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Abstract
Intercropping and fertilization practices are increasingly promoted as ecological alternatives to 
improve soil health and crop productivity. This work examined their combined effects on soil microbial 
communities and onion yield over two growing seasons. The aim of this study was to assess how 
different intercropping systems combined with organic and mineral fertilization influence soil microbial 
communities and onion performance. Treatments included onion monoculture and intercropping 
with carrot, pepper or fennel, under compost and NPK fertilization, arranged in a randomized block 
design. Soil analyses focused on bacterial, fungal and actinomycetes loads, microbial biomass carbon 
(MBC), and their relationship with onion yield. Results indicated that growing season, fertilization, 
and intercropping, as well as their interactions, had significant effects on all microbial parameters and 
yield (p < 0.001). Compost application led to the highest microbial stimulation, increasing bacterial 
populations by 42%, fungal counts by 33%, actinomycetes by 45%, and MBC by 32%, compared to 
the unfertilized control. Carrot intercropping further enhanced soil activity, raising actinomycetes 
by 48% and MBC by 35%. This cropping system also improved onion performance, with yield rising 
from 2.5 kg/plant in the control to 5.4 kg/plant under compost treatments and 5.1 kg/plant with 
carrot intercropping, highlighting the positive link between microbial enhancement and productivity. 
Moderate positive correlations were observed between microbial parameters and yield, particularly 
for bacteria (R² = 0.27) and actinomycetes (R² = 0.20). These findings emphasize the potential of 
integrating organic fertilization with strategic intercropping to enhance soil biological functioning and 
promote sustainable onion production.
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INTRODUCTION

	 In Morocco, Onion (Allium cepa L.) ranks 
second after potato in economic importance.1 
However, onions shallow and sparsely branched 
roots make it highly vulnerable to nutrient 
deficiencies, necessitating careful soil fertility 
management.2 With growing demands on arable 
land due to population growth and resource scarcity, 
onion production is often based on monoculture 
and conventional tillage practices, which can 
accelerate soil erosion, reduce soil fertility, 
and contribute to long-term soil degradation, 
ultimately limiting the sustainability and ecological 
value of onion cultivation.1,3,4 Farming systems 
are under increasing pressure to adopt methods 
that maximize output without compromising 
ecological integrity.5 In this context, integrated 
cropping systems have emerged as a promising 
solution, aiming to optimize solar energy use while 
preserving soil fertility, maintaining ecosystem 
health, and promoting biodiversity.6-8 Compared 
to conventional monoculture, diversified systems 
such as intercropping represent a more holistic 
and sustainable approach to agriculture,1,5 with 
transformative applications in horticulture and 
agro-industry.9-11

	 Intercropping is the simultaneous 
cultivation of two or more crops or species 
in the same field. It is increasingly regarded 
as an agroecological practice for sustainable 
intensification.5,8,12 Historically, it has been adopted 
to boost productivity,13-15 improve land-use 
efficiency,16,17 and reduce environmental risks.18,19 
One of its lesser-known but highly valuable 
outcomes is its impact on the soil microbiome. 
20-22 Microbial communities are essential for key 
processes like organic matter decomposition, 
nutrient cycling, and plant development.23-25 
Microbial biomass carbon (MBC), in particular, 
serves as a strong indicator of soil health, 
contributing significantly to nutrient availability, 
soil aggregation, and carbon storage.26,27

	 Organic fertilizers such as compost are 
being used to improve productivity, soil structure 
and health, nutrient content, and biological 
activity.2,28 Compost contributes not only to plant 
nutrition but also to microbial stimulation and soil 
carbon stabilization29 due to its porosity, surface 
area, and humic substance content.30

	 Various tools have been developed 
to assess microbial communities and biomass, 
including culture-based plate counting,31 
phospholipid fatty acid analysis,32 chloroform 
fumigation extraction,33 and DNA-based methods.34 
According to Mangla et al.35 plate counting remains 
widely used for its accuracy in estimating viable 
microbial populations through colony forming 
units (CFU), offering a clear picture of culturable 
microbes. 
	 Studies have increasingly shown that 
intercropping promotes microbial biomass and 
activity in the rhizosphere, enhancing yield, 
nutrient cycling and ecosystem resilience.22,36 For 
example, sugarcane-peanut intercropping has 
been shown to improve enzymatic activity and 
microbial diversity,37 while lily-maize combinations 
enriched beneficial bacteria in the rhizosphere.38 
Similar trends were observed in proso millet-mung 
bean systems, which supported diverse bacterial 
and fungal communities and improved yield.39 
Organic amendments have demonstrated strong 
potential as substitutes for mineral fertilizers, 
offering improved microbial activity and soil 
health.23,24,40,41 Compost has also been shown 
to significantly influence microbial community 
structure and function across agroecosystems.11,42

