

MINI REVIEW

OPEN ACCESS

The Role of *Lacticaseibacillus paracasei* as a Probiotic in Health

Rike Syahniar^{1,2} , Mardiastuti Wahid^{3*} and Andi Yasmon³

¹Doctoral Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta - 10430, Indonesia.

²Department of Microbiology, Faculty of Medicine and Health, Universitas Muhammadiyah, Jakarta - 10510, Indonesia.

³Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Dr. Cipto Mangunkusumo General Hospital, Jakarta - 10320, Indonesia.

Abstract

Probiotics are gaining popularity due to their beneficial role in various health issues. A growing body of studies has demonstrated the benefits of *Lacticaseibacillus paracasei* in supporting gut health, modulating the immune system, lowering cholesterol, and acting as an antimicrobial and antibiofilm agent. This review summarizes several specific strains of *L. paracasei*, their benefits, and sources of isolates. *L. paracasei* is widely found in various traditional fermented foods from different countries. *L. paracasei* is not only used as a starter culture in the dairy and fermented food industry, but it has the potential to treat a variety of health issues at the cellular and molecular levels. It is fascinating to highlight the most recent findings on the features and role of *L. paracasei* in health issues.

Keywords: Fermented Food, Gut Health, *L. paracasei*, Probiotics

*Correspondence: mardiastutiw@yahoo.com

Citation: Syahniar R, Wahid M, Yasmon A. The Role of *Lacticaseibacillus paracasei* as a Probiotic in Health. *J Pure Appl Microbiol.* Published online 30 January 2026. doi: 10.22207/JPAM.20.1.15

© The Author(s) 2026. **Open Access.** This article is distributed under the terms of the [Creative Commons Attribution 4.0 International License](#) which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

INTRODUCTION

The International Scientific Association of Probiotics and Prebiotics, the World Health Organization (WHO), and the Food and Agriculture Organization (FAO) define probiotics as live bacteria that, when supplied in suitable proportions, promote the host's health.¹ These microorganisms, predominantly bacteria but also yeasts, can be found in fermented foods, added to other goods, and used as nutritional supplements.² Probiotics often exert their effects in the gastrointestinal system, where they might affect the gut microbiome. Probiotics can colonize the human intestinal mucosa in highly particular patterns, depending on the baseline microbiota, the probiotic strain, and the region of the gastrointestinal tract.³ Probiotics have general health benefits, species-specific, and strain-specific.⁴

Promising probiotics include bacteria from the genera *Enterococcus*, *Pediococcus*, *Streptococcus*, *Propionibacterium*, *Lactococcus*, and *Bacillus*. *Lacticaseibacillus paracasei* is a species identified in various fermented beverages and foods. *Lactobacillus* has been widely explored for its distinct health benefits, making it a popular genus among gut commensal bacteria. *L. paracasei* is also one of the most commonly employed probiotic species in human applications.⁵ It comprises diverse strains with a long history of safe use in food and agricultural uses that have been studied for their health-promoting characteristics.⁶ This review article discusses the role of probiotics in health, with a focus on the latest research updates regarding the use of *L. paracasei* in the health field.

Properties of *Lacticaseibacillus paracasei*

Lacticaseibacillus paracasei, previously known as *Lactobacillus paracasei*, is a facultative anaerobic, Gram-positive, rod-shaped, nonspore-forming and non-motile bacteria.⁷ This bacterium is found in fermented foods and host-associated environments and is capable of producing lactic acid as the primary fermentation product.⁸ It can produce lactic acid from hexoses and lactate and acetate from pentoses and its optimal growth temperature range (10-37 °C).⁹

L. paracasei can withstand various stresses, including low water activity, heating (60 °C for 30 minutes), and low pH.^{9,10} Certain strains, such as *L. paracasei* L2, exhibit high adhesion to HCT-116 cells, survive in acidic conditions (pH 3), and exhibit resistance to bile salts. *L. paracasei* L2 is deemed safe. This strain also exhibited antioxidant activity^{8,11} and can be used as a probiotic for fermented food production (proteolytic properties, autolytic, acidification activity, and EPS synthesis).⁸

