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Abstract

Bacterial Extracellular vesicles or BEVs are infinitesimal bi-layered lipid vesicles secreted from non-
pathogenic and pathogenic bacteria to be used as a targeted drug-delivering system (DDS). Our study
compared the biophysical and molecular characteristics of OMVs isolated from E. coli BL21 (DE3)
transformed with the plasmid pET28a-His6-Signal Anchoring Green Fluorescent Protein (SAGFP) grown
in Luria-Bertani and M9 minimal media to select the best medium for the growth of engineered bacterial
OMVs. Isolation of BEVs using the ultracentrifugation method yielded bacterial vesicles with smaller
mean sizes and excellent recovery of vesicle morphology. The evaluation of the size distribution profile
of BEVs using the Dynamic light-scattering technique assessed for vesicle size with particle aggregation
ranging from 20-750 nm. 3D interactive surface plots and particle size-distribution analyses of BEVs
obtained from their HR-TEM results depicted slight morphological dissimilarities. Investigation on SAGFP
cargo sort into vesicles using fluorescence spectrophotometry, and fluorescent microscopy solidates
the expression of SAGFP in OMVs isolated from transformed bacterial culture when the expression
was induced with 10 mM Isopropyl-D-1-thiogalactopyranoside (IPTG) at OD_ = 0.6 in both media.
Isolation of engineered BEVs (eBEVs) grown in LB media had higher vesicle yield and good particle
recovery that could be directly incorporated into targeted therapeutics. However, BEVs grown in minimal
media had good particle purity with increased protein concentration but yielded vesicles with lower
particle recovery. This comparative investigation should help analyze the efficacy and characteristics
of engineered BEVs grown in two different media and provide a robust and straightforward method
to engineer BEVs. These engineered BEVs could be utilized as both fluorescent probes and a drug-
delivering vehicle in targeted therapeutics.
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INTRODUCTION

Extracellular vesicles are delicate
nanoscopic biomolecules with the ability to
transport the cellular contents between two
neighboring cells.* The soluble products like lipo
glycans, short-chain fatty acids (metabolites),
nucleic acids, quorum-sensing peptides, proteins,
and extracellular vesicles (membrane vesicles)
secreted from bacteria help the bacterial cells to
interact with the host and the other bacterium.>®
Both non-pathogenic and pathogenic bacteria
release spherically enveloped membranous
vesicles of diameter 20 to 400 nm that carry and
circulate the cellular cargo of parental bacterium
inside the extracellular-microenvironment.”® The
biochemical and proteomic evaluation revealed
that BEVs are packed with a diverse cargo of
peptidoglycan, nucleic acids, periplasmic proteins,
polysaccharides, enzymes, and toxins.®° The origin
and formation of bacterial extracellular vesicles
follow various routes, resulting in distinctive BEV
subcategories, with each having unique molecular
cargo patterning and biological function.®

The formation of vesicles from Gram-
negative bacteria includes two major biogenetic
pathways.'! The first pathway forms the OMVs,
and the blebbing of the outer membrane surface
of the bacterium occurs. The second pathway
engenders the formation of explosive outer
membrane vesicles and outer inner membrane
vesicles (EOMVs and OIMVs) during explosive-cell
lysis.’?*> The Gram-negative bacterial cell wall
comprises a thin layer of murein (peptidoglycan)
-a polymer-like lattice made of amino acids and
sugars present in the periplasmic region; in
between the outer and inner membrane bilayers.
The outer leaflet on the outer membrane region
of Gram-negative bacteria consists of endotoxins,
also known as lipopolysaccharides. Likewise, the
outer membrane also has porin ion channels and
several membrane-bound proteins that actuate
non-vesicle-mediated communications.?®*® The
process of outer membrane blebbing leading to
the formation of OMVs in the first biogenetic
pathway occurs due to the disassociation of
crosslinks connecting the peptidoglycan layer
and the outer membrane region. The outer
membrane of the Gram-negative bacterial
extracellular vesicle is also composed of an inner

leaflet of phosphatides (phospholipids).'”!® Of
note, the presence of outer and inner leaflets
of lipopolysaccharide and phospholipids in the
outer membrane of Gram-negative extracellular
vesicles is notable for engaging Toll-like-receptor
4 (TLR4).Y The Gram-negative BEV is refined
with specific outer membrane proteins like outer
membrane porin A (ompA) and other Braun’s
lipoproteins (BLP) such as ompC, ompD, phok,
and ompF. Likewise, the periplasmic proteins like
AcrA and alkaline phosphatase; virulence factors
like invasins and adhesins are also present in the
Gram-negative BEVs.?0%