	 However previous studies have primarily 
focused on the effects of either organic amendments 
or intercropping systems as single factors on soil 
microbial dynamics.43-45 For instance, compost 
has been shown to improve microbial activity and 
carbon sequestration, while intercropping has 
been linked to increased microbial diversity and 
root-microbe interactions.36,46 However, research 
addressing the synergistic impact of combining 
organic fertilization with intercropping, particularly 
in onion-based systems, remains scarce. The main 
objective of this study is to assess the effects 
of onion intercropping with pepper (Capsicum 
annuum), fennel (Foeniculum vulgare) and carrot 
(Daucus carota), combined with either organic 
(compost) or chemical (NPK) fertilization on soil 
microbial biomass carbon and the densities of 
bacteria, fungi, and actinomycetes. The study 
also aims to evaluate how these agroecological 
strategies affect onion yield, in order to identify 
productive and biologically enriched cropping 
systems that enhance soil fertility and promote 
sustainable vegetable production.
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MATERIALS AND METHODS

Geographical location and description of the 
field site
	 Field experiments related to the study 
were carried out in the AGREE platform (AGREE = 
Agroecology and Environment) of National School 
of Agriculture in Meknes (33°502 363 N 5°282 
393 W and 546 m above sea level), during two 
consecutive growing seasons (2020-2021) and 
(2021-2022). According to the Koppen-Geiger 
classification, the climate of the experimental 
area is typically a warm temperate Mediterranean 
climate and the rainfall and average annual 
temperature in the area are 511 mm and 19.2 
°C, respectively. To assess the physicochemical 
attributes of the soil, two samples were gathered 
from depths ranging from 0-30 cm using the Z 
sampling technique.47 Following the collection, the 
samples underwent sieving and were then sent 
to the Labomag soil analysis laboratory located in 
Meknes, Morocco. The soil texture at the site is 
loam clay sand. Soil characteristics are detailed in 
Table 1. 

Cropping system, intercultural operations and 
fertilizer application 
	 The experiment was arranged in a 
factorial complete block design involving three 

factors: cropping system (onion monoculture or 
intercropping), fertilization type (mineral, organic, 
or control), and growing seasons (2020-2021 and 
2021-2022). The trial area covered approximately 
9372 and was divided into three blocks, each 
4.5 meters wide and spaced 1.5 meters apart  
(Figure 1).
	 The field experiment was structured 
into blocks, each containing 12 elementary plots 
corresponding to different cropping treatments 
(Table 2). Each plot measured 4.5 meters wide by 

Table 1. Physical and chemical characteristics of the soil 
(depth: 0-30 cm) before sowing, in the first (2020-2021) 
and second (2021-2022) growing seasons

Soil property	 First 	 Second 
	 growing	 growing 
	 season 	 season 
	 (2020-2021)	 (2021-2022)

Texture	       Clay loam sand
Organic matter (%)	 2.76	 2.77
pH	 8.5	 8.6
Electrical conductivity	 0.17	 0.06
(ms/cm)
N-NH4	 0.15	 1.98
MgO (mg/kg)	 2297.5	 918.1
P (mg/kg)	 45	 63.4
K (mg/kg)	 280.5	 104.9
Na2O (mg/kg)	 196.5	 221.9
CaO (mg/kg)	 10470.5	 9000

Figure 1. Schematic representation of the different cropping systems used in the field experiment: onion 
monocropping (20 x 30 cm), onion-carrot (25 x 30 cm), onion-fennel (20 x 60 cm) and onion-pepper (40 x 45 cm). 
Each intercropping system followed a 3:1 ratio (three rows of onion to one row of intercrop)
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4 meters long, with 0.80 meter spacing between 
them to prevent overlap of crop influence. In 
each plot, onions were either grown alone or 
intercropped with carrot, fennel, or pepper, 
following a 3:1 ratio of onions to the intercrop 
(Figure 1). To reduce edge effects, two additional 
rows of onions were planted around the perimeter 
of each plot. Crops were manually sown in April 
of both the 2021 and 2022 seasons. The planting 
layout followed specific intra and inter-row 
spacings tailored to each crop growth needs: 
20 × 30 cm for onion transplants, 25 × 30 cm for 
carrot seeds, 20 × 60 cm for fennel seeds, and 
40 × 45 cm for pepper. Throughout the growing 
seasons, the crops were maintained under 
typical field conditions. Irrigation was provided 
for 1 hour/day, and weeds were removed 
manually. Pest management was carried out as 
needed, depending on crop sensitivity and field 
observations. Fertilization followed local farming 
practices in the Fez-Meknes region. Compost 
was used as organic fertilizer at a rate of 36 kg 
per plot, split into two applications once after 
sowing and one post-seed emergence. Chemical 
fertilization consisted in a synthetic NPK fertilizer 
(10:30:20) which was used at 2 kg per plot for 
onion monoculture and 2.5 kg per plot for the 
intercropped systems. Onion bulbs were harvested 
in mid-August, when 80% of onion leaves had 
naturally fallen over. The mature bulbs were 
manually pulled and left to dry in the sun for 15 
days before measuring yield.

