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Abstract 
Drug resistance in pathogens represents an escalating global health challenge, particularly in 
Plasmodium falciparum, the causative agent of malaria. The emergence of drug-resistant strains 
complicates treatment and highlights the need for rapid and accurate detection methods. In P. 
falciparum, resistance has been largely attributed to single nucleotide polymorphisms (SNPs) in key 
genes such as PfMDR1, PfKelch13, and PfCRT, which are associated with resistance to artemisinin-
based combination therapies and chloroquine—two mainstays of antimalarial treatment. This study 
aimed to develop a bioinformatics pipeline capable of analyzing P. falciparum genomic sequences 
to detect and annotate SNPs that may confer drug resistance. The pipeline was implemented on the 
Galaxy online analysis platform using its workflow function. It processes both reference and sample 
sequences through alignment, mutation detection, SNP selection, and annotation based on a reference 
general feature format. Although no SNPs were identified directly within known drug resistance genes 
in the analyzed samples, the developed pipeline successfully detected and annotated SNPs across 
the chromosomes containing these genes. This approach provides a practical framework for future 
applications in point-of-care detection and surveillance of drug-resistant P. falciparum strains.
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INTRODUCTION

	 Drug resistance is rapidly emerging in 
many pathogens, including multidrug-resistant 
Mycobacterium tuberculosis,  methicil l in-
resistant Staphylococcus aureus, and Neisseria 
gonorrhoeae.1,2 This rise in resistance has been 
linked to the extensive use of antimicrobials in 
medicine and agriculture, which enables surviving 
microbes to transmit their resistance traits to 
subsequent generations.3,4 Drug resistance is 
typically assessed in laboratories by exposing 
pathogens to various antimicrobial agents and 
monitoring their proliferation rates.5 These 
tests, however, are time-consuming, and early 
administration of effective treatment is crucial 
for improving patient outcomes.6 Rapid, on-site 
detection of antimicrobial resistance would 
therefore help reduce the severity and lethality 
associated with drug-resistant infections.7,8

	 Drug resistance arises in microbes 
when a subset of the population exposed to 
antimicrobials survives, eventually leading to 
the evolution of resistance-associated genes.9,10 
Because these are genetic changes, alterations 
in the microbial genome can be detected and 
used to develop point-of-care diagnostic tests.11 
Drug resistance genes acquire various types 
of mutations, including insertions, deletions, 
and single nucleotide polymorphisms (SNPs).12 
Accordingly, several studies have sought to 
identify these genetic mutations to determine 
the drug resistance potential of pathogens.13 
For example, computational simulations using 
clustered regularly interspaced short palindromic 
repeats (CRISPR) and loop-mediated isothermal 
amplification protocols have been employed 
to detect treatment-resistant Plasmodium 
falciparum by targeting SNP loci through in silico 
methods.14,15 Targeting suspected drug resistance 
genes with nucleases can further confirm their 
role in conferring resistance. CRISPR, in particular, 
is widely used for genetic modification because a 
single guide RNA directs the nuclease to create 
precise double-stranded breaks at the desired 
genomic site.16 
	 P. falciparum is the parasite responsible 
for malaria in humans, with an estimated 263 
million cases and 597,000 malaria-related deaths 
reported in 2023.17,18 The disease is commonly 

transmitted through mosquito vectors.19 However, 
P. falciparum has shown a steady rise in various 
forms of drug resistance, leading to increased 
treatment complexity and poorer patient 
outcomes.20 Previous studies have demonstrated 
that drug resistance genes can be rapidly isolated 
and detected to enable point-of-care testing and 
guide more effective therapy.14,15 To contribute to 
these efforts, the present study aims to develop 
a detection pipeline capable of identifying SNPs 
within chromosomes 5, 7, and 13 of P. falciparum.

MATERIALS AND METHODS

Study design
	 This study was designed in three main 
stages to develop a SNP detection pipeline: (1) 
data acquisition of both the reference genome 
and sample sequences, (2) SNP identification 
through sequence alignment, and (3) annotation 
of the detected SNPs, if present. The analysis 
and pipeline development were performed using 
existing tools available on Galaxy, a web-based 
data analysis platform from which the workflow 
was extracted.21 The Galaxy genome annotation 
pipeline provides an accessible, automated, 
and scalable framework for genome analysis. 
It includes all the necessary tools to help with 
both functional and structural gene annotation, 
enabling researchers with minimal bioinformatics 
experience to perform accurate functional and 
structural gene annotation. An illustration of the 
workflow is presented in Figure, and the complete 
pipeline can be accessed through the Galaxy 
Server.22 Because real laboratory samples were 
not available, dummy samples were generated by 
combining known mutation sites of P. falciparum 
with the full genomic sequences of chromosomes 
5, 7, and 13.