The Gram-negative BEVs are highly
competitive because of their ability to effortlessly
fuse with the hosts’ cellular membrane, their
non-immunogenic transportation or delivery, and
their propensity to outmaneuver lysosomes and
evade phagocytosis.?®?” Extracellular vesicles are
considered the most idealized drug-delivering
system due to their applications in targeted
therapeutics, diagnosis, and prognosis of various
disorders.?”?° The nanosized particles released
from bacteria are highly biocompatible, efficient,
and less toxic by nature, and as a result, they have
been utilized for several therapeutic strategies.>®3*
Extracellular vesicles have shown significant
potential as novel prospects for intracellular
transportation of various therapeutic cargo,
including large proteins, RNA, and small synthetic
biomolecules.?* To contemplate the use of BEVs in
targeted drug delivery and theranostics, we have
to be mindful of the molecular and biophysical
attributes of bacterial extracellular vesicles.*** The
characteristic features of these vesicles, including
their topology, morphology, size and uniformity,
vesicle purity, storage conditions, efficacy, and the
method of particle delivery into the targeted cells
with an advancement in the medicinal potential of
these vesicles play a pivotal role in targeting and
engineering BEVs for theranostic purpose.¥4° BEVs
can be programmed to alter their cargo sort with
the desired molecule of interest.* Significantly, the
modification of BEVs with protein cargo is usually
achieved by engineering the cell with a plasmid
that encodes and overexpresses the protein of
interest fused to a membrane or intraluminal
protein naturally sorted into BEVs during their
process of biogenesis.*
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Approaches for the artificial loading of
cargo into extracellular vesicles have evolved and
developed in recent times. Techniques like cargo-
incubation; transfection-mediated overexpression
of molecules of interest, cargo-loading chaperons;
and physical treatments including sonication,
electroporation, extrusion, dialysis, freeze-thaw,
and treatment of surfactants have been taken into
the picture to promote cargo-loading efficiency into
EVs.*** The emergence of techniques to engineer
extracellular vesicles for targeted delivery includes
Receptor-ligand binding-based delivery, pH
gradient-driven targeted delivery, and magnetism-
based targeted delivery.*®° In transfection-
mediated loading of cargos, the emergence of
a new strategy known as targeted and modular
EV-loading (TAMEL) promoted the sorting of cargos
into EV by enhancing the expression of cargo-
binding molecules via transfection.* Unlike cargo
incubation, the sonication-based cargo loading
technique enabled the cargo’s loading capacity,
including nanomaterials, proteins, and drugs.*>?
Also, the sonication method efficiently loaded gold
nanoparticles into EVs when compared with other
techniques.

Similarly, the extrusion-based cargo
loading method actuates the genesis of exosome-
mimetic nanovesicles (EMNVs).> Despite its cargo
loading potentiality, the sonication approach is not
applicable for the large-scale production of cargo-
engineered EVs due to its tendency to weaken and
damage the integrity of the vesicular membrane.*
Other techniques like electroporation and freeze-
thaw treatment also have drawbacks like poor
cargo loading capacity and an evident clustering
of cargo sort.>* Recent approaches like cellular
nanoporation biochip, RGE-Exo-SPION/Cur,
lipHA-hEVs, exosome conjugated biomimetic
porous-silicon nanoparticles (PSiNPs), and TEV-
GIONs have also been developed to engineer
extracellular vesicles for targeted DDS.** Though
there are various techniques available and many
more are under development, the transformation
of recombinant protein into the parental cell
is the most robust, typical, direct, and feasible
technique available for engineering bacterial
extracellular vesicles, as the recombinant protein
gets naturally sorted into BEVs during the
process of biogenesis. Hence, the drug-delivering

capability of extracellular vesicles has drawn
increasing attention in EV science and has been
considered the most promising medicament
strategy in targeting and treating various disorders,
including cancer.

In our current study, we compared the
molecular and biophysical characteristics of SAGFP
cargo-loaded eBEVs (by transforming the plasmid
pET28a-His6-SAGFP into the parental cell) grown
in LB and minimal media to select an optimal
medium for eBEVs genesis. The vesicles secreted
from the bacterial culture grown in both mediums
were isolated and evaluated for their total yield
and proteome. Our study provided the most
straightforward method to engineer BEVs and
provide insights into the influence of the culture
medium on eBEVs biogenesis.

MATERIALS AND METHODS

Bacterial cell culture and recombinant protein
expression
Inoculum

15 uL of the bacterial stock (E. coli BL21
(DE3) transformed with pET28a-His6-SAGFP) was
pre-inoculated into 15 ml LB medium (Himedia®
India) (5.0 g/L Yeast extract, 10.0 g/L Tryptone,
and 5.0 g/L sodium chloride, pH 7.2) and Minimal
Broth, (Himedia® India) (1.0 g/L Dextrose, 1.0 g/L
(NH,),SO,, 7.0 g/L Dipotassium phosphate, 2.0 g/L
Monopotassium phosphate, 0.50 g/L Na,C.H.O,
and 0.10 g/L MgSO,, pH 7.2) with each medium
enriched with 50 pg/mL kanamycin, incubated at
37 °Cfor 16 hours and 1 g in a shaking incubator
(ORBITEK® LT, Seigenics Biotech).