Soil sampling, method protocol and analytical 
studies
	 Soil samples were collected from each 
treatment in T0 (before sowing), T1 (53 days 
after sowing DAS), T2 (96 DAS) and after harvest 
Tf (134 DAS). During the sampling process, sterile 
paper was used to wipe the remains that were 
attached to the spade and sanitize the spade 
before collecting the next soil sample to avoid 
contamination between treatments and keep 
samples fresh. The samples (about 200 g) were 
collected at 0-15 cm soil depths using an auger of 
5 cm diameter in the rhizosphere of onion, were 
then put in sterile plastic bags and transported to 
the laboratory. The soil samples were air-dried in 
the shade, ground to pass through a 2 mm sieve 
and were also stored at 4 °C for the enumeration 
of cultivable microbial indicators. 

Microbial biomass carbon
	 Microbial biomass carbon was measured 
utilizing the fumigation extraction method as 
described by Vance et al.48 Five sets of 10 g soil 
samples were carefully weighed and fumigated 
with ethanol-free chloroform for 24 h and 
extracted with 40 mL of 0.5 M K2SO4. The extracts 
were oxidized with potassium dichromate and 
sulfuric acid and titrated with ferrous ammonium 
sulfate. MBC was calculated as the difference in 
extractable carbon between fumigated and non-
fumigated samples.

Table 2. Number of rows in each cropping system and description of the different treatments contained therein

Cropping 	 Code	 Treatment Description	 Number of
systems 			   rows
(CS)

CS1	 On	 Onion sole crop	 8
CS2	 OnI	 Onion + NPK fertilizer	 8
CS3	 OnO	 Onion + Compost amendment	 8
CS4	 OnP	 Onion + Pepper (3:1)	 8
CS5	 OnPI	 Onion + Pepper + NPK fertilizer (3:1)	 8
CS6	 OnPO	 Onion + Pepper + Compost amendment (3:1)	 8
CS7	 OnF	 Onion + Fennel (3:1)	 8
CS8	 OnFI	 Onion + Fennel + NPK fertilizer (3:1)	 8
CS9	 OnFO	 Onion + Fennel + Compost amendment (3:1)	 8
CS10	 OnC	 Onion + Carrot (3:1)	 8
CS11	 OnCI	 Onion + Carrot + NPK fertilizer (3:1)	 8
CS12	 OnCO	 Onion + Carrot + Compost amendment (3:1)	 8
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Organic C % =

(Vb - Vs) × 0.003 × N × 100
Ws 

	 Where: 
VS = Volume of 0.2 N [Fe (NH4)2(SO4)2·6H2O] 
titrated for the sample (mL) 
VB = Digested blank titration volume (mL) 

N = Normality of [Fe (NH4)2(SO4)2·6H2O] solution 
= 0.005N
0.003 = 3 × 10-3, where 3 is equivalent weight of C
Ws = Weight sample (10 g)

Table 3. Mean squares of the analysis of variance (ANOVA) for the microbial characteristics evaluated (bacteria, 
fungi, actinomycetes and microbial biomass carbon MBC) and yield in onion in the different cropping systems

Source of variability	 Df	 Bacteria	 Fungi	 Actino	 MBC	 Yield

Replicate	 2	 4.13E+07	 5.66E+01	 4.39E+08	 2650	 0.04
Year (Y)	 1	 3.48E+10***	 1.03E+04***	 3.71E+11***	 20571***	 0.63***
Fertilizer (F)	 3	 2.86E+10***	 7.23E+03***	 8.98E+10***	 29971***	 12.30***
Intercropping (I)	 3	 1.43E+10***	 1.17E+04***	 1.99E+11***	 161875***	 7.83***
Y*F	 3	 6.38E+08***	 7.06E+02***	 4.53E+10***	 5465**	 0.12***
Y*I	 3	 1.54E+09***	 5.41E+02***	 7.59E+10***	 3645*	 0.28***
F*I	 9	 9.61E+08***	 6.40E+02***	 7.84E+09***	 2725**	 0.24***
Y*F*I	 9	 6.82E+08***	 2.68E+02***	 7.95E+09***	 1548	 0.03***
Error	 38	 3.57E+07	 3.63E+01	 1.22E+08	 860	 0.00
Total	 71					   

Df: Degree of freedom; *: significant at 0.05; **: significant at 0.01; ***: significant at 0.005; Actino: Actinomycetes;  
MBC: Microbial biomass Carbon

Figure 2. Variation in rhizospheric bacterial counts across the 12 cropping systems under this study. The results 
are presented both as combined factors (A) and as individual factors: Growing season (B), intercropping (C) and 
fertilization (D)
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Figure 4. Variability in actinomycetes counts in the different cropping systems studied presented in combined factors 
(A) and each experimental factor effect: Growing season (B), intercropping (C) and fertilization (D)