Genomic sequence sample acquisition
	 Genomic sample data were obtained 
from previously published research with publicly 
available datasets accessible at http://www.
malariagen.net/resource/29. The samples 
originated from regions in Africa, South Asia, and 
Southeast Asia.23 Data from outside these regions 
were excluded through filtering. The dataset was 
provided in spreadsheet format and processed 
using the Python package pandas. Given the 
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large dataset size, a subset of 100 samples was 
randomly selected while ensuring representation 
from different geographic locations.

Reference sequence sample acquisition
	 The complete reference genome 
sequence of P. falciparum was obtained from the 
National Center for Biotechnology Information 
under accession number GCF_000002765.3.24 The 
reference genome was provided in FASTA format. 
Genomic information from chromosomes 5, 7, and 
13 was specifically used, as these regions contain 
the loci of the PfMDR1, PfCRT, and PfKelch13 
genes, respectively.

Sequence alignment
	 The acquired sample sequences were 
aligned against the reference genome to identify 
variations indicative of genomic mutations. The 
reference genome sizes for chromosomes 5, 7, 
and 13 were 1.3 Mbp, 1.4 Mbp, and 2.9 Mbp, 
respectively. Sequence alignment was performed 
using the nucmer tool from the MUMmer 
alignment suite, which is specifically designed 
to align nucleotide sequences between two 
genomes.25 The resulting alignments were then 
sorted and indexed using SAMTools sort, which 
organizes the detected differences according to 
their genomic coordinates. The final output of this 
step was stored in Binary Alignment Map (BAM) 
format to enhance storage efficiency and facilitate 
subsequent analyses.

BAM and Variant Call Format (VCF) processing
	 The sorted BAM output from SAMTools 
sort was processed using FreeBayes to identify 
mutations and generate a VCF file for downstream 
analysis. The detected variants included insertions 
and deletions (indels), SNPs, multiple nucleotide 
polymorphisms, and other complex combinations 
of mutations. Because not all detected variants are 
of high quality, additional filtering criteria were 
applied based on Phred quality scores and read 
depth to ensure accuracy. Variant quality control 
was performed using SnpSift, which filters variants 
according to these parameters.26 To isolate SNPs 
specifically, bcftools view was employed. The 
final output of this step was a curated VCF file 
containing only high-confidence SNPs.

SNP annotation
	 SnpEff was used to annotate the identified 
SNPs. SnpEff is a prediction tool that annotates 
detected mutations based on the general feature 
list of a reference genome.26 To perform the 
annotation, a local database was first created 
by acquiring complete annotation files for P. 
falciparum chromosomes 5, 7, and 13 from 
PlasmoDB (plasmodb.org). These files, based on 
the latest Pf3D7 genome release, were compiled 
using the SnpEff database build utility. Annotation 
was then performed separately for each of the 
three chromosomes.

RESULTS AND DISCUSSION

SNP annotation
	 A random sample of 100 genomic 
sequences was acquired and verified to ensure 
representation from diverse geographic regions 
and countries. These sequences were aligned with 
the reference sequences for chromosomes 5, 7, 
and 13, which correspond to P. falciparum drug 
resistance genes. A total of 313, 3,321, and 4,188 
variants were initially identified on chromosomes 
5, 7, and 13, respectively. Because these variants 
included low-quality mutations and non-SNP 
variations, filtering was performed. After applying 
the quality threshold of a Phred score greater 
than 30, only 12, 103, and 79 high-confidence 
SNPs were retained for chromosomes 5, 7, and 
13, respectively. These SNPs were subsequently 
annotated against the P. falciparum Pf3D7 version 
3 reference genome to determine their genomic 
locations and potential functional impacts. The 
SnpEff tool generated annotation results that 
included information such as the number of effects 
categorized by impact, functional class, mutation 
type, and genomic region, as well as details 
on specific base substitutions. The complete 
annotation dataset, including positional and 
functional details for each mutation, is available 
in the appendix and has been archived as a data 
repository on Zenodo (https://zenodo.org).27

