
Obesity is a pathologically significant risk
factor of vascular disease in individuals with type
2 diabetes mellitus (T2DM) 1, 2. The increasing
incidence of T2DM in non-obese, normal BMI and
lean individuals is also a related matter of concern3.
Mostly obesity arises as a consequence of complex
interactions between genetic, dietary, and
metabolic factors. A more exhaustive assessment
on causes of obesity have been reviewed
elsewhere 4, 5. Obesity definitions essentially
attempt to categorize susceptible individuals

carrying risk factors for additional interrelated
comorbidities. Conventionally, obesity is defined
as a body mass index (BMI) of 30 kg/m2 and higher,
while overweight is defined as a BMI between 25
and 30 kg/m2. However, this index could vary
considerably across geographical locations.
Among several other definitions of obesity waist
circumference (WC), adiposopathy (‘‘sick fat’’),
body fat percentage (BF %) have also been
proposed to categorise metabolic subtype of obese
individuals 6, 7, 8. Coincidently, the pathogenic role
of adipose tissue in obesity is the pivotal measure
for defining these metabolic subtypes.  In this
context, we set our focus on the profound influence
of body fat (visceral/ abdominal adipose tissue) in
the pathogenesis of obesity.
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Animal models shares several common
characteristics of human obesity and related co-
morbidities. So, these models could be extremely
useful in research studies focused on the
development of novel prevention and/or treatment
methods for obesity. Recently, a concise report on
animal models of obesity segregated into different
categories based on mutations or manipulations
of one or more individual genes and genetically
intact animal models exposed to obesogenic
environments have been reported 9. Diet-induced
obesity models are particularly useful in studying
pathogenesis of polygenic obesity.  Differential
gene expression studies in diet-induced obesity
rat models had revealed up regulation of lipid
metabolism genes and downregulation of genes
related to redox and stress proteins10. Cross talks
between the visceral-pancreatic adipose tissue and
beta-cells that contributed to beta-cell plasticity
and a novel obesity pathway facilitating the
communication between adipose tissue and
pancreatic islets have also been reported in rat
animal models 11, 12.

MATERIALS   AND  METHODS

Probing differentially expressed genes is
a common practice in identifying biomarkers or
signatures of phenotypic states such as diseases
or multifaceted treatments. Meta-analysis of
microarray data from public repositories have also
been proven as a viable strategy to identify key
mediating factors in complex diseases. “Meta-
analysis of microarray data is a statistical approach
that combines microarray dataset results from
independent but related studies. This approach is
comparatively an inexpensive alternative that has
the potential to increase equally the statistical
power and generalizability of individual-study
analysis.”13. Our objectives were to first identify
genes expressed differentially between two groups
and subsequently perform meta-analysis of the
selected microarray datasets to identify the meta-
gene expression signature between samples from
heterologous datasets and in turn use the meta-
gene expression signature data for integrated
pathway enrichment analysis and construct a
transient gene interactions network.
Selection of suitable data sets for the study

Microarray datasets were searched in the
open source repository National Center for
Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) 14 Microarray datasets
containing supplementary data (.CEL) files were
only considered for the study. The search filters
were set for “Expression profiling by array” and
search terms included “cel [Supplementary
Files]”,”affymetrix” “obesity”, “adipose” “Rattus”.
“norvegicus”. Based on the search two datasets
GSE36935 and GSE44372 were retrieved and
processed for the meta-analysis study. GSE36935
included five samples obtained from rat adipose
tissues from the mesenteric surrounding the
pancreas (pMES) from two obese and three non-
obese animal subjects. GSE44372 included six
samples obtained from rat visceral pancreatic white
adipose tissues from three obese, and three non-
obese animal subjects. All sample data were
considered for the meta-analysis study. The
characteristics of selected data sets are shown in
Table 1
Individual Microarray Dataset Processing

Prior to meta-analysis study, we have
performed individual analysis of the two
microarray datasets from adipose tissue samples
from obese rats (Rattus norvegicus). Individual
microarray datasets (raw files) that were retrieved
from GEO were processed using Microarray Я  US
15. Featuring a user-friendly graphic interface,
Microarray Я US is an R based program that
integrates functions from most widely used
Bioconductor16 packages. The affy package was
employed for initial data analysis. Pre-processing
of the datasets were carried out with robust multi-
array average (RMA). The presence of technical
artefacts and variance in microarray experiments
were identified by quality control analysis using
QC report Hierarchical clustering analysis was
performed with Euclidean distance. Statistical
analyses of differentially expressed genes were
performed using Bioconductor’s RankProd
package17 The non-parametric statistical method
based on the rankings of the fold changes of genes
was applied to evaluate differences in gene
expression between individual samples from case
and controls.
Meta-analysis of microarray datasets