Figure 3. Variability in fungi counts for each cropping system studied (A) and the effect of each factor: Growing 
season (B), intercropping (C) and fertilization (D)
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Bioassay of microbial community
	 To assess the cultivable microbial 
communities in rhizosphere soils, the colony 
forming units (CFUs) were quantified using a 

plate count method. Each soil sample underwent 
analysis in triplicate. Pure and viable microbial 
counts were obtained through a serial dilution 
technique on nutrient agar medium. Soil samples 

Figure 5. Variability in microbial biomass carbon (MBC) across the cropping systems both presented as combined 
factors (A) and the effects of each factor: growing season (B), intercropping (C) and fertilization (D)

Figure 6. Variability in onion crop yield across different treatments in onion cropping systems. The results are 
presented both as combined factors (A) and the effects of each factor: growing season (B), intercropping (C) and 
fertilization (D)
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(n = 36) were collected before sowing, 53 days 
after sowing (DAS), 96 days after sowing (DAS), 
and post-harvest (134 DAS). For each soil sample, 
10 g was mixed with 90 ml of sterile distilled 
water. After homogenization for 30 minutes, 
the resulting mother solution was diluted from 
10-1 to 10-5, and aliquots (100 µl) of the resulting 
dilutions were spread onto appropriate culture 
media.49 Following bacterial incubation on LPGa 
medium,50 fungal growth on PDA medium,51 and 
actinomycetes on Kuster medium,52 the colony-
forming unit (CFU) was determined after days of 
incubation at 20 °C and was expressed per gram 
(g-1) of dry soil.
	 CFU/g dry soil = Number of colonies × 
Dilution factor / Volume plated (mL) × Dry weight 
of soil (g)

Statistics 
	 The analysis of variance (ANOVA) was 
used in the study to diagnose the effect of factors 
separately and in combination on soil traits.53 
Pearson’s correlation test was carried out to 
investigate the possible associations between yield 
and microbiological traits.54 Principal component 
analysis (PCA) was used as a multivariate test in 

the aim of evaluating relationships between soil 
traits and treatments.55 All tests made in the study 
were carried out using XLStat software.

RESULTS

	 The analysis of variance (ANOVA) 
conducted in this study provided a comprehensive 
assessment of the effects of each factor and their 
interactions on the variability of microbiological 
traits and onion yield (Table 3). The three factors 
growing season, fertilizer, and intercropping as 
well as their interactions, significantly influenced 
the variability of all traits measured in the study. 
For bacterial and actinomycetes counts, the 
growing season emerged as the primary source of 
variability, followed by intercropping and fertilizer 
factors. In the case of microbial biomass carbon 
(MBC) and fungal counts, intercropping was 
identified as the principal source of variability, 
followed by growing season and fertilizer factors. 
Conversely, the main source of variability in 
onion yield was the fertilizer factor, followed 
by intercropping and growing season factors  
(Table 3).

Figure 7. Linear relations between onion yield and microbial parameters across the experimental treatments in 
onion cropping systems (A) bacteria, (B) actinomyces, (C) fungi, (D) microbial  biomass carbon (MBC)
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Means comparison
	 The variation in rhizospheric bacterial 
counts across the 12 different cropping systems 
are shown in Figure 2. The lowest bacterial count 
(about 1.05 × 105 CFU/g) was reported in Cs1 
(On) for both growing seasons, and in Cs2 (OnI), 
Cs4 (OnP), Cs7 (OnF), Cs8 (OnFI), and Cs10 (OnC) 
during the first growing season (Figure 2a). The 
highest bacterial counts were recorded in Cs12 
(OnCO) in both the first and second growing 
seasons, with 2.5 × 105 and 3 × 105, respectively, 
followed by Cs6 (OnPO) with 2 × 105 and 2.5 
× 105 in the first and second growing seasons, 
respectively, and Cs5 (OnPI) with 1.9 × 105 and 2.3 
× 105 (Figure 2a). Figure 2b, showing the effect of 
the growing season on bacterial count variability, 

recorded a significant bacterial count increase 
in the second growing season by around 30% 
compared to the first. Regarding the intercropping 
factor manifested in Figure 2c, carrots showed 
the highest significant increase (27%) compared 
to the control (without intercropping = None). 
For the fertilizer factor (Figure 2d), a significant 
increase in bacterial count was reported in the 
case of NP Regarding actinomycete counts K and 
organic fertilization (compost) when compared to 
the control (no fertilizer added). Organic fertilizer 
showed a high bacterial count increase (42%) 
compared to NPK (35%).
	 Cs1 (On) in both growing seasons 
recorded the lowest scores (⁓50 CFU/g). The 
highest scores were reported in the second 