Chromosome 5 SNP annotations 
	 The annotation results for chromosome 
5 are presented in Tables 1-3. Table 1 summarizes 
the functional impact of the identified mutations 
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and their frequency of occurrence. Table 2 
details the genomic regions where the SNPs were 
detected and their variant types, whereas Table 
3 lists the observed base substitutions and their 
frequencies.
	 According to Table 1, a total of 12 SNPs 
were identified and annotated on chromosome 5, 
the majority of which were classified as modifiers. 
Only one SNP exhibited a moderate impact, 
whereas the remaining 11 were predicted to have 
modifier effects on gene translation within this 
chromosome.
	 As shown in Table 2, the single SNP with 
a moderate effect was identified as a missense 
mutation. Most of the remaining SNPs were 

located in intergenic regions, with only one 
occurring within an exon.
	 The base substitutions for these 
SNPs are summarized in Table 3. The most 
frequent nucleotide changes were adenine to 
thymine (A→T) and thymine to adenine (T→A), 
together accounting for six of the 12 SNPs. Other 
substitutions included adenine to guanine (A→G), 
thymine to cytosine (T→C), guanine to adenine 
(G→A), and cytosine to thymine (C→T). A single 
missense mutation occurred, resulting in a codon 
change from GAA to AAA. This substitution led to 
an amino acid change from glutamic acid to lysine.

Table 1. Number of variants by impact of the annotated 
mutations in chromosome 5

Type	 Count

Moderate	 1
Modifier	 11

Table 2. Number of variants by type of variance and 
where they occur in chromosome 5

     Type		       Region

Type	 Count	 Type	 Count

5’ UTR variant	 1	 Exon	 1
Intergenic Region	 7	 Intergenic	 7
Intron Variant	 3	 Intron	 3
Missense Variant	 1	 5’ UTR	 1

Table 3. Base changes count for each SNPs with the 
row being the original reference bases, meanwhile the 
column representing what base they changed into for 
each SNP in chromosome 5

	 A	 C	 G	 T

A	 0	 0	 2	 3
C	 0	 0	 0	 1
G	 1	 0	 0	 0
T	 3	 2	 0	 0

Table 4. Number of variants by impact of the annotated 
mutations in chromosome 7

Type	 Count

Low	 12
Moderate	 19
Modifier	 74

Figure. Schematic representation of the analysis pipeline. Green shapes indicate the main workflow steps, whereas 
blue shapes denote the specific tools used within the Galaxy platform
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Chromosome 7 SNP annotations
	 The annotation results for chromosome 
7 are presented in Tables 4-6. Table 4 summarizes 
the functional impact of the identified mutations 
and their frequency of occurrence. Table 5 
details the genomic regions where the SNPs were 
detected and their variant types, whereas Table 
6 lists the observed base substitutions and their 
frequencies. 
	 According to Table 4, a total of 105 SNPs 
were identified and annotated on chromosome 
7, the majority of which were classified as 
modifiers. Nineteen SNPs exhibited a moderate 
impact, whereas 74 were predicted to have 
modifier effects on gene translation within this 
chromosome. Moreover, 12 SNPs were categorized 
as having a low impact.
	 As show in Table 5, most SNPs were 
located in intergenic regions. Nineteen of the 
identified SNPs resulted in missense mutations, 
whereas 12 were synonymous. The remaining 
variants were distributed across intronic and 
transcript regions of the chromosome.

	 The base substitutions for these SNPs 
are summarized in Table 6. The most frequent 
nucleotide change was thymine to cytosine (T→C), 
observed 17 times. Both transition and transversion 
mutations were detected across all nucleotide 
bases. Codon changes (Appendix 1) associated 
with these SNPs resulted in multiple amino acid 
substitutions, most commonly asparagine to 
aspartic acid (three occurrences), and lysine to 
asparagine and glutamine substitutions, each 
occurring twice (Appendix 2). In total, 19 amino 
acid residues were altered owing to missense 
SNPs, while 12 synonymous mutations were also 
identified (Appendix 3).