The pre-processed datasets were used for
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the meta-analysis using combined rank product
method based on the RankProd package. Genes
were ranked based on the combined rank product
(combinedRP). The p-value for meta-analysis was
p <0.05. The top 20 (up & down regulated) genes
are shown in Table 2. The heat maps for the top 20
up and down regulated genes based on the
combined rank product are is shown in Figure 1
(c). & Figure 1 (d).
Integrated pathway enrichment analysis

Genes involved in the same biological
processes, functions, or localizations present
correlated behaviors in terms of expression levels
and signal intensities, therefore statistical tests
could be applied to identify perturbed pathways.
Integrated pathway enrichment analysis is one of
such techniques. To improve our understanding
of the altered biological coordination involved in
the meta-gene expression signature, an integrated
pathway enrichment analysis was carried out to
explore the role of obesity factors observed in these
meta-gene expression signature data.

Integrated pathway enrichment analysis
was carried out with INMEX (INtegrative Meta-
analysis of EXpression data) 18 and ClueGO19 a
plug-in application in Cytoscape20. INMEX
pathway analysis includes Gene Ontology (GO) 21

terms and pathways while ClueGO includes a
comprehensive data of all known Gene Ontology
(GO) terms and pathways, Kyoto Encyclopedia of
Genes and Genomes (KEGG) 22, REACTOME23 and
consolidates them in to a functionally unified
network, which represents the biological link in
relation to the pathways and the Gene Ontologies.
For the analysis, we have used the two-sided
(enrichment/depletion) hyper-geometric
distribution tests. The p-value significance was
set to 0.05. The kappa-statistics score was set to
0.3. The enriched pathways are shown in Figure 2.

The list of enriched pathways along with their
associated genes are shown in Table 2.

RESULTS   AND  DISCUSSION

Individual microarray data studies
A list of 106 genes for GSE36935 and 173

genes for GSE44372 were considered dysregulated
genes with a p0.05, adjusted Pfp  0.05 and fold
change of 1.5. After removing probes for which no
information were available 69 genes for GSE36935
and 118 genes for GSE44372 were considered to be
statistically significant and differentially expressed
between the case and the control. The differentially
expressed gene list from the two individual data
sets are given in (Supplementary Table ST-1, ST-
2). The heat-maps displaying the significant
differentially expressed (up-down regulated) genes
are shown in figure 1 (a) and 1 (b).

The significant gene signatures from
individual datasets were used to classify the
associated Gene Ontology (GO) terms and their
associated pathways. Analysis of GSE36935 and
GSE44372 datasets revealed pathways and Gene
Ontology terms primarily associated with glycero-
lipid metabolism, T-cell receptor signalling pathway,
cytokine-cytokine receptor interaction, Jak-STAT
signalling pathway, chemokine signalling pathway,
pyruvate metabolism, adipo-cytokine signalling
pathway, beta cell receptor signalling pathway, and
glyoxylate and di-carboxylate metabolism. The
complete list of pathways and associated terms
are given in (Supplementary Table ST-5, ST-6).
Meta -analysis of microarray datasets

The meta-gene expression signature
containing the list of top 20 up and down regulated
genes from the meta-analysis of GSE36935 and
GSE44372 datasets are shown in Figure 1 (c). &
Figure 1 (d). The statistically significant list of DE

Table 1. Characteristics of selected the data sets

GEO Size Source Platform
Accession No. (Case:

Control)

GSE36935 3:2 Adipose tissue from the mesenteric Affymetrix Rat Genome 230 2.0 Array
surrounding the pancreas (pMES)

GSE44372 3:3 Visceral pancreatic white adipose tissue Affymetrix Rat Genome 230 2.0 Array
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Table 2. Top 20 dysregulated genes identified in meta-analysis (ranked by combined-rank product RP)

Probeid Symbol Genename gene. Combined FC(class1 Pf P P.
index RP /class2) value

Up-regulated genes
1398276_at Dlg2 discs, large homolog 2 (Drosophila) 30162 11.9826 0.2369 <0.05 <0.05
1371293_at LOC688228 similar to Myosin light polypeptide 4 3842 17.1205 0.2796 <0.05 <0.05

(Myosin light chain 1, atrial isoform)
1386936_at Grifin galectin-related inter-fiber protein 19004 22.4893 0.2997 <0.05 <0.05
1367660_at Fabp3 fatty acid binding protein 3, 209 26.0948 0.3201 <0.05 <0.05

muscle and heart
1371895_at Krt14 keratin 14 4444 34.2286 0.3437 <0.05 <0.05
1373684_at Klhl31 kelch-like 31 (Drosophila) 6233 53.5796 0.3737 <0.05 <0.05
1371959_at LOC690131 similar to H2A histone family 4508 62.9186 0.3948 <0.05 <0.05