Bacterial growth

After 16 hours of incubation, 1 mL from
the saturated inoculum was transferred into 100
mL LB and Minimal medium, each enriched with 50
pg/mL kanamycin, in 200 mL flasks, incubated at
37 °Cin an orbital shaker at 3 g. Cells were grown
until they reached the OD value of 0.6 to induce
IPTG for the recombinant protein expression.

IPTG induction

10 mM of IPTG was induced to the
transformed bacterial culture when the absorbance
measurements at 600 nm reached the OD value of
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0.6 in both LB and Minimal media. After induction
with IPTG, the cells were incubated at 28 °C and
3 g for 8 hours for better recombinant protein
expression.

Isolation of BEVs

After expressing the recombinant protein,
the bacterial extracellular vesicles were isolated
using the ultracentrifugation (UC) method. The
recombinant culture grown in two different media
was pre-processed using the serial-centrifugation
technique to remove the bacterial cells and other
cellular debris. The UC of the bacterial samples was
achieved with a TLA-55 fixed angle (45°) rotor of
Beckman-Coulter-Optima MAX-XP (California, USA)
by spinning the cells at a minimal centrifugal force
of 300 g and slowly increasing the force to 2000
g and 10,000 g, thereby pelleting and eliminating
the cellular debris.*® The supernatant separated
at this phase is subjected to ultracentrifugation
at 1,00,000 g for 2 hours at 4 °C. The extracellular
vesicles containing the pellet formed after the
first UC spin was washed with 1X-PBS and again
ultracentrifuged at 1,00,000 g for 2 hours at 4 °C.
After the second spin, the pellet formed at the
bottom of the tube was resuspended in 50 ul of
nuclease-free water (NFW) and stored at -80 °C
for characterization studies.

Quantification of BEV yield and proteome

The yield and total proteomic content
of extracellular vesicles were quantified using
Bradford’s reagent (Himedia® India). The
guantification of total proteomic content was
performed by lysing the EVs using RIPA lysis buffer
(50 MM Tris-HCL, 150 mM Sodium Chloride, 1 mM
EDTA, 1% sodium deoxycholate, 1% NP-40 (nonyl
phenoxypolyethoxylethanol-40), 0.01% sodium
azide, 0.1% SDS) at 95 °C for 10 minutes.*’ Similarly,
the surface protein content of BEVs was quantified
without lysing the vesicles. Both digested and
undigested EVs were treated with Bradford reagent
(the color change was observed from brown to
blue). The absorbance was measured at 595 nmiin
a UV visible Spectrophotometer (GENESYS 180 UV-
Vis Spectrophotometer, Thermo Scientific™). The
experimentations were performed in triplicates
(n=3), and the data was examined using OriginLab
Pro and ImageJ software.

Characterization of BEVs
Dynamic Light scattering (DLS)-Particle size
distribution analyzer

The particle size of BEVs was determined
using the DLS-Particle size analyzer. Dynamic light
scattering measurements of engineered BEVs were
performed using an SZ-100 Nano Particle Analyzer
(Horiba Scientific, Minami-Ku Kyoto, Japan)
equipped with a solid-state green laser, functioning
at a particular angle of 173 °C. The measurement
of particle diameter in the SZ-100 Nano Particle
Analyzer ranges from 0.3 nm to 8.0 um. For particle
size distribution analysis, the BEVs were diluted
1:10 times with NFW and vortexed for 5 minutes
to achieve a uniform, individual BEV distribution
and avoid extracellular particle aggregates. 1 ml
from the diluted working stock was loaded onto
the solvent-resistant micro cuvettes for analyzing
the particle size.

High-Resolution Transmission Electron
Microscopy (HRTEM)

The BEVs were imaged using JEM-
2100Plus Electron Microscope (Jeol TEM-2100
plus, Tokyo, Japan). The EVs were imaged with
a magnification scale of 20 nm to 1 um with an
electromotive force or voltage applied at 220
kV (kilovolts). For visualizing the vesicles under
HRTEM, the BEVs were diluted 1:10 times. 5 pl of
the diluted sample from the working stock was
loaded onto a carbon-supported copper grid (size
200 mesh). The copper grid was incubated at 37 °C
for 18 hours before imaging it under HRTEM. No
negative staining reagents or fixatives were added
to the grid while preparing the BEV samples.