Chromosome 13 SNP annotations
	 The annotation results for chromosome 
13 are presented in Tables 7-9. Table 7 summarizes 
the functional impact of the identified mutations 
and their frequency of occurrence. Table 8 

Table 5. Number of variants by type of variants and 
where they occur in chromosome 7

     Type		      Region

Type	 Count	 Type	 Count

Intergenic Region	 59	 Exon	 33
Intron Variant	 11	 Intergenic	 59
Missense Variant	 19	 Intron	 11
Non-coding	 2	 Transcript	 2
transcript exon 
variant
Non-coding	 2
transcript variant
Synonymous	 12
Variant

Table 6. Base changes count for each SNPs with the 
row being the original reference bases, meanwhile the 
column representing what base they changed into for 
each SNP in chromosome 7

	 A	 C	 G	 T

A	 0	 10	 15	 9
C	 2	 0	 2	 10
G	 15	 2	 0	 6
T	 13	 17	 2	 0

Table 7. Number of variants by impact of the annotated 
mutations in chromosome 13

Type	 Count

Low	 4
Moderate	 10
Modifier	 65

Table 8. Number of variants by type of variance and 
where they occur in chromosome 13

     Type		      Region

Type	 Count	 Type	 Count

Intergenic Region	 61	 Exon	 14
Intron Variant	 4	 Intergenic	 61
Missense Variant	 10	 Intron	 4
Splice region variant	 1			 
Synonymous Variant	 4

Table 9. Base changes count for each SNPs with the 
row being the original reference bases, meanwhile the 
column representing what base they changed into for 
each SNP in chromosome 13

	 A	 C	 G	 T

A	 0	 4	 19	 11
C	 2	 0	 2	 13
G	 7	 1	 0	 6
T	 8	 12	 0	 0
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details the genomic regions where the SNPs were 
detected and their variant types, whereas Table 
9 lists the observed base substitutions and their 
frequencies. 
	 According to Table 7, a total of 79 SNPs 
were identified and annotated on chromosome 13, 
the majority of which were classified as modifiers. 
Ten SNPs exhibited a moderate impact, whereas 65 
were predicted to have modifier effects on gene 
translation within this chromosome. Moreover, 
four SNPs were categorized as having a low impact.
	 As shown in Table 8, most SNPs were 
located in intergenic regions. Ten of the identified 
SNPs resulted in missense mutations, whereas 
four were synonymous. Additional variants 
were observed within intronic regions of the 
chromosome.
	 The base substitutions for these SNPs 
are summarized in Table 9. The most frequent 
nucleotide change was adenine to guanine (A→G), 
followed by cytosine to thymine (C→T) (Appendix 
2). In terms of amino acid substitutions, nine 
residues were altered owing to missense SNPs, 
while four synonymous mutations were also 
identified (Appendix 4).
	 In total, 100 sequence samples were 
analyzed for existing SNPs, with variant quality 
determined using the Phred quality score (Q 
value). A Q value of 10 corresponds to a 1-in-10 
probability of an incorrect base call, whereas a Q 
value of 20 indicates a 1-in-100 probability.28 Under 
the parameters used in this study, the expected 
error rate was approximately 1 in 1,000. SNPs 
were annotated to assess their potential impact 
on amino acid translation, transcription, and gene 
expression.29 Nucleotide substitutions can be 
categorized as either transversions or transitions.30 
Transversions involve the exchange of a purine 
(adenine or guanine) for a pyrimidine (cytosine 
or thymine) or vice versa, whereas transitions 
occur where a purine replaces another purine, 
or a pyrimidine replaces another pyrimidine.31 
Depending on their genomic context, these 
mutations may alter gene expression when 
occurring in regulatory regions or modify protein 
structure and function by changing the encoded 
amino acids.32