Lacticaseibacillus paracasei is widely employed in both dairy and non-dairy products. *L. paracasei* has probiotic qualities in the gastrointestinal tract, including tolerance to pepsin, acid, bile salts, and pancreatin, adhesion ability, antipathogenic activity, and antibiotic sensitivity.¹¹ *Lacticaseibacillus paracasei* can adhere to human intestinal epithelial cells, which is required for colonization and potential health benefits. This bacterium can form biofilms, which are bacterial communities enclosed in a self-produced matrix, and this ability may contribute to its persistence in the intestine.¹² Some *L. paracasei* strains exhibit varying susceptibility to various antibiotics.¹¹⁻¹⁴ *Lacticaseibacillus paracasei* can also help keep the gut microbiota balanced and stable.⁸

Food and Beverage Matrices Containing *L. paracasei*

Several isolates of *L. paracasei* from Argentina, Brazil, Iran, Tibet, Russia, and Greece, as well as water kefir from Belgium and Mexico, have been studied for their health benefits to consumers. The majority of strains were derived from kefir, with a few from water kefir.^{15,16} Similar studies have employed omics based evaluation of *L. paracasei* as a starter in Brazilian-style sour beers.¹⁷ This microorganism's positive qualities include pathogen protection, immunomodulation, as well as antioxidant, anti-inflammatory, and antiproliferative activity. Sornsenee et al. identified *L. paracasei* strain T0901 which had previously been isolated from fermented palm sap, using MALDI-TOF and 16S rRNA sequencing.¹⁸ This resilience is consistent with reports of *L. paracasei* F19 maintaining viability in high-hopped beer environments.¹⁹

Ren et al. isolated *L. paracasei* from koumiss made by local herders in Aluke'erqin Qi; Inner Mongolia, China.²⁰ Another investigation found *Lacticaseibacillus paracasei* TRA061676 in coalho cheese and grown in extruded sorghum flour in Brazil.²¹ Milk has been widely reported to contain probiotics, one of which is Chinese Yak Milk, which is known to contain *Lacticaseibacillus paracasei* SB27.²² *L. paracasei* strain 62L (NCBI GenBank accession number KU886178) was isolated from fermented cassava using cassava fermentation water collected in Dschang city, Western Cameroon.²³ Sornsenee et al. discovered seven *L. paracasei* isolates from fermented palm sap, in Southern Thailand.²⁴

The Role of *L. paracasei* in Health

Probiotics can improve human and animal health in a variety of ways, including suppressing intestinal pathogenic microbes, modifying immunological responses, lowering serum cholesterol levels, and exerting antioxidant activity, among others. These impacts may be attributable to the presence of the organisms themselves or the metabolites they make and, in some cases, release into the environment (e.g., exopolysaccharides, bacteriocins and organic acids).⁸ The literature describes several benefits for *L. paracasei* strains. According to studies, *L. paracasei* can help break down food, improve nutritional absorption, and potentially relieve diarrhea symptoms. *L. paracasei* can also improve gut barrier function and reduce intestinal permeability, which is critical for preventing dangerous bacteria translocation.^{20,25,26}

According to studies, *L. paracasei* can assist in controlling the immune system, perhaps lowering inflammation and boosting the body's ability to fight infection. Some strains have been shown to increase antibody (IgA) production and promote the development of regulatory T cells, which help to modulate the immunological response.²⁷⁻²⁹ *Lactobacillus paracasei* subsp. *paracasei* NTU 101 is known to reduce skin inflammation and symptoms of allergic reactions by maturing regulatory T cells (Tregs) and raising the expression of Forkhead box protein P3 (FOXP3), which helps regulate the immune response.²⁷

Some strains are known to decrease cholesterol. *L. paracasei* TISTR 2593, for example, reduces obesity via altering adipogenesis (the

development of fat cells).³⁰ Other strains, including *L. paracasei* 8700:2, have been shown to lower triglycerides, reduce the severity of metabolic syndrome, and delay weight gain.³¹ *L. paracasei* supplements have the potential to improve endothelial function by lowering cholesterol levels.³¹ Another study demonstrated that the *L. paracasei* NL41 strain might reduce insulin resistance and oxidative stress while also maintaining beta cell function.³²