Image analysis of BEVs obtained from HRTEM
3D interactive surface mapping of
BEVs was generated from the images acquired
from HRTEM. The 3D-surface analysis of BEVs
was utilized to create particle-size distribution
(PSD) plots for determining the size variation,
distribution, and particle morphology of BEVs.,
The BEV images were constructed using Image)
software to rebuild the images acquired from
HRTEM for analyzing the PSD by measuring
their scale and adjusting their threshold values.
The surface area of each vesicle was analyzed
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by measuring their Feret diameter, and surface-
volume mean diameter (Sauter mean diameter)
with optimal binning and normalized parameters
(binning provides an ideal histogram bin width in
Image) software). The 3D-surface mapping of BEVs
was designed by using the interactive 3D-surface
plots plugin in Imagel software. Optimizing the
z =xy ratio, surface maxima, and surface minima is
essential while constructing an interactive surface
plot for BEVs. Nevertheless, other criteria like grid
size, Z-scale, smoothing, and perspective angle
should be considered while creating accurate 3D
mapping BEVs. The grid size was calibrated to
512 nm square area, while the surface maxima
and surface minima were optimized to 100%
and 0%, respectively. The Z-scale value of 0.20
with a perspective angle of 0.28° and an optimal
smoothing score of 8.0 is likely to differentiate

between individual BEVs and noise.
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0.5

Concentration of BEV proteins (ug/pl)

SDS-PAGE

The BEV samples were treated with 1X
RIPA buffer (ice cold) and thoroughly agitated for
5 minutes. The protein precipitation of lysed BEVs
was performed by adding acetone (ice cold) and
incubating for 1 hour at -20 °C. The samples were
centrifuged at 13,000 g for 30 minutes at 4 °C.
The pellet formed at this stage was resuspended
with 20 ul of 1x loading dye (Laemmli’s buffer)
and loaded onto the SDS-PAGE wells. The SDS-
PAGE was performed with 5% stacking gel and
10% separating gel at 150 V. [(10% separating gel:
30% Acrylamide mix, 1.5 M Tris (pH 8.8), 10% SDS,
10% APS (ammonium-persulphate), TEMED); (5%
stacking gel: 30% Acrylamide mix, 1.0 M Tris (pH
6.8), 10% SDS, 10% APS, TEMED)]. The gel was
stained with a staining solution with Coomassie
dye (Coomassie-brilliant blue R-250 (Himedia®
India)) to visualize the proteomic profile of BEVs.

3.652

0.836

Types of BEV growth medium

Figure 1. Bar-graph representing the protein concentration of BEVs obtained from native and recombinant E. coli
strains. The blue bar represents the concentration of the membrane proteins, and the red bar represents the
concentration of total BEV protein content (lysed with RIPA), respectively. i) Native BEVs, ii) Uninduced recombinant
BEVs cultivated in LB medium, iii) Induced recombinant BEVs cultivated in LB medium iv) Uninduced recombinant
BEVs cultivated in minimal medium, v) Induced recombinant BEVs cultivated in minimal mediu
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Fluorescence measurement of SAGFP-Engineered
BEVs

The measurement of fluorescence
in eBEVs was performed using a Fluorescence
spectrophotometer F-7000 (Hitachi High-Tech
GLOBAL, Japan), with a measuring wavelength of
200-750 nm and a self-deozonating 150 W xenon
lamp source. The minimal sample loading volume
of the Fluorescence spectrophotometer F-7000 is
600 pl (0.6 ml). The recombinant GFP is a fusion
protein expressed of Signal anchor from the OM
45 and the GFP with a His-Tag in E. coli. The EVs
isolated from bacteria expressing recombinant
SAGFP were measured for fluorescent intensity to
ensure the SAGFP cargo was sorted into BEVs. Two
methods were used to measure fluorescence in
engineered BEVs: (i) Measurement of fluorescent
intensity on the vesicular surface/lipid membrane
surface; and (ii) Measurement of fluorescent
intensity of total BEV by lysing them using Triton
X-100. The BEVs are treated with 0.1% Triton

X-100 (pH-7.4) at room temperature for 30
minutes. Lysed and unlysed BEVs were diluted
1:10 times, and 1 ml from the diluted working
stock was loaded onto the cuvette for fluorescence
measurement. The BEVs were exited at 488 nm,
and the emission of fluorescence was detected at
510 nm.

RESULTS

Quantification of BEV proteome and BEV yield

Quantification of BEVs using Bradford’s
protein assay is one of the indirect approaches
used for protein quantification. However, the
BCA method’s protein analysis had the most
reliable connection with the NTA’s particle count
evaluation across various vesicle concentrations.
Thus, the estimation of proteins using the BCA
method and their comparison with the vesicle
count can help us understand the influence of the
bacterial culture medium.
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Figure 2. Particle size distribution analysis of EVs isolated from the bacterial culture grown in LB and minimal
medium. The Dynamic light scattering technique revealed the particle size of the extracellular vesicle isolated
from each bacterial culture. (a) Native BEVs, (b) Uninduced recombinant BEVs cultivated in LB medium, (c) Induced
recombinant BEVs cultivated in LB medium (d) Uninduced recombinant BEVs cultivated in minimal medium, (e)