SNPs in chromosome 5 and their implications for 
P. falciparum
	 Analysis of the sample revealed 12 
SNPs on chromosome 5, with only one located 
within an exon and affecting translation and 
transcription. The remaining 11 SNPs showed 
modifier effects, as expected since they occur 
in intergenic regions.33 Modifier mutations can 
influence transcriptional regulation, potentially 
leading to overexpression or underexpression 
of specific genes.34 Known mutations within the 
PfMDR1 gene include N86Y, Y184F, and D1246Y;20 
these changes are known to alter the absorption 
and activity of artemisinin-based combination 
therapies in P. falciparum.35 The PfMDR1 gene is 
located between positions 957,890 and 962,149 
on chromosome 5.36 The single annotated exon 
SNP, found at position 172,801 (Appendix 5), lies 
outside this region, within an ATP-dependent 
helicase gene (PF3D7_1202000), suggesting a 
potential regulatory effect on transcription.37 The 
absence of SNPs directly within the PfMDR1 locus 
indicates that, within this dataset of 100 samples, 
no high-confidence mutations met the stringent 
filtering criteria. However, several modifier SNPs 
were detected adjacent to the PfMDR1 gene 
(Appendix 5), demonstrating the capacity of the 
pipeline to accurately detect SNPs from genomic 
sequence input.38 

SNPs in chromosome 7 and their Implications for 
P. falciparum
	 A total of 103 SNPs were identified 
and annotated on chromosome 7. Most were 
classified as modifiers, although several low- and 
moderate-impact SNPs were also detected. Low-
impact SNPs are typically synonymous mutations, 
where base substitutions do not alter the amino 
acid sequence,39 yet they may still affect gene 
regulation or downstream expression.40 In 
contrast, moderate-impact SNPs cause amino acid 
substitutions that can alter protein structure or 
function.41 Most SNPs were located in intergenic 
regions, suggesting possible regulatory effects on 
transcription and translation.33 In total, 33 SNPs 
were detected within exons, 19 of which led to 
amino acid substitutions. The drug resistance 
gene located on chromosome 7 is PfCRT, which 
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encodes the protein responsible for exporting 
chloroquine from the digestive vacuole of the 
parasite.42 Canonical PfCRT mutations—K76T, 
C101F, and L272F—occur within positions 403,222 
to 406,317.20 The annotated SNPs in this study did 
not correspond to those specific sites (Appendix 6), 
suggesting that no known chloroquine resistance 
mutations were present. Nevertheless, other 
detected SNPs may still influence parasite survival. 
For instance, several were located in genes 
involved in erythrocyte adhesion and immune 
evasion, which can reduce parasite clearance 
rates.43 Furthermore, the abundance of intergenic 
SNPs could potentially increase PfCRT expression, 
enhancing chloroquine efflux and promoting 
resistance under drug pressure.44 

SNPs in chromosome 13 and their implications 
for P. falciparum
	 Seventy-nine SNPs were detected and 
annotated on chromosome 13, the majority of 
which were located in intergenic regions. These 
variants are likely to exert modifier effects on 
gene translation and expression.33 Synonymous 
mutations were also identified, alongside 10 
SNPs that resulted in amino acid substitutions. 
Drug resistance associated with chromosome 13 
is primarily linked to mutations in the PfKelch13 
gene, with common variants including N458Y, 
Y493H, and R539T.20 The PfKelch13 gene is located 
between positions 172,4817 and 172,6997, 
whereas the annotated SNPs in this study were 
found near—but not directly within—this region 
(Appendix 7).45 Although none of the detected 
SNPs corresponded precisely to known resistance 
sites, their proximity suggests potential roles in 
regulatory modification or emerging variants that 
warrant further investigation.

CONCLUSION

	 P. falciparum remains a persistent 
challenge in malaria treatment owing to the 
emergence and spread of drug resistance. These 
resistances arise from genetic mutations driven 
by multiple factors, highlighting the importance 
of detecting and understanding their effects. 
Most resistance in P. falciparum has been linked 
to SNPs, which formed the focus of this study. 

The developed pipeline successfully detected and 
annotated SNPs within chromosomes 5, 7, and 13, 
which harbor the PfMDR1, PfCRT, and PfKelch13 
genes—key determinants of chloroquine and 
artemisinin-based combination therapy resistance. 
Although no SNPs directly within these genes 
were identified in the sample dataset, the results 
demonstrate that the pipeline can reliably identify 
and annotate SNPs when provided with genomic 
sequence data. Further refinement and validation 
of the pipeline could be achieved by incorporating 
a larger dataset and using targeted amplification of 
resistance-associated genes through polymerase 
chain reaction to enhance accuracy and detection 
sensitivity. Overall, this research establishes a 
practical framework for the detection and analysis 
of SNPs in P. falciparum, contributing to ongoing 
efforts to monitor and address antimalarial drug 
resistance.
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