The gut microbiota and gut-brain axis modulate signaling, which influences emotional behavior and the stress response system. Probiotics have been shown to benefit gut, brain, and mental health by altering gut microbiota and modulating the gut-brain axis. Randomized controlled trials of *L. paracasei* Lpc-37[®] and *L. paracasei* K56 were found to reduce stress-related biomarkers.^{33,34} Another role of *L. paracasei* in oral health is that it can help prevent dental caries (cavities) by reducing the presence of harmful bacteria. *Lactobacillus paracasei* SD1 was found to inhibit mutans streptococci (MS), thereby reducing caries in a randomized controlled trial.³⁵

Lactobacillus paracasei is also known for its ability to suppress the growth of certain harmful bacteria, thus exhibiting antibacterial activity. This is accomplished through a variety of methods, including the synthesis of antimicrobial compounds and competition with pathogens for nutrients and attachment sites in the intestine.^{24,36} Several investigations have indicated that *L. paracasei* has antibacterial efficacy against *E. coli*.^{20,24,36,37} In addition, *L. paracasei* has effects against *Bacillus cereus*, *Acinetobacter baumannii*,²⁴ *S. aureus*,^{36,37} *P. aeruginosa*³⁸ and *mutans streptococci*.³⁵

L. paracasei generates bacteriocin-like compounds that have antibacterial properties. These chemicals can increase bacterial membrane permeability, disrupt cell membranes, and cause intracellular leakage. These chemicals can also inhibit protein synthesis and bind to genomic DNA.³⁸ Furthermore, *L. paracasei* has demonstrated substantial antibiofilm efficacy against several pathogens, particularly those linked to oral and gastrointestinal illnesses. Its various mechanisms of biofilm disruption include inhibition of biofilm formation, eradication of mature biofilms, production of antibacterial substances, and competition for resources.

L. paracasei can create numerous chemicals, including biosurfactants and postbiotics, that can directly inhibit or kill harmful bacteria within biofilms.³⁹⁻⁴² Studies have demonstrated the ability of *L. paracasei* to inhibit biofilms of *Vibrio parahaemolyticus* and *Salmonella typhimurium*, both known to cause gastrointestinal problems.^{41,42} *L. paracasei* has also been shown to be effective in combating biofilms formed by other pathogens, including *Listeria monocytogenes*.¹² Furthermore, Ghane et al. demonstrated that neutralized cell-free supernatants from *L. paracasei* strains LAB2 and LAB4 reduced the growth and biofilm formation of uropathogenic *E. coli*.⁴³

Current Research and Future Research Potential of *L. paracasei*

Current research on *L. paracasei* focuses on its potential health benefits, particularly in areas such as cardiometabolic health,^{30,34} gut health,¹⁴ and immune function.²⁹ Studies highlight its ability to influence gut microbiota composition,^{44,45} increase gut barrier function,⁴⁴ and modulate the immune system.²⁹ Specifically, *L. paracasei* strains have shown promising results in reducing inflammation, improving lipid metabolism,⁴⁶ and even potentially impacting life expectancy and anti-aging effects.⁴⁷

Current research also examined the role of *L. paracasei* as an antibiofilm. The results revealed that *L. paracasei* was effective inhibiting biofilm formation against *Streptococcus mutans*⁴⁸ and *Pseudomonas aeruginosa*.¹² More research is needed to completely understand the particular pathways through which *L. paracasei* exerts its antibiofilm actions. The antibiofilm activity of *L. paracasei* can vary between strains, further study should be conducted to determine which strains are most useful for various applications. Clinical trials are required to determine the efficacy and safety of *L. paracasei*-based therapies for biofilm-related diseases in humans.