Induced recombinant BEVs cultivated in minimal medium
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iv

Figure 3(a). High-resolution transmission electron microscopy of BEVs. (i) Native BEVs, (ii) Uninduced recombinant
BEVs cultivated in LB medium, (iii) Induced recombinant BEVs cultivated in LB medium (iv) Uninduced recombinant
BEVs cultivated in minimal medium, (v) Induced recombinant BEVs cultivated in minimal medium. The images
obtained from HRTEM represents a resolution of 100 nm ((i), (ii), (iii), (v)), and image (iv) represents 20 nm

Figure 3(b). The HRTEM image of the vesicles formed
inside Escherichia coli. Recombinant Escherichia coli
cultivated in LB medium. The image represents the
formation of late endosomes and intraluminal vesicles
inside the bacterial cell with a resolution of 200 nm

The graphical representation of BEV
protein quantification is depicted in Figure 1.

Characterization of BEVs
Particle size distribution analyzer- Dynamic light
scattering

The morphology and size of BEVs were
assessed using this technique. The evaluation of
particle size distribution using the DLS technique
is represented in Figure 2. BEV preparations are
heterogeneous and consist of various types of
vesicles with differing compositions. Research on
the specific mechanisms that selectively package
these proteins and various types of cargo in
vesicles is a challenging yet active area of study.
The results indicate the presence of EVs in different
sizes. The separation of extracellular vesicles (EVs)
of similar sizes will make it easier to figure out how
cargo is sorted in complex EV mixtures. The DLS
analysis of BEV samples was performed with three
independent biological replicates. The results of
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the three separate data were represented as the
X * 0 (mean * standard deviation). The differences
and the P-value of the data were determined using
the Origin Lab software.

The DLS analysis of BEV samples manifests
a bimodal distribution of particles. In Figure 2,
sample number (a-d) shows the size ranging
between 20-400 nm defines BEVs, and another

measure of 0-700 nm (Figure 2), sample number
(e) might explain the particle aggregates of the
vesicles. Large particles at very low concentrations
(lower as 0.5% of all the particles) tend to modify
the intensity-weighted PSD because they scatter
brighter light,*® and lead to the false magnification
of the number of large particles in a dynamic light
scattering setting. Hence, the results obtained

Figure 4(a). High-resolution 3D interactive surface plots for BEVs. I. Morphology plots, Il. Thermal plots and III.
Distribution plots were shown in the figure. i) Native BEVs, ii) Uninduced recombinant BEVs cultivated in LB medium,
iii) Induced recombinant BEVs cultivated in LB medium, iv) Uninduced recombinant BEVs cultivated in minimal
medium, and v) Induced recombinant BEVs cultivated in minimal medium
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from DLS should be checked, calibrated, and
modified with other techniques like TEM.

High-Resolution Transmission Electron
Microscopy (HRTEM)

The HRTEM images were further
analyzed to compare and study the morphological
characteristics of each engineered BEV by
identifying their PSD. The EVs isolated from
native and recombinant E. coli strains showed
distinct morphological characteristics for each
case with a slight difference in the particle size.
The IPTG-induced recombinant BEVs cultivated
in the LB medium showed unique morphology
compared with other samples. The HRTEM images
of EVs isolated from both native and recombinant
bacteria grown at different culturing mediums are
shown in Figure 3 (a). The formation of vesicles
inside Escherichia coli is depicted in Figure 3 (b).

i) i)

e
ek ¥ 24
wog 0t

HRTEM image of BEVs isolated
from E-coli BL21 (DE3)

3D interactive surface plots for BEVs

Analysis of BEV images obtained from HRTEM
3D interactive surface plots for morphology
studies

The interactive surface mapping sub-tool
parameters in Imagel software were optimized
to plot the high-resolution surface plots for BEV
images obtained from HRTEM. The surface plots,
including morphology plots, thermal plots, and
distribution plots of BEVs, were plotted and
depicted in Figure 4 (a). Bex V-HRTEM images’
analyses for morphological studies resulted in a
contrastive morphology of vesicles isolated from
recombinant E. coli culture cultivated in two
different growth environments.

The physical attributes and 3-dimensional
morphology of BEVs were studied by plotting
the topology maps for extracellular vesicles. The
distribution mapping of BEVs represented a clear
image of vesicles’ distribution and dispersion

ii)

“ 4 BEVs_NATIVE
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BEVS_LB_Induced 147.90 49.67
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M of particle ize and dard deviation of BEVs