Figure 8. Principal component analysis (PCA) biplot showing relationships between microbial traits (bacteria, 
actinomycetes, fungi and microbial biomass carbon, MBC) and onion yield across cropping systems and fertilization 
treatments during the two growing seasons, (A) Variables on F1 and F2 axes, (B) growing season, (C) fertilization 
treatment, (D) cropping system
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growing season for Cs12 (OnCO) (⁓180 CFU/g), 
Cs5 (OnPI), Cs11 (OnCI), and Cs8 (OnFI) (⁓160 
CFU/g) (Figure 3a). Regarding the effect of the 
growing season factor, fungi counts in the second 
growing season were around 25% higher than in 
the first season (Figure 3b). For the intercropping 
factor, all three intercropping systems showed 
higher fungi counts than the onion culture without 
intercropping. The highest fungi count was 
reported in the carrot intercropping system, with a 
53% increase, followed by pepper (40%) and fennel 
(18%) (Figure 3c). Concerning the fertilization 
factor, both NPK and organic fertilizers similarly 
increased fungi counts by around 32% compared 
to the control (no fertilization) (Figure 3d). 
	 Regarding actinomycete counts (Figure 
4), the lowest values (around 105 CFU/g) were 
recorded in Cs1 (On) and Cs7 (OnF) for both 
growing seasons. The highest scores were reported 
for Cs12 (OnCO) (7 x 105 CFU/g), Cs11 (OnCI) (6.5 
x 105 CFU/g), Cs6 (OnPO) (5 x 105 CFU/g), and Cs5 
(OnPI) (4.5 x 105 CFU/g) in the second growing 
season (Figure 4a). Figure 4b shows a significant 
increase in actinomycete counts in the second 
growing season by around 40% compared to the 
first. For the intercropping factor, when compared 
to the control, the cropping system OnF had no 
significant impact. In contrast, carrot and pepper 
significantly increased actinomycete counts by 
around 40% and 25%, respectively (Figure 4c). 
Concerning the fertilization factor, organic fertilizer 
showed the highest increase in actinomycete 
counts (40%) compared to the control (Figure 4d).
	 Regarding MBC trait, the lowest scores 
were noted in the first growing season of Cs1 (On), 
Cs2 (OnI), and Cs7 (OnF) (around 500 mg/kg). The 
highest MBC levels were reported in both growing 
season of Cs12 (OnCO) (⁓900 mg/kg), Cs11 (OnCI) 
(⁓780 mg/kg), and Cs10 (OnC) (780 mg/kg) (Figure 
5a). The growth season factor seems had not a 
significant effect on MBC variability (Figure 5b). For 
intercropping factor, using fennel has not showed 
any significant difference compared to the control 
(only onion without intercropping). In contrast, 
MBC significantly increased in the case of carrot 
and pepper by around 25% and 15%, respectively 
(Figure 5c). On the other hand, no significant effect 
was revealed for fertilization factor (Figure 5d).
	 The lowest yields were recorded in Cs7 
(OnF), Cs4 (OnP) and Cs1 (On), with values of 1.5, 

2.2, and 2.7 kg/plant, respectively (Figure 6a). 
The growing season had no significant impact on 
onion yield (Figure 6b). Notably, intercropping 
with fennel led to a significant reduction in onion 
yield by 28% compared to the control (Figure 6c). 
Regarding the fertilization, both NPK and organic 
fertilizers significantly increased onion yield by 
approximately 62% relative to the control with no 
significant difference observed between the two 
fertilizer treatments (Figure 6d). 

Correlation test
	 The correlation test (Pearson) showed in 
Figure 7 revealed the potential association of onion 
yield production with other microbiological traits. 
No significant (p ≥ 0.05) correlations recorded for 
onion yield with fungi count and MBC traits. On 
the other hand, onion yield correlated positively 
and significantly with bacteria count (R2 = 0.35*) 
and actinomycetes count (R2 = 0.29*). 

Principal component analysis
	 Principal component analysis (PCA) was 
adopted in the current study to show the effect 
of treatments on soil microbiological traits and 
onion yield (Figure 8). The first two principal 
components (PC) PC1 and PC2 presents 88% of the 
total variation, with PC1 accounting for 72% and 
PC2 for 16%. All traits studied were presented on 
the positive side of PC1. The associations between 
soil microbiological traits and onion yield, shown 
in Figure 8a, revealed high significant association 
between bacteria and actinomycetes counts and 
between MBC and fungi count. 
	 Figure 8b shows the distribution of 
plots of growing season factor, the majority of 
the second growing season plots are ranked in 
the positive area of PC1 with high scores of yield 
and bacteria, fungi, and actinomycetes counts, as 
well as MBC trait, against low value for the first 
growing season where most of plots are ranked 
in the negative side of PC1 and near to the axe. 
For fertilization factor, plots linked to NPK and 
organic fertilizer are presented in the positive side 
of PC1 with high scores of onion yield and bacteria, 
fungi, and actinomycetes counts, as well as MBC 
trait. However, the plots of non-fertilized onion 
are ranked in the negative side of PC1 with low 
scores of last traits (Figure 8c). For intercropping 
factor, the highest effect was recorded in the 
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case of carrot, where the carrot plots are clearly 
discriminated in the positive side of PC1 with 
high scores of yield and microbiological traits. In 
contrast, no discrimination recorded for other 
crops and control (no intercropping) plots (Figure 
8d).