The potential of specific *L. paracasei* strains to treat various diseases as therapeutic targets is an exciting prospect for future research. Individual responses to *L. paracasei* differ depending on genetics and gut microbiota composition, paving the way for tailored probiotic therapies. Research into the use of postbiotics

generated from *L. paracasei* could provide new pathways for therapeutic therapies. Studies have shown that *L. paracasei* can enhance the antitumor effects of chemotherapy drugs such as 5-FU in colorectal cancer models.⁴⁹ Further research could explore its potential as a complementary therapy for other cancers. Research on the anti-aging effects of *L. paracasei* HII01 in *C. elegans* suggests potential benefits for healthy aging and longevity.⁴⁷ Further human studies are needed to examine its potential for aging prevention. Recent studies have explored the use of *L. paracasei* in novel fermented beverages. This includes sour beer trials with *Spondias mombin* juice supplementation that demonstrated both feasibility and enhancement of functional properties.⁵⁰ Future study on *L. paracasei* could include optimizing its application in food production and investigating its impact on flavor and nutritional profile.

CONCLUSION

L. paracasei is one of the probiotics isolated from various fermented foods around the world. It possesses many benefits for human health. Studies have revealed that this microorganism can stimulate the immune response and reduce cholesterol levels. Furthermore, it exhibits antioxidant, antimicrobial, anti-aging, and antibiofilm properties. In addition, some strains of *L. paracasei* may help reduce stress-related biomarkers. Current research on *L. paracasei* primarily focuses on gut, cardiometabolic health, and the immune system. Further studies should explore its potential benefit in disease treatment.

ACKNOWLEDGMENTS

The authors would like to thank the Ministry of Higher Education, Science, and Technology of the Republic of Indonesia for their funding and facilitation.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

AUTHORS' CONTRIBUTION

All authors listed have made a substantial, direct and intellectual contribution to the work, and have approved it for publication.

FUNDING

This study was supported by grants from the Fundamental Research grant with reference number 051/E5/PG.02.00.PL/2024 from the Ministry of Higher Education, Science, and Technology of the Republic of Indonesia.