Figure 4(b). Pictorial Representation of Particle Size Distribution Analysis of images obtained from HRTEM. i) HRTEM
image of Extracellular vesicles isolated from the bacteria E. coli BL21 (DE3). ii) 3D interactive surface plots (thermal
mapping) of BEVs to differentiate between noise and bacterial vesicles. iii) Cumulative particle size-frequency
distribution of each bacterial extracellular vesicle. iv) Calculation of Particle-mean size and Standard deviation of
BEVs. The standard deviation measures the spread of the area distributed under the curve. An increase in standard
deviation shows the increase of particle mean size of BEVs. In our investigation, BEVs formed in LB medium induced
with 10 mM ITPG had the highest particle mean size of 147.90 nm with a standard deviation of 49.67. The highest
particle mean size may be due to the unique morphology of vesicles released from bacteria with increased surface
area and diameter. The study of vesicle morphology using HRTEM was performed in triplicates, and the mean PSD
was calculated by averaging the biological triplicates
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pattern, accurately differentiating the distribution
pattern of small and large vesicles. During the
transmission of an image, it is most common
to acquire a random variation of brightness, an
undesirable by-product that overshadows or
obscures the original information. The thermal
plots were plotted to differentiate between
background noise and actual BEVs for PSD analysis.
The thermal graphs depicting BEVs’ thermal peaks
were considered true vesicles and were utilized for
statistical analysis.

Particle size distribution analysis

HRTEM images of BEVs provided accurate
information regarding the vesicle’s morphology
and size. Based on the images obtained from
HRTEM, the surface volume-mean diameter or
SMD (Sauter mean diameter) for each bacterial
vesicle was calculated. The area and diameter
of each vesicle released from the bacteria were
measured using Imagel, and the Particle Size-
frequency Distribution and Normal Distribution
curves were plotted using Origin Lab. The
parameters like particle mean size and standard
deviation of each vesicle were recorded. The
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calculation of particle size and standard deviation
for each bacterial extracellular vesicle is shown in
Figure 4 (b).

Particle Size-frequency Distribution and Normal
Distribution curves for individual BEV samples

Normal distribution curves for particle
size were plotted for native and recombinant
bacterial extracellular vesicles grown in two
different media. The critical parameters of BEVs
were analyzed depending on the SD (standard
deviation) of the area beneath the curve. The
curves for BEVs were not evenly distributed, with
each sample having a different curve range. This
uneven distribution is due to the variation of
particles distributed in each HRTEM image. Based
on the distribution curves for particle size, it was
observed that a maximum amount of EVs was
secreted between the range of 50-150 nm. The
graphical representation of particle size-frequency
distribution and normal distribution curves are
shown in Figure 4 (c).

The frequency distribution of vesicles
indicates the percentage of the number of particles
existing in the respective particle-size intervals.
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Figure 4(c). Particle Size-frequency distribution and normal distribution curves for a native and recombinant
protein expressed BEVs. (i) Native BEVs, (ii) Uninduced recombinant BEVs cultivated in LB medium, (iii) Induced
recombinant BEVs cultivated in LB medium (iv) Uninduced recombinant BEVs cultivated in minimal medium, (v)
Induced recombinant BEVs cultivated in minimal medium
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In our study, sample number (iv) had the highest
count of EVs released from bacteria, while sample
(v) was the second-highest. The sample (iii) had
the lowest particle count and highest particle
mean size of 3 and 147.90, respectively. This
result suggests that sample (iii) secretes minimal
extracellular vesicles with the largest particle size.

SDS-PAGE of total protein in Bacterial Extracellular
vesicles

The BEV samples having 60-70 pg of
protein concentration in 50 pl NFW suspension
were loaded onto the PAGE wells, as shown in
Figure 5. Several peptides were detected in the
samples induced with IPTG in both minimal and
LB media. The recombinant BEVs grown in both
media yielded peptides ranging from 27 kDa to 60
kDa, with induced BEVs expressing SAGFP having
better intensities in bands when compared with
uninduced recombinant BEVs. The EVs isolated
from native E. coli strain without recombinant
SAGFP protein had peptides ranging from 28 kDa-
30 kDa, thus having the most negligible protein
concentration.

MWL (kDa) 1 2 3

240kDa

93kDa
72kDa

57kDa

42kDa

31kDa

24kDa

18kDa

15kDa

Figure 5. SDS—PAGE analysis of BEV protein profiles

Measurement of Fluorescence Intensity in
Engineered-BEVs

The recombinant protein is a His-tagged
Signal anchoring green fluorescent protein
expressedin E. coli BL21 (DE3). The measurement of
fluorescence and packing of SAGFP into BEVs were
analyzed using a fluorescence spectrophotometer.
The diluted working stock of both native and
engineered BEV samples was measured for
fluorescent intensity. The lipid membrane of the
BEVs was treated with a non-ionic surfactant like
Triton X-100 (without breaking the protein-protein
interactions).®®% Therefore, the measurement
of fluorescence in BEVs was carried out using
two methods: (i) Measuring the intensity on the
membrane surface, and (ii) Measuring the total
fluorescence intensity of the bacterial vesicle
by lysing them using 0.1% Triton X-100 (pH-
7.4). Experimenting with this approach makes it
possible to marginally observe whether the SAGFP
is anchored onto the membrane or sorted into the
vesicle. The measurement of fluorescent intensity
in engineered BEVs is shown in Figure 6(a). The
research article stated that the change in the pH of
the culture medium increases the GFP expression