DISCUSSION 

	 In the present study, we aimed to identify 
the impact of two different agroecological practices, 
namely organic fertilizer and intercropping 
patterns, on onion yield, microbial load (bacteria, 
fungi, and actinomycetes), and microbial biomass 
carbon (MBC), and to reveal the relationships 
between yield and soil microbial characteristics 
within the intercropping system.

Effect of intercropping on microbial biomass 
carbon, microbial load, and yield
	 Soil microorganisms are essential to soil 
health, acting as key players in nutrient cycling 
and overall soil ecosystem functioning. According 
to Janke et al.41,56 an imbalance in the structure of 
soil microbial communities can result in reduced 
crop yields and declining soil quality. Bacteria, 
fungi, and actinomycetes play a central role in 
breaking down organic matter and supporting 
plant growth. Their abundance and activity 
offer valuable insights into dynamic interactions 
between soil, crops, and microbial communities, 
especially within intercropping systems.57 In 
this study, microbial counts varied considerably 
between intercropping and monoculture systems. 
Across all treatments, bacterial and actinomycete 
populations were consistently higher than fungal 
populations over both growing seasons. This shift 
from a fungal-dominated to a bacterial-dominated 
profile suggests an overall improvement in soil 
biological quality, as bacterial communities 
are generally associated with faster nutrient 
cycling, greater enzymatic activity, and enhanced 
disease suppression.56,58,59 This transition toward 
a bacterial-type soil is particularly beneficial in 
systems recovering from soil fatigue caused by 
continuous monoculture.60 Our results confirm that 
intercropping enhances microbial characteristics 
compared to monocropping. Intercropping is 
a sustainable and efficient agronomic practice 
involving the simultaneous cultivation of two or 

more crops or species in the same field.5,57,61 This 
system improves the use of natural resources 
(light, water, nutrients, and space) and ultimately 
enhances crop productivity. In addition to 
yield benefits, intercropping also improves soil 
fertility, supports water conservation, reduces 
pest and disease pressure, and strengthens the 
resilience of agroecosystems to environmental 
stresses.5,62 These outcomes are closely attributed 
to changes in the soil microbiome, which plays 
a critical role in nutrient cycling, organic matter 
decomposition, disease suppression, and broader 
ecosystem functionality.22,62 Increased plant 
diversity in the root zone can stimulate microbial 
proliferation through the release of root exudates 
and improved carbon availability. This is likely 
due to the increased presence of crop residues in 
intercropping systems, which support microbial 
incorporation and organic matter turnover.6 
Several studies have reported that intercropping 
leads to higher microbial biomass carbon (MBC), 
potentially due to greater root biomass and residue 
production.6,63-66 Our results align with those of 
Zhou et al.,67 who found that relay intercropping 
with garlic improved microbial activity, organic 
matter breakdown, and nutrient uptake, driven 
by increased bacterial abundance and a relative 
reduction in fungal populations. Among the three 
intercropping systems evaluated, the onion-carrot 
system emerged as the most effective, resulting 
in significantly higher MBC and microbial counts 
than either the control or the other intercropping 
combinations. This performance is due to the 
complementarity between onion and carrot. 
Onion, a member of the Liliaceae family, develops 
a shallow root system, whereas carrot, a root 
vegetable, produces a deeper, vertically oriented 
taproot. As a result, each crop explores different 
soil layers for water and nutrients.68 Moreover, 
carrot roots are known to release exudates that 
promote microbial growth, contributing to the 
observed increase in microbial biomass.1,69 These 
observations are consistent with earlier findings 
showing that intercropping enhances microbial 
activity through increased root exudation, 
improved moisture retention, and greater root 
surface area.5,15,70,71 The onion-pepper system also 
resulted in a measurable increase in MBC and 
microbial load compared to the onion sole crop, 
though the effect was notably lower than that of 
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onion-carrot. This intermediate performance may 
be due to weaker root complementarity or less 
stimulatory exudate profiles in pepper, which may 
be less efficient at supporting microbial activity in 
the shared rhizosphere.72,73 In contrast, the onion-
fennel intercropping system showed the lowest 
values of MBC and microbial density. Several 
factors may explain this underperformance. 
According to Luqman et al.,74 there is more 
interspecific competition for soil nutrients, space, 
water, and light under intercropping conditions 
than under monocropping. Competition between 
onion and fennel may result in poor resource 
sharing due to differing nutrient requirements 
and the dominance of fennel.1,75-79 Furthermore, 
fennel is known to release allelopathic compounds 
that inhibit both onion development and microbial 
growth.73,78,80 This crop combination may lack any 
synergistic root exudate interactions, leading 
to a neutral or even suppressive rhizosphere 
environment. These findings are consistent with 
previous studies showing that fennel intercropped 
with onion, garlic, or carrot negatively affects 
neighboring crop growth,1,73,77 and with work 
showing fennel dominance in combinations with 
fenugreek,81 cabbage, and cauliflower.79 The limited 
effectiveness of this combination may therefore 
be attributed to both physiological competition 
and unfavorable biochemical interactions, which 
reduce microbial activity and soil health. While 
intercropping generally improved microbial 
attributes, yield results were more nuanced. Onion 
monoculture recorded the highest yield. This 
finding is consistent with studies noting that onions 
grown alone outperform those intercropped with 
coriander or fennel,75 or chilies.74 This may be due 
to reduced interspecific competition and more 
efficient resource use by onions in monoculture. 
Fennel, in particular, was highly competitive, 
with a consistent yield-suppressing effect on 
onion across seasons.73,77 However, the onion-
carrot combination maintained relatively high 
yields while significantly enhancing microbial 
activity, suggesting it may offer a beneficial 
compromise between productivity and soil health. 
This is supported by the positive correlation 
(Figure 7) between onion yield and rhizospheric 
bacterial and actinomycete counts, suggesting 
that the soil microbiome may play an active role 
in enhancing crop productivity.57,62 In contrast, 