, member O
1384487_at Dmrt2 doublesex and mab-3 related 17022 80.2733 0.4082 <0.05 <0.05

transcription factor 2
1370568_at Adra2c adrenergic, alpha-2C-, receptor 3117 82.2757 0.4256 <0.05 <0.05
1383599_at Rbbp4 retinoblastoma binding protein 4 16146 89.9704 0.3763 <0.05 <0.05
1375303_at Ldb3 LIM domain binding 3 7852 93.4723 0.4477 <0.05 <0.05
1370026_at Cryab crystallin, alpha B 2575 110.7841 0.4244 <0.05 <0.05
1387748_at Lep leptin 19816 111.0101 0.4096 <0.05 <0.05
1377163_at Inhbb inhibin beta-B 9712 121.0292 0.4849 <0.05 <0.05
1368618_at Grb14 growth factor receptor 1167 128.8616 0.4744 <0.05 <0.05

bound protein 14
1384147_at Eif1a eukaryotic translation 16690 144.04 0.473 <0.05 <0.05

initiation factor 1A
1383624_at RGD1565033 similar to hypothetical protein 16171 149.4794 0.4906 <0.05 <0.05

LOC284018 isoform b
1389809_at Pmepa1 prostate transmembrane protein, 21877 159.4288 0.5105 <0.05 <0.05

androgen induced 1
1368406_at Star steroidogenic acute 955 159.7914 0.488 <0.05 <0.05

regulatory protein
1368290_at Cyr61 cysteine-rich, angiogenic 839 161.2961 0.4154 <0.05 <0.05

inducer, 61
Down-regulated genes

1387273_at Il1rl1 interleukin 1 receptor-like 1 19341 29.4087 5.7452 <0.05 <0.05
1388272_at Igh-1a immunoglobulin heavy chain 1a 20340 33.1987 11.309 <0.05 <0.05

(serum IgG2a)
1387319_at Ccl11 chemokine (C-C motif) ligand 11 19387 39.794 4.192 <0.05 <0.05
1368610_at Mca32 mast cell antigen 32 1159 48.9714 3.8767 <0.05 <0.05
1398390_at Cxcl13 chemokine (C-X-C motif) ligand 13 30276 79.0808 4.4979 <0.05 <0.05
1385682_at Vit vitrin 18214 99.6759 2.8679 <0.05 <0.05
1393347_at Itgal integrin, alpha L 25414 119.7804 2.7871 <0.05 <0.05
1387053_at Fmo1 flavin containing monooxygenase 1 19121 128.4255 2.7585 <0.05 <0.05
1386869_at Actg2 actin, gamma 2, smooth 18937 131.0052 3.0089 <0.05 <0.05

muscle, enteric
1368420_at Cp ceruloplasmin 969 132.172 2.7239 <0.05 <0.05
1387902_a_at RGD1562855 similar to Ig kappa chain 19970 134.5786 4.2169 <0.05 <0.05
1387073_at Snap25 synaptosomal-associated protein 25 19141 139.0631 2.5511 <0.05 <0.05
1387134_at Slfn3 schlafen 3 19202 140.6522 2.5917 <0.05 <0.05
1367785_at Cnn1 calponin 1, basic, smooth muscle 334 169.853 2.9184 <0.05 <0.05
1369664_at Avpr1a arginine vasopressin receptor 1A 2213 172.7489 2.3955 <0.05 <0.05
1367786_at Psmb8 proteasome (prosome, macropain) 335 180.4497 2.3452 <0.05 <0.05

subunit, beta type 8
(large multifunctional peptidase 7)

1387157_at Pmfbp1 polyamine modulated factor 1 19225 185.1379 2.664 <0.05 <0.05
binding protein 1

1367652_at Igfbp3 insulin-like growth 201 192.4172 2.4245 <0.05 <0.05
factor binding protein 3

1380063_at Ch25h cholesterol 25-hydroxylase 12610 205.1111 2.2745 <0.05 <0.05
1394401_at Elovl6 ELOVL family member 6, elongation 26287 207.6419 2.5183 <0.05 <0.05

of long chain fatty acids (yeast)
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genes are given in (Supplementary Table ST-3 and
ST-4). The meta-gene expression signature were
subsequently used for integrated pathway
enrichment analysis. The completed list of enriched
Gene Ontology (GO) and REACTOME pathways
identified is given in (Supplementary Table ST-7)
Integrated Pathway Enrichment Analysis