5

BEV samples (60-70 pg total protein in 50 uL NFW) were loaded into each well to compare peptide expression across
conditions. Lanes 1-5 represent BEVs derived from recombinant E. coli cultured in minimal and LB media under
induced (+IPTG) and uninduced conditions. Induced recombinant BEVs expressing SAGFP exhibited distinct bands
between ~27-60 kDa with markedly higher intensity compared to uninduced BEVs, indicating successful induction
and enhanced peptide expression. In contrast, EVs isolated from the native E. coli strain showed only faint bands
between ~28-30 kDa, consistent with their minimal inherent protein content. MWL: molecular weight ladder
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and CD63, an extracellular marker protein. The low
pH affects the intracellular localization, increases
the fluorescent signals, and influences the release
and delivery of the EV contents. The mechanism of
membrane internalization during the formation of
EVs and endosomes is still not clear. These results
suggest that the nature of the growth medium
influences the extracellular vesicle release.
Therefore, it is evident that the extracellular
vesicles and cargo loading are also influenced by
the culture medium’s composition.*%*

Both lysed and unlysed BEVs grown in LB
medium induced with 10 mM IPTG had a higher
fluorescent intensity when compared with other
samples. Of note, the fluorescence emission
in BEVs lysed with Triton X-100 (sample ii) was
higher when compared with unlysed samples.
When the BEVs were lysed, the total concentration
of recombinant SAGFP sorted into BEVs was
measured for fluorescence, thus providing the
highest peak value. However, this outcome
instigates the sorting of recombinant protein
into BEVs. The increased fluorescent intensity of
the samples treated with Triton X suggests the
fluorophore® is well protected inside the vesicles.
Triton X-100 treatment lyses the vesicle’s lipid
membranes, and when SAGFP was released into
the aqueous environment, the fluorescence was
reduced by collisional quenching.

Fluorescent Intensity

5(')0 5;0 550 550 540 550
Wavelength (nm)
@)

DISCUSSION

The bacterial cell-derived exosomes
have been characterized to gain insights into the
structure and composition using DLS, HRTEM,
and polyacrylamide electrophoresis. Significant
differences exist in the structure, composition,
and cargo of the extracellular vesicles derived from
prokaryotic and eukaryotic cells.>*®¢ Extracellular
vesicles have been implicated in several host-
pathogen interactions where the pathogen-
derived exosome modulates the host cells’
behavior and physiology.®’

Yield from IPTG-induced recombinant
BEVs cultivated in the minimal medium was
higher regarding BEV quantification and total-
proteome quantification. At the same time,
induced recombinant BEVs produced in the LB
medium yielded more vesicles and increased
proteome content than native BEVs and uninduced
recombinant BEVs. The concentration of proteins
on the membrane surface is more or less the same
in native and uninduced recombinant BEVs. Since
membrane proteins are hydrophobic, isolating and
digesting the surface proteins associated with BEVs
is difficult. The combined activity of non-ionicand
ionic buffers in the RIPA buffer could overcome
this difficulty and effectively digest BEV proteins.®®
Our investigation substantiates the presence of

—— Blank

BEVs_Native
—— BEVs_LB_uninduced
—— BEVS_Minimal_uninduced
~—— BEVs_LB_induced
—— BEVS_Minimal_induced

IS
1

Fluorescence intensity (a.u)
»

N
1

Wavelength (nm)
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Figure 6. Fluorescence Emission spectra of SAGFP in Bacterial Extracellular Vesicles. (a). Fluorescence intensity of
the compact BEVs. (b). Fluorescence intensity of lysed BEV. 1. Black-Blank, 2. Red- Native BEVs, 3. Blue-Uninduced
recombinant BEVs cultivated in minimal medium, 4. Green- Uninduced recombinant BEVs cultivated in LB medium,
5. Purple- Induced recombinant BEVs cultivated in minimal medium, 6. Yellow- Induced recombinant BEVs cultivated

in LB medium
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enhanced recombinant protein sorting into the
BEVs as the bacterial culture induced with IPTG
had higher protein concentration in both LB and
minimal media.

The secretion of round and bulbous-
shaped BEVs was reported from the bacterial
culture grown in an LB medium.® In our studies,

the BEVs isolated from the native bacterial strain
were well dispersed and showed good recovery
of particle morphology, indicating better particle
stability.

Uninduced recombinant bacterial
strain cultivated in LB medium yield round and
bulged vesicle with more particle agglomeration

Host cell modulation:

CNF1, Cytolysin A, Shiga
toxin, a-Hemolysin, Cif.

