
result was reconfirmed by zymogram using keratin 
as a substrate dissolved in polyacrylamide gel. A 
single hydrolysis band of 24 and 25 fractions was 
formed in the gel (Fig. 2b). It was confirmed that 
molecular weight of B4 keratinase was 30 kDa.
 In our study, we did not observe 
any presence of protein bands both in 70% 
ammonium sulphate precipitated and dialyzed 
crude keratinase. The phenomenon was due to 
the presence of ammonium salts which disrupted 
the keratinase activity of A. chrococcum B4 during 
partial purification. In the beginning of dialysis, 
majority of salts were removed but not all of 
them, as shown from fraction 23th revealing a clear 
and thin band. As a result, fraction 24 and 25th 
produced a thick band with the highest keratinase 
activity. The thick bands indicated a relatively high 
concentration of protein. The presence of non-
keratinase protein bands was assumed to be other 
protease in our samples. Therefore, a zymogram 

Fig. 2. Visualization of SDS-PAGE (a) and zymography (b) of keratinase from A. chrocoocum strain B4. Five samples of 
keratinase purification protocol were analysed: lane 1= ammonium sulfate (70%), lane 2= dialysis, lane 3= fraction 
(23th), lane 4= fraction (24th), lane 5= fraction (25th), lane 6= fraction (35th). M = Protein Marker, Color Prestained 
Protein Standard (BioLabs Inc, New England).
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analysis was performed to selectively estimate 
the molecular weight of our purified keratinase by 
using chicken feather as its substrate of hydrolisis.
 Previous study showed that molecular 
weight of keratinases might vary between18-240 
kDa21,22. In general, keratinases have molecular 
weight lower than 40 kDa, such as 22 kDa of B. 
subtilis23, 28 kDa of B. licheniformis24, 32.8 and 

35.5 kDa of B. licheniformis YJ425, 36 kDa of S. 
maltophilia N426, 35.2 kDa of S. maltophilia DHHJ27. 
Larger keratinase was found in F. pennavorans with 
molecular weight of 130 kDa28. The result of this 
study suggested that B4 keratinase showed to have 
similar molecular weight to those of Bacillus and 
Meiothermus29,30. 

Fig. 3. Keratinase activity during growth of A. chroococcum B4 on chicken feathers supplemented with different 
C- and N- sources. (a) C- source. (b) N-source. Values are the means ± SD of three replicates.

Fig. 4. Bacterial growth, keratinase activity and soluble protein release growth of A. chroococcum B4 on chicken 
feathers supplemented with C- and N- sources. Bacterial growth in medium supplemented with (a) 1% (w/v) 
sucrose (c) with 0.5% (w/v) peptone (b) Soluble protein and enzyme activity in medium supplemented with 1% 
(w/v) sucrose  and (d) 0.5% (w/v) peptone.



  www.microbiologyjournal.org1208

Mamangkey et al. | J Pure Appl Microbiol | 14(2):1203-1211 | June 2020 | https://doi.org/10.22207/JPAM.14.2.15

Journal of Pure and Applied Microbiology

Effect of C and N sources on keratinase production
 Keratinase of A. chroococcum strain 
B4 was produced by optimization of submerged 
fermentation (SmF) as described previously31 
using different C and N sources. Sucrose showed 
to increase keratinase production by 71.7 U/
ml in 96 h of cultivation (Fig. 3a). On the other 
hand, monosaccharide such as glucose resulted 
to decrease keratinase production. Inhibition of 
protease biosynthesis by certain monosaccharides 
is likely correlated with catabolite repression 
mechanism32. However, not all keratinase 
production by bacteria was inhibited by glucose. 
Keratinase production by B. subtilis33-34, B. 
licheniformis35 and Stenotrophomonas sp. D-117 
were inhibited by glucose. Seemingly, glucose 
might stimulate synthesis keratinases in B. 
pseudofirmus AL-8936 and Bacillus sp.37.
 Various result of keratinase production 
was demonstrated due to different N sources. The 
addition of several nitrogen sources by 0.5% (w/v) 
resulted in an increase in keratinase synthesis 
by A. chroococcum B4 (Fig. 3b). High keratinase 
activity of 97.8 U/mL was observed when tryptone 

