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Abstract
Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) rose without precedent for Wuhan, 
China, in December 2019. It is a kind of exceptionally pathogenic human coronavirus (HCoV) which 
causes zoonotic sicknesses and represents a significant risk to general wellbeing. Recognizing the 
hidden biology and pathogenesis of this novel coronavirus is extremely critical to comprehend as well 
as boosting the treatment of this deadly pandemic. The point of this study is to recognize key genes 
which show significant expression in the SARS-CoV-2 infected lungs as compared to healthy ones. Our 
analysis uncovered 149 gene-signatures that show substantial up-regulation in COVID-19 lungs. Out 
of these, top ten dysregulated genes STAP1, CASP5, FDCSP, CARD17, ST20, AKR1B10, CLC, KCNJ2-AS1, 
RNASE2 and FLG are found to be significant based on various crucial statistical factors and may end 
up being acceptable helpful drug targets.
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INTRODUCTION
 The novel coronavirus - Severe Acute 
Respiratory Syndrome Corona Virus-2 (SARS-
CoV-2) which is the causative agent of recent 
Coronavirus Disease-2019 (COVID-19) pandemic 
and has infected around 3.2 million peoples and 
claimed over 2,24,000 deaths (https://www.
who.int/docs/default-source/coronaviruse/
situation-reports/20200501-covid-19-sitrep.
pdf?sfvrsn=742f4a18_2 )1-3. It is not just a health 
crisis but has become the cause of global public, 
financial and political turmoil. No vaccine and 
antiviral drug are available right now for its clinical 
management. 
 It is therefore imperative to study the host 
response toward the viral infection at the cellular 
level in order to enhance our understanding of the 
disease pathophysiology and be able to identify 
drug molecules for combating the disease. To meet 
these ends, a recent brilliant study conducted 
at Icahn School of Medicine at Mount Sinai, 
New York, USA generated an RNA-seq datasets 
comprising in vitro, ex vivo, and in vivo systems of 
SARS-CoV-2 and other related viruses’ infection4. 
 In our study, we focused on the re-
analysis of four of these samples to extract some 
new information beyond the original publication.  

MATERIALS AND METHODS
 The RNA-Seq dataset GSE147507 
containing the gene count matrix of the samples 
of Healthy lung biopsy (GSM4462413, and 
GSM4462414) and COVID-19 lung (GSM4462415, 
and GSM4462416) used in this research was 

taken from the Gene Expression Omnibus (GEO) 
database5 and submitted by Daniel et al. [4] The 
preprocessing of the data began with the filtering 
of those genes which are at low-count level. In 
this study, filtering was done by taking low count 
filtering method: Mean (filter features where 
Row Means < 10) and normalization of the data 
was carried out by trimmed mean of M-values 
normalization (TMM) normalization method. 
Since, the count data obtained from a sequencing 
based experiment may also be affected from the 
depth of sequencing and the variations in the 
composition of the features that are detected. 
Therefore, the TMM normalization method was 
deployed in our study to estimate relative RNA 
production levels from RNA-seq data. The checking 
of the quality and normalization of the data used 
was carried out by using R /Bioconductor software 
& packages [6]. EdgeR is a software package for 
analyzing the differential expression profile of 
replicated data at the exon, gene, transcript as 
well as tag level. A characteristic feature of its 
functionality comprises of empirical Bayes based 
methods which allows the assessment of biological 
variation at gene-specific level. In addition, it may 
also be used for those experiments in which low 
levels of biological replication exist. It also utilizes 
TMM normalization for the differential analysis 
purpose.
 Differential expression analysis can 
be performed by various statistical tests. In 
this study, we used EdgeR as the differential 
Expression method using TMM normalization 
and zero dispersion with exact test. Statistically 

Fig. 1. (A) Boxplot for describing center and variability of the data used in the study; (B) Density plot which uses a 
kernel density estimate to show the probability density function of the variable.
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significant parameters such as p-value, fold-
change, adjusted-p value, were also calculated. 
The Gene Ontology (GO) analysis for the biological 
process and human phenotype ontology were 
also performed using Enrichr tool7. Further, the 
protein-protein interaction (PPI) network was 
also constructed utilizing STRING8 for all the DEGs 
obtained after analysis. 

RESULTS
 The samples obtained from GEO dataset 
originally contain 21795 genes/regions but 
filtering of this data is very much required in 
order to obtain differentially expressed genes as it 
eliminates the undesirable variation sources. After 
this preprocessing, the no. of genes/regions came 
down to 13890. Box plot and Density plot were 
used to check the quality of the data as shown in 
Figure 1 (A) and 1(B) respectively.