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT

This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES

1. Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. *Nat Rev Gastroenterol Hepatol.* 2021;18(9):649-667. doi: 10.1038/s41575-021-00440-6
2. National Institute of Health. Probiotics - Health Professional Fact Sheet. 2023. <https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/>. Accessed October 22, 2024
3. Zmora N, Zilberman-Schapira G, Suez J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. *Cell.* 2018;174(6):1388-1405.e21. doi: 10.1016/j.cell.2018.08.041
4. Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol.* 2014;11(8):506-514. doi: 10.1038/NRGASTRO.2014.66
5. Cao G, Zhu H, Liang S, et al. Therapeutic effects of *Lacticaseibacillus paracasei* PC-H1 in alleviating colitis through restoring intestinal barrier and regulating gut microbiota. *J Funct Foods.* 2025;132:106974. doi: 10.1016/j.jff.2025.106974
6. Wang Y, Wu J, Lv M, et al. Metabolism. Characteristics of lactic acid bacteria and the expanding applications in food industry. *Front Bioeng Biotechnol.* 2021;9:612285. doi: 10.3389/FBIOE.2021.612285
7. Kiousi DE, Efstatithiou C, Tegopoulos K, et al. Genomic insight into *Lacticaseibacillus paracasei* SPS, reveals genes and gene clusters of probiotic interest and biotechnological potential. *Front Microbiol.* 2022;13:922689. doi: 10.3389/FMICB.2022.922689
8. M'hamed AC, Ncib K, Merghni A, et al. Characterization of probiotic properties of *Lacticaseibacillus paracasei* L2 isolated from a traditional fermented food "Lben." *Life.* 2023;13(1). doi: 10.3389/LIFE13010021
9. Kask S, Adamberg K, Orlowski A, et al. Physiological properties of *Lactobacillus paracasei*, *L. danicus* and *L. curvatus* strains isolated from Estonian semi-hard cheese. *Food Res Int.* 2003;36(9-10):1037-1046. doi: 10.1016/J.FOODRES.2003.08.002
10. Xu Y, Tian Y, Cao Y, et al. Probiotic properties of *Lactobacillus paracasei* subsp. *paracasei* L1 and its growth performance-promotion in chicken by improving the intestinal microflora. *Front Physiol.* 2019;10:467504. doi: 10.3389/FPHYS.2019.00937
11. Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of *Lacticaseibacillus paracasei* EG005: a promising probiotic with enhanced antioxidant activity. *Front Microbiol.* 2024;15:1477152 doi: 10.3389/fmicb.2024.1477152
12. Alizadeh Behbahani B, Jooyandeh H, Taki M, Falah F. Evaluation of the probiotic, anti-bacterial, anti-biofilm, and safety properties of *Lacticaseibacillus paracasei* B31-2. *LWT.* 2024;207:116676. doi: 10.1016/J.LWT.2024.116676
13. Sornsenee P, Chimplee S, Saengsuwan P, Romyasamit C. Characterization of probiotic properties and development of banana powder enriched with freeze-dried *Lacticaseibacillus paracasei* probiotics. *Helion.* 2022;8(10):e11063. doi: 10.1016/J.HELION.2022.E11063
14. Lee H Bin, Bang WY, Shin GR, Jeon HJ, Jung YH, Yang J. Isolation, Characterization, and safety evaluation of the novel probiotic strain *Lacticaseibacillus paracasei* IDCC 3401 via genomic and phenotypic approaches. *Microorganisms.* 2024;12(1):85. doi: 10.3390/MICROORGANISMS12010085
15. Leite AMO, Miguel MAL, Peixoto RS, et al. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. *J Dairy Sci.* 2015;98(6):3622-3632. doi: 10.3168/JDS.2014-9265
16. Bengoa AA, Dardis C, Garrote GL, Abraham AG. Health-promoting properties of *Lacticaseibacillus paracasei*: A focus on kefir isolates and exopolysaccharide-producing strains. *Foods.* 2021;10(10):2239. doi: 10.3390/FOODS10102239
17. Herkenhoff ME, Battistini C, Praia AB, et al. The combination of omics strategies to evaluate starter and probiotic strains in the *Catharina sour* Brazilian-style beer. *Food Research International.* 2023;167:112704. doi: 10.1016/J.FOODRES.2023.112704
18. Sornsenee P, Singkhamanan K, Sangkhathat S, Saengsuwan P, Romyasamit C. Probiotic properties of *Lactobacillus* species isolated from fermented Palm Sap in Thailand. *Probiotics Antimicrob Proteins.* 2021;13(4):957-969. doi: 10.1007/S12602-021-09754-Y
19. da Silva LBM, Arruda KV, Suzuki JY, Herkenhoff ME. Survival of the probiotic strain *Lacticaseibacillus paracasei* subsp. *paracasei* F19 in high-hopped beers. *Food Res Int.* 2024;196:115040. doi: 10.1016/J.FOODRES.2024.115040
20. Ren S, Wang C, Chen A, Lv W, Gao R. The probiotic *Lactobacillus paracasei* ameliorates diarrhea cause by *Escherichia coli* O8 via gut microbiota modulation. *Front Nutr.* 2022;9:878808. doi: 10.3389/FNUT.2022.878808
21. da Silva LA, de São José VPB, Rodrigues LA, et al. Effects of a Sorghum Beverage with *Lacticaseibacillus paracasei* on body composition, lipid profiles,

and intestinal health in overweight and obese adults: A randomized single-blind pilot study. *Foods*. 2024;13(19):3128. doi:10.3390/FOODS13193128

22. Liu Y, Hao L, Liu Y, Jiang L, Yi H. *Lacticaseibacillus paracasei* SB27 enhances its gastrointestinal tolerance, adhesion and colonization by producing biofilm. *Food Biosci*. 2025;68:106564. doi: 10.1016/J.FBIO.2025.106564

23. Marius FKE, Marie KP, Blandine M, Laverdure TP, Daquain FTU, François ZN. Development of a non-dairy probiotic beverage based on sorrel and pineapple juices using *Lacticaseibacillus paracasei* 62L. *J Agric Food Res*. 2023;14:100688. doi: 10.1016/J.JAFR.2023.100688

24. Sornseneep K, Koolheat N, Wongprot D, et al. Antibacterial, antioxidant, and anti-inflammatory activities of *Lacticaseibacillus paracasei* lysates isolated from fermented Palm Sap. *Probiotics & Antimicro Prot*. 2025;1-13. doi: 10.1007/S12602-025-10521-6