A comprehensive list of enriched
pathways that were identified in the meta-analysis
are shown in Table 2. It was not unexpected to find
few hits that were up-regulated and had functions
that overlapped with additional cellular pathways,
for at times relying on chance drives to increase
the obvious number of significant associations for
those study characteristics that have no real
relations with the study out comes. However, most
hits were found relevant and of particular note were
Discs large homolog 2 (Dlg2), Myosin, light chain
4 (Myl4) and Fatty acid binding protein 3 (Fabp3).
Dlg2 a membrane linked guanylate kinase restricted
to the post-synaptic density (PSD); had a key
function in the maintenance of the structure of
PSD by concentrating its components to the
membrane area.24. Myl4 gene encodes a myosin
alkali light chain in embryonic muscle and adult
atria. Two alternatively spliced transcript variants
have been found for this gene. In addition to the
role in heart muscle contraction, it is also found to
play a crucial role in regulation of ATPase activity.
The fabp3 also named mammary derived growth
inhibitor (MDGI) is primarily expressed in the heart
and also in the skeletal muscle, brain, kidney, lung,
stomach, testis, aorta, adrenal gland, mammary
gland, placenta, ovary, and brown adipose
tissue25.

Among the genes that were significantly
down regulated in the meta-gene expression
signature, Interleukin 1 receptor-like 1 (Il1rl1),
Synaptosomal-associated protein 25 (Snap25),
Chemokine (C-C motif) ligand 11 (Ccl11),
Chemokine (C-X-C motif) ligand 13 (Cxcl13), Flavin
containing monooxygenase 1 (Fmo1) were found
to be important. Interleukin-1 receptor-like 1 (Il1rl1)
has a negative regulation on cell proliferation. As
reported in a recent ingenuity pathway analysis
study on high-Feed Efficiency (FE) chickens,
Chemokine (C-C motif) receptor 2 (CCR2) and Il1rl1
were found highly expressed in infiltrating
macrophages and played a crucial role in muscle
regeneration 26. Snap25 polymorphisms were

Fig.1. (a) Differentially expressed genes (DEGs) in
GSE36935 (n=69), (b). DEGs in GSE44372 (n=118)
(c) Meta-gene expression signature heat map
constructed with the top 20 up regulated genes (n=20)
from GSE36935 and GSE44372. (d) Meta-gene
expression signature heat map constructed with the top
20 down regulated genes (n=20) from GSE36935 and
GSE44372

Fig. 2. Enriched gene pathways identified using ClueGO.
The network represents topmost enriched biological
processes that were predicted from the meta-gene
signatures from the meta-analysis. ClueGO software
was used to group the genes in to functional clusters.
(Kappa score=0.3) The nodes represent distinct
biological process. The genes associated with the node
are represented as dots. Same colour nodes and dots
belong to one functional group. Mixed colour belong to
multiple groups. Lines/edges represent interactions,
thicker the lines more significant the interaction. The
label of the most significant network term per group is
shown in colour
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associated with glycaemic parameters in type 2
diabetes patients indicating a likely role in the
pathogenesis of obesity induced T2DM 27.  Ccl11
had shown inflammatory role mainly interacting
with toll-like receptors in human and murine adipose
tissue28. In support of our findings, adipocytes
had dominantly enhanced Cxcl13 expression when
compared with pre-adipocytes. Chemokine (C-C
motif) ligand 6 (Ccl6) a rodent-specific chemokine
and Cxcl13 were found to be considerably amplified
in adipocytes29. However, the precise roles of Ccl6
and Cxcl13 in obesity have not been yet been
clarified. Beta cells from ob/ob mice have shown a
higher tendency to migrate to the liver over a Cxcl13
mediated signalling pathway30 indicating Cxcl13
may be associated with macrophage infiltration in
obesity, consequently to chronic inflammation29.
Fmo1 catalyses thiobenzamide S-oxidation and
commonly is identified as a main hepatic
microsomal enzyme but recently was found to play
a vital role in the mammalian brain31. The expression
and actions of Fmo1 may be influenced by
hyperosmotic settings in the kidney of rats 32

Fmo1is also highly expressed in metabolic tissues,
including liver, kidney, white and brown adipose
tissue and has an active role in mammalian
endogenous metabolism33.

CONCLUSIONS

A list of statistically significant meta-gene
expression signature have been identified from the
meta-analysis studies. Integrated pathway
enrichment analysis revealed significant pathways
involving Il1rl1, Snap25, Ccl11, Cxcl13 and Fmo1in
rat visceral white adipose tissues and marks a
possible macrophage infiltration and further
complement the dysregulated meta-gene
expression signatures role in obesity related
pathways as compared between obese and control
groups. Our results show meta-gene expression
signatures and their related networks that might
be associated in the pathogenesis of obesity
induced T2DM by providing insights that is
consistently observed at the transcriptomic level
across independent studies. However, further
investigation with more comprehensive and large
datasets are needed to draw better conclusions.
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