 The identification of Differentially 
Expressed Genes (DEGs) in COVID-19 affected lung 
is vital for strategy development in order to detect 
and treat this pandemic. Normally, for DE analysis, 
both fold-change and p-value are considered to be 
the most important factors. Therefore, we took 
those genes which are having adj. p-value less 
than 0.01 and log Fold Change greater than 2 and 
149 DEGs were screened for further analysis. The 
scatter plot and volcano plot were also obtained 
in order to decipher the regulation of the genes 
as shown in Figure 2(A) and 2(B) respectively9. It is 
clear from the plots that the DEGs obtained only 
show up-regulation, no down-regulated genes 
were obtained based on the significant threshold 
we choose. The top ten DEGs in the decreasing 
order of their fold change were mentioned in the 
Table 1.

Table 1. Top ten screened significant DEGs in the decreasing order of their log2 Fold change

ID Healthy Healthy COVID-19 COVID-19 p-adj log2 
 Lung  Lung Lung_2 Lung_1  Fold
 Biopsy_2 Lung Biopsy_1    Change

STAP1 0 0 643.0631886 300.9525922 4.00E-09 17.39775747
CASP5 0 0 560.4426505 361.9752376 4.97E-09 17.35103906
FDCSP 0 0 462.6750137 227.448042 7.41E-08 16.74612725
CARD17 0 0 294.6799194 65.18328034 1.10E-05 15.38866926
ST20 0 2.931208312 2880.702764 1891.702008 1.04E-11 15.38019554
AKR1B10 0 0 280.9098297 22.19005288 3.61E-05 15.02959596
CLC 0 0 220.3214351 63.79640203 5.48E-05 14.89798936
KCNJ2-AS1 0 0 143.2089328 117.8846559 9.53E-05 14.72655049
RNASE2 0 0 150.0939776 102.6289946 0.000127291 14.65793047
FLG 0 0 1.377008969 237.1561902 0.000201618 14.54883138

Fig. 2. (A) Scatter Plot (log10 Normalized Mean (Read Counts) in condition 1 against log10 Normalized Mean (Read 
Counts) in condition 2); (B) Volcano Plot (log10 padj. Vs log2 FC); (D) GO – Biological Process; (D) Human Phenotype 
Ontology; (E) PPI network of screened significant DEGs.
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 The GO component: Biological process was 
calculated by taking all 149 DEGs into consideration 
and the top GO sorted based on p-value ranking 
has been depicted in Figure 2(C). Similarly, human 
phenotype ontology was calculated in order to 
obtain a standardized vocabulary of phenotypic 
abnormalities encountered in human disease as 
shown in Figure 2(D).
 STRING database [8] was used for the 
construction of PPI network of all screened DEGs. 
The least required interaction scoring was kept to 
0.400 at the level of medium confidence and active 

interaction sources such as Experiments, Text 
mining, Co-expression, Databases, Neighborhood, 
Co-occurrence, and Gene Fusion were used. The 
disconnected nodes were removed as they are 
supposed to be less significant. The obtained 
network consists of 144 nodes & 770 edges 
(with an enrichment p-value of PPI less than 
1.0e-16). The average node degree and avg. local 
clustering coefficient was found to be 10.7 and 
0.545, respectively. The important functional 
enrichments in the network has been depicted in 
the Figure 3.
 

Fig. 3. Functional Enrichment analysis (top five GO terms and pathways) in the network involving all the three 
components of Gene Ontology and KEGG Pathways.

DISCUSSION
 The pathway and GO analysis of the 
significant signature genes enrich various immune-
system related terms such as chemokine signaling 
pathway, cytokine-cytokine receptor interaction, 
NOD-like receptor signaling pathway, cytokine 
receptor binding, CCR chemokine receptor 
binding, and cytokine activity.  Clearly, viral 
infection mounts a cytokine storm [10] which may 
lead to acute respiratory distress syndrome (ARDS) 
as well as acute lung injury (ALI), often leading to 
reduction proper functioning of the lungs or even 
death [4]. 
 Top dysregulated proteins were also 
found to be involved in similar processes. Protein 
STAP1 in macrophage colony-stimulating factor 
receptor binding, CASP5, and ST20 in apoptosis, 
FDSCP in regulator of antibody responses, CARD17 
in expression of pro-inflammatory cytokine IL-1b,  
CLC for immune suppression, interestingly protein 
RNASE2 is involved in antiviral activity against 
respiratory syncytial virus and its agnostics may 
be used as effective agent against COVID-19 [11]. 
We foresee our re-analysis would help researchers 
in designing effective therapeutics by screening 
some of these genes. 

 The samples, we have used in our analysis 
were not from in vitro, or from animal models 
but from COVID-19-infected patients. Given the 
paucity of gene expression data available on this 
disease, we hope our analysis could be further 
exploited for identification of potential drug 
targets. One limitation of this study is that - it 
actually requires a large number of samples for 
more robust analysis that our study lacks indeed.
 In future, we intend to incorporate our 
outcomes from the re-analysis of RNA-seq data 
with other samples present in the GEO dataset 
and try to investigate the variation in the sequence 
(SNPs) and their impact on this deadly disease.
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