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Extracellular xylanase production by Thermomyces lanuginosus (NCIM-1374/
DSM 28966) could be enhanced using statistical tools of Response surface methodology.
Optimized process parameters (pH: 6.3; temperature: 52°C; fermentation time: 108 h;
substrate concentration: 1.8% wheat bran) were obtained using ANNOVA. Saccharification
process under optimized condition enhanced extracellular xylanase production from
10012 IU/L/min to 12060 IU/L/min. Experimental design showed high correlation between
predicted and experiment R-squared values, and analysis of variance had computed F-
value of 16.57 with a very low P-value indicating the statistical significance of the quadratic
model that can be used to navigate the design space with an adequate precision measure
and could optimize the process for high level xylanase production. Thermomyces
lanuginosus NCIM1374/ DSM 28966 is an indigenous strain isolated in our laboratory
and its xylanase has unique capacity of hydrolyzing xylan to xylose. In the present study
we were able to enhance extracellular production of this swift and differently acting
enzyme.

Keywords: Thermomyces lanuginosus, xylanase, Response surface methodology,
Quadratic model, Box- Behnken Design.

Hydrolysis of xylan (hemicellulose,
second most abundant polymer in plant cell wall)
is majorly catalyzed by xylanases followed by
several other xylanolytic enzymes that includes â-
d-xylosidase and a variety of debranching enzymes
i.e. á-l-arabinofuranosidases, á-glucuronidases,
acetyl esterases etc. 1-5. Xylanase are produced by
wide range of bacteria6-8, fungi9, 10, actinomycetes
and yeast11-13, among these fungi are significantly
higher producers14 and non cellulytic fungi, found
in self heating masses of organic debris are major
contributors. T. lanuginosus is one such non
cellulytic fungi reported to produce cellulase free
xylanases15, 16.

Xylanases find potential application in
pulp and paper industries, baking industries, food
and feed, breweries etc.17-20 and are produced at
large scale by submerged and solid state
fermentation21. In order to reduce cost of
production, agricultural wastes rich in xylan (wheat
bran, corn cob, sugarcane Bagasse etc) are utilized
as substrates17, 22-23 and all these processes are
optimized by generic or computed statistical tool
at laboratory scale. Response surface methodology
is a statistical technique collectively used for
designing experiments, plotting graphs and finally
it also helps to evaluate the effect of various
factors in the experiments and defines an optimal
condition.

In the present report we have described
optimization of process parameter for xylanase
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production using sugarcane bagasse as substrate,
by statistical analysis based on Box- Behnken
Design of Design Expert Software by Response
Surface Methodology24, 25.

MATERIALS   AND  METHODS

Microorganism and fermentation conditions
Thermomyces lanuginosus (NCIM 1374/

DSM 28966) strain was isolated in our laboratory
from soil sample containing plant wreckage material
and maintained by growing on YPSs (yeast
phosphate soluble starch agar) slants, incubated
at 50°C for 5 days26. One milliliter of conidial
suspension (105 conidia ml-1) grown on Potato
Dextrose Broth for 96 h were used as pre-inoculum
of 100 ml production medium (1.5% Yeast extract
and 0.5% KH

2
PO

4, 
 pH 6.5, 1.5% wheat bran) in 500

ml Erlenmeyer flasks27, 28. After saccharification
process (varied time period based on experiment
designed by Design Expert Software; with pH
range 5.5-7.5; temperature 40°C- 60°C; fermentation
time 72h to 148 h; substrate concentration (wheat
bran) 5 gL-1 to 25 gL-1) extracellular extract were
used as enzyme samples for analysis. Samples were
analyzed in triplicates and mean value taken.
Enzyme activity was calculated by estimation of
reducing sugar based on Dinitro-salicylic assay
method29 and one unit of enzyme activity was
defined as millimoles of substrate hydrolyzed or
product formed  by reaction as specified
temperature and pH condition in one minute of
reaction.
Optimization of physicochemical parameters by
response surface methodology

Four factor, three level Box-Benhken
design was employed to investigate statistically
the main and interactive effects of the four process
variables selected for the study on production of
xylanase. After investigation of 4 different variables
ie, pH values (A), temperature (B), fermentation
time (C) and substrate concentration (D), the
nonlinear quadratic model30 is given as equation:

 

...(1)
In the above equation, Y, k, â
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and X
i
 are predicted response, number of factor

variables, model constant, linear coefficient,
quadratic coefficient, interaction co-efficient and

factor variables in coded form respectively. The
respective high low levels with coded levels in
parentheses for variables corresponding to 5.5 (-
1) and 7.5 (+1) for pH, 40°C (-1) and 60°C (+1) for
temperature, 72 h (-1) and 168 h (+1) for incubation
time and 0.5% (-1) and 2.5% (+1) for substrate
concentration were used to design a total of 29
experiments with five replicates at the center point
which allows estimation of a pure error sum of
squares using Design Expert v7.0.3 (Stat-Ease, Inc.,
Minneapolis, USA) software. The response value
in each trial was an average of triplicate runs.

RESULTS

Experimental design and its significance
Coefficient of variation (R2= 0.9431) of the

designed experiment indicated high correlation
between experimentally observed and predicted
values. The values of the predicted R2 (0.7027) and
the adjusted R2 (0.8862) were within 0.20 of each
other indicating a reasonable agreement between
the experimental and predicted values of the
xylanase activity and suggests the accuracy of
model designed. Lack of fit was not significant
indicating the model is fit for prediction and
statistical significance of this model is given by
the equations (Eq. 2) for coded factors.  Predicted

Fig. 1. Highly significant quadratic model for
optimization of extracellular xylanase production by
Thermomyces lanuginosus NCIM 1374/ DSM 28966
(A: pH value of medium; B: Temperature; C:
Fermentation time; D: Substrate concentration)
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response Y for high xylanase activity was obtained
by the following second-order polynomial
equation:

EA = 11.18 -1.18A + 0.41B + 0.19C -
0.18D - 0.28AB - 1.46AC + 0.54AD - 0.20BC +
0.35BD - 0.46CD -3.71A2 -5.68B2 - 3.49C2 - 3.28D2

(Eq. 2)
Where, EA, A, B, C and D

 
are enzyme

activity, pH, temperature, incubation time and media
component respectively. ANOVA of quadratic
regression model demonstrated that a computed
F-value (16.57) and a very low P-value (0.0001;
less than 0.05) showed significance of quadratic
regression and model terms (A, AC, A2, B2, C2, and
D2) respectively. The quadratic model designed
could navigate the space with an adequate
precision measure of 12.47.
Optimized process parameters

Maximal extracellular xylanase produced
after optimization using single variable alterations
was 10012 IU/L/min23. Xylanase production and
its activity were affected by various parameters
that are evident from the Contour plot given as
Fig. 1. By taking statistical approach for getting
optimized process parameters for enhanced
xylanase production, total extracellular xylanase
production was enhanced to 12060 IU/L/min.
Optimized process parameters were pH: 6.3;
temperature: 52°C; fermentation time: 108 h with
1.8% wheat bran as substrate.

DISCUSSION

Optimizing different set of parameters for
any process using statistical tool is in high
application since past few years and gives very
promising results for the same 31-37. In the present
study a significant experimental design for
establishing a standard protocol for enhanced
extracellular xylanase expression was obtained and
this result was comparable and in some cases better
than other reports 38-43. Temperature optimum for
xylanase production by T. lanuginosus NCIM 1374/
DSM 28966 was analogous to those from other
Thermomyces strains44, 45, whereas fermentation
time for the same was reduced comparatively.
Xylanase from T. lanuginosus has been reported
earlier for its novel mode of action17, 23, results from
the present study has helped to enhance
extracellular xylanase production from 10012 to

12060 IU/L/min in reduced time and at decreased
temperature. This stands beneficial as compared
to various other studied microorganisms46-49 and
gives a broader commercial applicability to the
xylanase under study at our laboratory. There are
several studies reporting on various new aspects
of enzyme engineering, modeling, novel platform
technologies, and microbial interactions through
systems biology which could be a better option
for exploring the functionality of industrial
enzymes50-56. Moreover, the future of industrial
enzymes lies on few low temperature labile
enzymes, functional proteomics and functional
aspects of xylanases57-59. Nevertheless such
technologies will improve the yield and
productivity of any industrial enzymes.
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