Antibiotic Resistance:
Enzyme LS, B-lactamase,
Multidrug efflux protein
(Mex, Mtr, ToIC).

eBEVs

o./ ;.
MY _adil
°o° By j
L A, RSt e

Fluorescence emission

w % M N M M %
Wavelongth ()

Fluorescence emission

Fluorescence quenching of eBEVS

A

(b)

Figure 7. Emission and quenching of fluorescence in engineered bacterial extracellular vesicles. (a) Emission of
fluorescence from SAGFP-eBEVs. (b) Static quenching of fluorescence in SAGFP-eBEVs upon treatment with detergent.
Figure (a) illustrates the emission of fluorescence from SAGFP-eBEVs without any detergent treatment (therefore,
reckoning that the environment of the vesicle has zero effect on the spectral properties of the SAGFP protein). In
Figure (b), when treated with detergent, the formation of the non-fluorescent complex between the quencher
molecule (Q) and fluorophore (F) decreases the emission of fluorescence from the protein, thereby depicting the
static quenching of fluorescence emitted from the vesicles with lower fluorescent intensity
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and clustering along with minutest background
noise. However, the induced recombinant strain
produced in the LB medium yielded aggregated
globular-shaped bacterial vesicles with complete
background noise. In the case of minimal medium,
both induced and uninduced recombinant strains
cultivated in minimal medium yield copious
amounts of small vesicles along with obscuring
background noise. The difference we observed
may be due to either the specific induction of small
vesicles by the minimal medial or the interference
of the LB media in the isolation process of BEVs. The
presence of protein aggregates and other artifacts
around the BEVs might be accountable for the
background noise and particle aggregation.”>’>The
presence of yeast extract and tryptone in the
LB media increases the viscosity and may help
properly separate extracellular vesicles. However,
a detailed investigation is required to establish the
claims.

Areductionin fluorescence emission from
proteins or fluorescent dyes is commonly observed
with increasing detergent concentration across
various biological systems. This phenomenon
can be primarily explained by micelle formation,
alterations in microenvironment polarity, and
dynamic quenching effects. In this study, cell
lysis was performed using a fixed concentration
of lysis buffer containing sodium deoxycholate,
a mild ionic bile salt detergent. This detergent
is commonly used for efficient membrane
solubilization while preserving protein integrity.
Sodium deoxycholate disrupts lipid-lipid and lipid-
protein interactions by integrating into cellular
membranes, enabling the controlled release of
intracellular components. As observed in Figure
6a and 6b, the detergent molecules supposedly
quench the fluorescence of the protein or dye.
There are several mechanisms proposed under
which the quenching of fluorescence may occur.
The quenching mechanism is experimentally
divided into two types, namely static and collisional
quenching which are wholly dependent on the
process that begins before or after the absorption
of the quantum light by a fluorescent molecule.
Packing of the SAGFP inside the vesicle yields
increased fluorescent intensity. Reduction in the
fluorescence intensity of Triton X-100 treated
samples may be due to either of the two types

of quenching. The mechanism underlying the
reduction in fluorescence intensity upon detergent
treatment is schematically illustrated in Figure 7.

CONCLUSION

Our investigation compared the
extracellular vesicles isolated from recombinant
bacterial culture E. coli BL21 (DE3) grown in two
different media. We analyzed the eBEVs based on
their biophysical, molecular, and morphological
characteristics, as these vesicles can be utilized
as a drug-delivering vehicle in therapeutics and
diagnostics. The BEVs isolated from recombinant E.
coli strain grown in LB medium induced with IPTG
showed unique morphology compared with other
samples. 3D interactive surface plots and particle
size-distribution analyses of BEVs obtained from
the HR-TEM results depicted slight morphological
dissimilarities. When comparing the particle size
distribution of each BEV sample, it was observed
that the BEVs formed in LB medium induced with
10 mM ITPG had the highest particle mean size
of 147.90 nm with a standard deviation of 49.67.
Though BEVs from minimal media had good purity
of particles with increased protein concentration,
the formation of particle aggregates in the samples
resulted in poor stability of vesicles as observed in
the HRTEM images. The sorting of SAGFP into the
BEVs was evident from the results obtained from
fluorescent spectroscopy, CLSM, and fluorescent
microscopy. These nanosized lipid bilayered
vesicles carrying SAGFP in their cargo can be
utilized as both a drug-delivering vehicle and a
molecular tracker containing fluorescent probes
in targeted drug-delivering approaches.

In summary, the engineering of BEVs
for targeted therapy is the primary aim of the
researchers. The study of bacterial EVs helps
improve knowledge in EV engineering and drug
delivery. BEVs have the potential to provide
cells with important biological compounds,
including enzymes, cytokines, and various growth
factors, thereby minimizing a deficiency of these
compounds to support host cell metabolism.
Understanding the influence of medium
composition corresponds to EV release, and
cargo sorting mechanism is the preliminary step
to investigating the characteristics of BEVs.
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