25. Liu W, Cheng H, Zhang H, et al. Effect of *Lactobacillus paracasei* LK01 on growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indices in broilers. *Animals (Basel)*. 2024;14(23):3474. doi: 10.3390/ANI14233474

26. Li S, Li Y, Cai Y, et al. *Lacticaseibacillus paracasei* NCU-04 relieves constipation and the depressive-like behaviors induced by loperamide in mice through the microbiome-gut-brain axis. *Curr Res Food Sci*. 2024;9:100875. doi: 10.1016/J.CRFS.2024.100875

27. Liu CF, Shih TW, Lee CL, Pan TM. The beneficial role of *Lactobacillus paracasei* subsp. *paracasei* NTU 101 in the prevention of atopic dermatitis. *Curr Issues Mol Biol*. 2024;46(3):2236-2250. doi: 10.3390/CIMB46030143

28. Orlando A, Refolo MG, Messa C, et al. Antiproliferative and proapoptotic effects of viable or heat-killed *Lactobacillus paracasei* IMPC2.1 and *Lactobacillus rhamnosus* GG in HGC-27 gastric and DLD-1 colon cell lines. *Nutr Cancer*. 2012;64(7):1103-1111. doi: 10.1080/01635581.2012.717676

29. Maehata H, Arai S, Iwabuchi N, Abe F. Immuno-modulation by heat-killed *Lacticaseibacillus paracasei* MCC1849 and its application to food products. *Int J Immunopathol Pharmacol*. 2021;35:20587384211008292. doi: 10.1177/20587384211008291

30. Situdhipol J, Niwasabutra K, Chaiyawan N, et al. Evaluating the safety and efficacy of *Lacticaseibacillus paracasei* TISTR 2593 as a therapeutic probiotic for obesity prevention. *Front Microbiol*. 2025;16:1501395. doi: 10.3389/FMICB.2025.1501395

31. Yang J, Huang J, Huang Z, et al. Cardiometabolic benefits of *Lacticaseibacillus paracasei* 8700:2: A randomized double-blind placebo-controlled trial. *Clin Nutr*. 2023;42(9):16371646. doi: 10.1016/j.clnu.2023.07.017

32. Zeng Z, Yuan Q, Yu R, Zhang J, Ma H, Chen S. Ameliorative effects of Probiotic *Lactobacillus paracasei* NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a Type 2 Diabetes Mellitus rat model. *Mol Nutr Food Res*. 2019;63(22). doi: 10.1002/MNFR.201900457

33. Guan Y, Zhu R, Zhao W, et al. Effects of *Lacticaseibacillus paracasei* K56 on perceived stress among pregraduate students: a double-blind, randomized, placebo-controlled trial. *Front Nutr*. 2025;12:1544713. doi: 10.3389/FNUT.2025.1544713

34. Patterson E, Griffin SM, Ibarra A, Ellsiepen E, Hellhammer J. *Lacticaseibacillus paracasei* Lpc-37® improves psychological and physiological markers of stress and anxiety in healthy adults: a randomized, double-blind, placebo-controlled and parallel clinical trial (the Sisu study). *Neurobiol Stress*. 2020;13:100277. doi: 10.1016/J.NSTR.2020.100277

35. Teanpaisan R, Piwat S, Tianviwat S, Sophatha B, Kampoo T. Effect of long-term consumption of *Lactobacillus paracasei* SD1 on reducing mutans streptococci and caries risk: A randomized placebo-controlled trial. *Dent J (Basel)*. 2015;3(2):43. doi: 10.3390/DJ3020043

36. Shahverdi S, Barzegari AA, Bakhshayesh RV, Nami Y. *In-vitro* and *in-vivo* antibacterial activity of potential probiotic *Lactobacillus paracasei* against *Staphylococcus aureus* and *Escherichia coli*. *Helion*. 2023;9(4):e14641. doi: 10.1016/J.HELION.2023.E14641

37. Tirloni E, Cattaneo P, Ripamonti B, Agazzi A, Bersani C, Stella S. *In vitro* evaluation of *Lactobacillus animalis* SB310, *Lactobacillus paracasei* subsp. *paracasei* SB137 and their mixtures as potential bioprotective agents for raw meat. *Food Control*. 2014;41(1):63-68. doi: 10.1016/J.FOODCONT.2014.01.003