the weak correlation between yield and both 
fungal abundance and microbial biomass carbon 
suggests these factors may not have had a strong 
or consistent influence on crop productivity in 
this study. Although fungi contribute to nutrient 
mobilization and help stabilize soil structure, their 
effects may depend on specific environmental 
conditions or particular mycorrhizal relationships 
not captured by total fungal counts.82,83 Similarly, 
microbial biomass carbon, while often used as 
a broad indicator of microbial activity, may not 
reflect the presence or activity of key functional 
microbial groups directly linked to yield.62

Effect of organic fertilization on microbial biomass 
carbon, microbial load, and yield
	 Fertilization plays a vital role in enhancing 
plant development and in promoting soil microbial 
communities, which are essential for maintaining 
soil health and productivity. In the present study, 
both types of fertilizers (organic and mineral) 
significantly improved onion yield and microbial 
characteristics compared to the control treatment, 
demonstrating the strong influence of inputs on 
the biological functioning of soil. Onion yield 
was significantly improved with both NPK and 
compost by approximately 62% compared to 
the unfertilized control. Onions are particularly 
sensitive to nutrient deficiencies due to their 
shallow root systems and limited root branching, 
making them highly dependent on external 
fertilizer inputs.84,85 The increase in bacterial count, 
which rose by 35% and 42% under mineral (NPK) 
and organic (compost) treatments respectively, 
suggests that when compost is applied, nutrients 
are released slowly, minimizing nutrient losses 
and improving nutrient absorption capacity due 
to increased cation exchange capacity.86 Both 
fertilizers also led to similar increases in fungal 
counts (about 32%) relative to the unfertilized 
onion treatment, confirming that microbial 
groups interact positively with improved nutrient 
availability regardless of fertilizer type. Conversely, 
Bebber and Richards40 reported that organic 
fertilization significantly improves functional and 
prokaryotic taxonomic diversity but does not 
necessarily impact fungal diversity. Actinomycete 
measurements demonstrated a strong response 
to compost, increasing by 40% compared to the 
control. According to Li et al.,62 actinomycetes 
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are recognized for their ability to decompose 
complex organic matter and produce antimicrobial 
compounds that may suppress pathogens, 
thereby indirectly improving soil functioning and 
sustainability. Fertilization positively influenced 
microbial biomass carbon (MBC), although the 
overall effect was not statistically significant. The 
highest MBC values were observed in fertilized 
treatments: CS12 (900 mg/kg), CS11 (780 mg/kg), 
and CS10 (780 mg/kg). According to Yasin et al.87 
and Mirzaei et al.,25 the absence of fertilization 
can negatively affect microbial biomass due to 
nutrient depletion. This suggests that compost 
enhances microbial biomass by improving carbon 
availability and stimulating microbial activity. 
These results are in line with previous findings30,88 
showing that organic amendments improve 
soil structure, promote aggregation, and create 
favorable habitats for microbial communities. 
Compost offers a diverse and accessible carbon 
source for microbes,29,42 which promotes microbial 
growth and may initiate a positive feedback 
loop supporting long-term carbon storage. As 
reported by Peng et al.23 and Zhang et al.,24 organic 
manures increase soil organic matter and microbial 
activity, thereby enhancing nutrient cycling. 
The promising results seen here, particularly in 
compost treatments, confirm the findings of Gupta 
et al.,63 who observed increased MBC and yield 
in onion systems following organic amendments. 
This aligns with the PCA results (Figure 8), 
where fertilized plots clustered in the quadrant 
associated with higher microbial activity and yield, 
reinforcing the importance of soil amendments 
in enhancing soil biological function and crop 
performance. Integrating intercropping with 
organic fertilization presents a promising strategy 
for improving soil microbial health, nutrient 
cycling, and long-term agricultural productivity. 
Numerous studies21,22,57,89,90 have shown that these 
practices support the accumulation of microbial 
biomass carbon (MBC), thereby enhancing soil 
carbon sequestration and contributing to climate 
change mitigation by reducing greenhouse gas 
emissions.65 The use of organic amendments 
instead of synthetic fertilizers has been shown 
to increase bacterial, fungal, and total microbial 
biomass by supplying a steady stream of organic 
substrates that sustain microbial growth.91-94 