was added. Although the only source of C and N 
in controls were chicken feathers, the additional 
sources of C and N can help bacterial cell growth 
before the keratin is hydrolyzed. Having complex 
structure of keratins, exogenous nutrient source 
may contribute to keratinolytic bacteria earlier in 
feather degradation process. Consider that sucrose 
and tryptone are expensive, other C and N sources 
from other waste can be examined for increasing 
keratinase production.
 Measurement of bacterial growth as 
optical density at 600 nm was carried out using 
spectrophotometer from 24 to 168 h (Fig. 4). The 
initial growth phase occurs after 24 h of cultivation, 
for addition both sucrose and tryptone. The 
logarithmic phase observed between 24 and 96 
h of cultivation, while the stationary phase was 
seemingly not well defined. The bacterial cell 
growth was correlated with the keratinase activity 
and soluble protein produced. Data showed that 
maximum keratinase activity and soluble protein 
were at 96 h in sucrose (Fig. 4a-b) and 120 h in 
tryptone medium (Fig. 4c-d).
 The increase of bacteria cell growth 
depends on the provision of growth substrate. 
More efficient production of primary metabolites 
was expected to occur in the logarithmic phase. 
Bacteria growth rate significantly affect the 
product during the fermentation process; the 
faster the growth rate, the less the fermentation 
process time, which then also leads to less 
production cost38. 
Effect of metal ions and inhibitors on keratinase 
B4
 Metal ions have a significant role in the 
microbial metabolism, affecting the activity of 
many enzymes. The increase of keratinase B4 
activity was observed when Ca2+, Mg2+, Mn2+, Na+, 
and K+ were added, with relative activities of 117%, 
166%, 111%, 113%, 112%, respectively (Table 1).
 However, Co2+ decreased the relative 
activity of keratinase B4 to 40%. In present report, 
Mg2+ can also be considered as significant factor 
in order to increase B4 keratinase activity, as also 
shown by keratinase of Kocuria rosea39, B. subtilis23 
and Paracoccus sp. WJ-9840. However, metal ions 
may have different effect in different strains. For 
example, Ca2+ increased S. brevicaulis keratinase 
production41, but decreased keratinase of B. 
licheniformis RG142.

Table 1. Effect of metal ions and inhibitors on 
keratinolytic activity of Azotobacter chroococcum B4

Metal ions        Relative activity (%)
and Inhibitors
 5 Mm 10 Mm

Control 100 100
Ca2+ 115  ±  0.9 117  ± 0.7
Mg2+ 112  ± 0.6 166  ± 1.0
Ba2+ 85  ±  1.2 110  ± 1.0
Mn2+ 109  ±  0.7 111  ±  0.8
Co2+ 51  ±  0.7 40  ±  0.8
Na+ 103  ± 0.9 113  ± 0.6
K+ 102  ±  1.0 112  ± 1.2
 1Mm 5 Mm
Pepstatin A 51  ± 1.0 33  ± 1.5
PMSF 65 ±  0.9 31  ±  0.9
DTT 42  ± 0.7 22  ±  0.7
EDTA 52  ±  0.7 110  ±  0.7
N-tosyl-L-lysine   72 ± 1.5 64  ±  0.9
Bromoacetic acid 87  ± 1.5 35  ±  0.9
Chymostatin  15  ± 0.9 14  ±  0.7
Iodoacetic acid 51  ± 0.7 33 ± 1.0
Benzamidine 57  ± 0.7 12 ± 0.9
Soybeane trypsin 75  ± 0.9 66 ± 1.3
inhibitor
2-mercaptoethanol 75  ± 1.3 73 ± 0.9
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 It was known that various inhibitors 
dicreased relative activity of keratinases. Inhibitor 
assays aims to determine keratinase type, 
considering that protease groups are very 
sensitive to presence of specific inhibitors43. It 
has been reported previously that microbial 
keratinase was mostly related to serine proteases 
and metalloproteases20,44, except that of yeast 
group that produced aspartic proteases45. The 
keratinase B4 was inhibited by PMSF, benzamidine, 
chymostatin, which are well-known serine protease 
inhibitors. This indicated that B4 keratinase B4 
belonged to serine protease family. DTT, iodoacetic 
acid, and 2-mercapthoethanol also inhibited the 
enzyme, suggesting that cysteine residues were 
relevant for the activity of B4 keratinase as well.

CoNCLUSIoNS
 Reported strain A. chroococcum B4 was 
able to degrade whole chicken feathers after 5 days 
of cultivation as evidenced by scanning electron 
microscopy. The analysis conducted by SDS-PAGE 
and zymogram showed that A. chroococcum B4 
keratinase had a molecular weight of about 30 kDa. 
The keratinase activity increased after the addition 
of sucrose (1% w/v) as carbon source and tryptone 
(0.5% w/v) as nitrogen source during cultivation 
on feathers, reaching 97.8 U/mL. The enzyme 
activity enhanced by addition of Ca2+, Mg2+, Mn2+, 
Na+, and K+, but it was inhibited by PMSF and other 
inhibitors indicating its belongingness to serine-
protease group.
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