38. Huang T, Li Z, Qu X, et al. Preliminary purification and partial characterization of a functional bacteriocin of *Lacticaseibacillus paracasei* Zhang and Mining for its gene cluster. *Probiotics Antimicrob Proteins*. 2024;17(2):487-499. doi: 10.1007/S12602-024-10249-9

39. Mouafo HT, Sokamte AT, Manet L, et al. Biofilm inhibition, antibacterial and antiadhesive properties of a novel biosurfactant from *Lactobacillus paracasei* N2 against multi-antibiotics-resistant pathogens isolated from braised fish. *Fermentation*. 2023;9(7):646. doi: 10.3390/FERMENTATION9070646

40. Giordani B, Parolin C, Vitali B. Lactobacilli as anti-biofilm strategy in oral infectious diseases: A mini-review. *Front Med Technol*. 2021;3:769172. doi: 10.3389/FMEDT.2021.769172

41. Shangguan W, Xie T, Zhang R, Lu C, Han X, Zhong Q. Anti-biofilm potential of kefir-derived *Lactobacillus paracasei* L10 against *Vibrio parahaemolyticus*. *Lett Appl Microbiol*. 2021;73(6):750-758. doi: 10.1111/LAM.13568

42. Algieri F, Tanaskovic N, Rincon CC, et al. *Lactobacillus paracasei* CNCM I-5220-derived postbiotic protects from the leaky-gut. *Front Microbial*. 2023;14:1157164. doi: 10.3389/FMICB.2023.1157164

43. Ghane M, Babaekhou L, Ketabi SS. Antibiofilm activity of kefir probiotic Lactobacilli against uropathogenic *Escherichia coli* (UPEC). *Avicenna J Med Biotechnol*. 2020;12(4):221-229.

44. Wang D, Yao J, Li L, Chen Y. Development of a non-targeted metabolomics-based screening method for elucidating the metabolic characteristics and

potential applications of *Lacticaseibacillus paracasei*. *Food Chem.* 2025;466:141943. doi:10.1016/J.FOODCHEM.2024.141943

45. Song EJ, Lee ES, Kim YI, et al. Gut microbial change after administration of *Lacticaseibacillus paracasei* AO356 is associated with anti-obesity in a mouse model. *Front Endocrinol* (Lausanne). 2023;14:1224636. doi: 10.3389/FENDO.2023.1224636

46. Nuankham K, Situdhipol J, Chonpathompikunlert P, et al. Impact of *Lactocaseibacillus (Lactobacillus) paracasei* subsp. *paracasei* TISTR 2593 probiotic supplementation on the gut microbiome of hypercholesterolemia patients: A randomized controlled trial. *Nutrients.* 2024;16(17):2916. doi:10.3390/NU16172916/S1

47. Kishimoto S, Nono M, Makizaki Y, et al. *Lactobacillus paracasei* subsp. *paracasei* 2004 improves health and lifespan in *Caenorhabditis elegans*. *Sci Rep.* 2024;14(1):1-10. doi: 10.1038/S41598-024-60580-Y

48. Ma N, Yang W, Chen B, et al. Exploration of the primary antibiofilm substance and mechanism employed by *Lactobacillus salivarius* ATCC 11741 to inhibit biofilm of *Streptococcus mutans*. *Front Cell Infect Microbiol.* 2025;15:1535539. doi: 10.3389/FCIMB.2025.1535539

49. Jam SAM, Talebi M, Alipour B, Khosroushahi AY. The therapeutic effect of potentially probiotic *Lactobacillus paracasei* on dimethylhydrazine induced colorectal cancer in rats. *Food Biosci.* 2021;41:101097. doi: 10.1016/J.FBIO.2021.101097

50. Praia AB, Herkenhoff ME, Broedel O, Frohme M, Saad SMI. Sour beer with *Lacticaseibacillus paracasei* subsp. *paracasei* F19: Feasibility and influence of supplementation with *Spondias mombin* L. juice and/or by-product. *Foods.* 2022;11(24):4068. doi: 10.3390/FOODS11244068