Organic fertilization is also associated with 
improved microbial diversity and abundance, as 
highlighted by Bebber and Richards40 and Lori et 
al.,95 although effects on fungal diversity may be 
more variable. In our study, both intercropping 
and compost application significantly boosted 
soil microbial populations. This observation is 
consistent with Rekha et al.,96 who demonstrated 
that microbial dynamics are strongly influenced 
by the interaction between cropping systems 
and fertilization regimes. Moreover, Heo et 
al.97 reported that organic amendments in 
intercropping systems can reduce the presence 
of pathogenic fungi such as Aspergillus and 
Ilyonectria, indicating that these inputs promote 
beneficial microbial groups while suppressing 
harmful ones. Organic manures like compost and 
biochar have been recognized for their ability 
to improve soil health and reduce pathogen 
load.40,44,97 When intercropping is combined with 
tailored fertilization management, microbial 
communities tend to exhibit stronger interactions 
and reduced energetic stress, resulting in more 
resilient and functionally efficient ecosystems.5 
For example, Wang et al.98 showed that combining 
green manure with intercropping (soybean 
and milk vetch in tea systems) improved soil 
multifunctionality under stress conditions, while 
Dodiya et al.99 reported more efficient nutrient use 
in intercropping systems due to complementary 
root architecture and improved humus content. 
Agricultural management practices and cropping 
strategies have long been recognized for their 
critical influence on productivity, soil health, and 
microbial dynamics.5,64,65,68 These effects are largely 
attributed to the enrichment of functional genes 
related to carbon cycling and the long-term stability 
of soil organic matter. Rai et al.100 further confirmed 
that integrated nutrient management in legume-
based systems improved soil carbon sequestration 
and reduced the carbon footprint. Similarly, He et 
al.90 found that combining organic fertilization with 
potato-onion intercropping enhanced nutrient 
uptake, regulated microbial communities, and 
improved overall crop productivity. Compost, 
when paired with legume-based intercropping, 
has also been shown to boost olive tree growth 
and soil health.101 However, it is worth noting 
that while Jannoura et al.102 observed increased 
microbial activity with organic fertilization, they 
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did not find a significant effect from intercropping 
alone. In this study, the proportions of bacterial, 
fungal, and actinomycete populations increased 
under different intercropping systems. Both 
monoculture and intercropping affect microbial 
communities, but intercropping shows greater 
sensitivity to microbial community changes than 
monoculture.57,89 This suggests that intercropping 
could enhance bacterial and fungal communities 
within the soil microbiota.57,62

CONCLUSION

	 This study highlights the potential of 
onion-based intercropping systems, particularly 
when combined with organic fertilization, to 
enhance both soil microbiological quality and 
crop productivity in agroecosystems. The onion-
carrot combination under compost application 
(OnCO) emerged as the most effective treatment, 
showing significant increases in microbial biomass 
carbon (MBC), fungi, actinomycetes, and bacteria 
counts, along with the highest yield per plant. 
Notably, microbial biomass carbon reached up to 
946 mg/kg in OnCO during the second growing 
season, while actinomycetes counts exceeded 
7 × 105 UFC/g. These results underline a strong 
positive correlation between microbial activity 
and onion yield. These findings demonstrate that 
sustainable practices such as intercropping and 
organic inputs can improve the biological health 
of soils which is an essential factor for long-
term agricultural resilience. The use of compost 
not only enriched microbial diversity but also 
supported soil microbiome ecological balance. 
Adopting diversified cropping systems and favoring 
organic fertilization offers a promising strategy 
to promote soil biodiversity, improve yield, and 
reduce dependency on synthetic inputs. These 
findings offer practical recommendations for 
developing biologically enriched, productive 
onion cultivation systems and emphasize the 
critical role of soil microbiomes in advancing 
sustainable vegetable production. However, 
while this study provided important quantitative 
insights into microbial abundance and activity, a 
deeper understanding of soil microbial diversity 
in Moroccan agroecosystems would benefit 
from qualitative approaches. Techniques such as 
metagenomic analysis could further reveal the 

taxonomic composition and functional potential 
of microbial communities, offering a more 
comprehensive view of soil ecosystem health.
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