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Abstract

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds, composed of two or more fused
benzene rings sourced from unburned fossil fuels and petroleum, recognized for their wide presence
in the environment and harmful impacts on human health and ecosystems. PAHs pose remarkable
challenges to living habitats due to their mutagenic properties. Fluorene is a low-molecular-weight
heterocyclic aromatic hydrocarbon with multiple industrial applications, for example, pigments,
fluorescents, and pharmaceuticals. Its xenobiotic activities on living cells may lead to severe health
concerns including cancer and organ damage. The degradation of PAHs through several physicochemical
reactions is costly, labor-intensive, time-consuming, and detrimental to the environment. However,
biodegradation of PAHs using microorganisms such as bacteria, fungi, and algae leads to a sustainable
and cost-effective method. Despite ongoing research, finding potent microbial strains capable of
degrading PAHs comprehensively is a significant challenge. This review highlights the toxicity of
PAHSs (especially fluorene) on the environment and summarizes effective microorganisms and their
approaches for meaningful PAH bioremediation.
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INTRODUCTION

The environment is consistently getting
polluted by diverse anthropogenic causes, such as
the overconsumption of fossil fuels and biomass.
Petroleum is a vast reservoir of thousands of
organic compounds, but some chemicals are
directly and indirectly harmful to humans, animals,
and plants. Without any concern, we are using
these toxic organic pollutants in our daily lives,
which lead to fatal diseases like cancer, lung and
liver dysfunction, skin and brain disorders, kidney
failure, reproductive infertility, etc.'?

Polycyclic aromatic hydrocarbons
(PAHs), composed of multiple benzene rings,
like Naphthalene, Anthracene, Phenanthrene,
Fluorene, Pyrene, Dibenzothiophene, and several
thousand of their derivatives are present in soil, air,
and water as a group of organic priority pollutants.
They have direct and indirect toxic, genotoxic,
mutagenic, or carcinogenic impacts on plants,
animals, human health, and microorganisms.>*
PAHs bind with environmental pollutants and
become more rigid and toxic than before, as a
result, they are not easily degradable. Most of
the PAHs are hydrophobic, thermostable, and
have heterocyclic aromatic ring configurations like
fluorene, so they are resistant and highly persistent
to the environment.® PAHs are widely used for
various purposes such as agrochemicals, dyes,
electronics, fluorescent, liquid crystals, pigments,
pesticides, pharmaceuticals, resins, roofing tar,
thermoset functional plastic, and so on.”

The main sources of PAHs are fossil
fuels such as petroleum (oil), coal, and gas,
plant-biomass, garbage, and narcotic plants
like tobacco. PAHs are exerted as byproducts
when those organic compounds are combusted
incompletely.®® Some PAHs are produced in the
reservoir, but some are synthesized or converted
from large organic polymers. Seepage and spillage
of fossil fuels, industrial waste, stormwater runoff,
and volcanic eruptions are also the key sources
of fluorene and other PAHSs in surface water, and
groundwater.'%!

Polycyclic aromatic hydrocarbons enter
humans and other organisms through direct
inhalation of carbon engine exhaust, cigarette
smoke, and wood smoke, consumption of grilled
or charred meats, contaminated bread, processed

and pickled foods, wastewater, and polluted
cow milk.” PAHs arrive in the body through skin
absorption, or oral administration, then gather
in adipose tissue, liver, and kidney through the
chylomicron process, and subsequently lead to
many known and unknown diseases at cellular and
genomic levels.>!* PAHs can alter gene regulation
and lead to disorders in the future, and even this
harmful impact may go to the next generation.?

Physical, chemical, and biological
procedures can degrade the toxic PAHs.'* Anyways,
physical, and chemical degradation processes
are costly and time-consuming, moreover, both
are not suitable for huge, contaminated areas
like the sea, landfills, gasworks, and so on.
Therefore, the biological process can be better
than others. Bioremediation of PAHs refers mainly
to microbial degradation by bacteria and fungiand
phytoremediation by plants.**®

In this study, we described to find how
PAHs impact human health and the environment,
the general mechanism of their degradation, and
potential microbial sources that could biodegrade
PAHs remarkably. The objective of this review is to
lead to conclusive research in the future.

General properties of PAHs

PAHs are composed of two or more fused
benzene cycles, as naphthalene is the smallest
polycyclic aromatic hydrocarbon bearing only
two benzene rings, and anthracene is composed
of three rings. In the PAH structure, the common
key elements are Hydrogen, Carbon, and Oxygen,
and the structure is stable due to the ring’s
resonance ability of pi () bonds, however, some
other chemical elements or compounds can bind
with or between carbon rings to initiate new PAHs,
for instance, Dibenzothiophene has a sulfur.'*
Several thousands of PAH derivatives exist on the
earth, according to their structures and molecular
weights PAHs can be classified into low molecular
weight (LMW: <202 g/mol, 2-3 fused benzene
rings), middle molecular weight (MMW: <228 g/
mol, 4 rings), and higher molecular weight (HMW:
>228 g/mol, >4 rings).'” The physicochemical
properties of PAHs differ from one to another
based on their molecular weight, nevertheless,
almost all PAHs form crystals, and a few are soluble
in water, while most of them are soluble in organic
solvents like acetone or ethanol.
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Fluorene is a white crystal organic
compound obtained from coal tar that emits an
aromatic smell like naphthalene. It is flammable
and has a violet fluorescence. It is normally
insoluble in water, but a small amount (1.69
mg/L) is soluble at 25 °C. It is widely used in
dyes, polymers, electronic devices, sensors, and
photochromic materials, and as a talented blue
emitter for organic light-emitting diodes.*®

Toxicity of Fluorene and other PAHs

Fluorene is one of the highly toxic
polycyclic aromatic hydrocarbons, broadly
scattered in the contaminated water and dry land
ecosystems. Its toxicity affects plants, animals,
algae, fungi, and even some bacteria; human
beings are the most vulnerable victims of it.?° Hsieh
et al. discovered the reproductive, developmental
toxicity and immunotoxicity of fluorene and
other PAHs through in silico, in vitro, and in vivo
methods. They found that polycyclic aromatic
compounds (PACs) like fluorene could have
diverse toxicity profiles, for instance, genotoxicity
or carcinogenicity (in silico toxicity), xenobiotic
homeostasis and stress response (in vitro activity),
and enriched toxicity in conjunction with the
availability of carcinogenicity (in vivo activity).?

The terminal differentiation of mouse
embryonic stem cells (mESCs), and embryonic
bodies (EBs) was affected by Fluorene-9-bisphenol
(BHPF), a derivative of fluorene. The study revealed
that BHPF exposure led to loss of self-renewal and
pluripotency in mESCs by increasing the expression
of the inflammatory gene IL6. Moreover, BHPF
altered the terminal differentiation pathway,
controlling the expression of 16 genes that related
to different cell types, for example, cardiomyocytes,
keratinocyte epithelium, lymphatic endothelium,
macrophages, monocytes, nephrons proximal
tubule cells, neurons, pancreatic beta cells, retinal
ganglion cells, and T-cells.*

Jia et al. demonstrated that fluorene had
strong antiestrogenic adverse effects on female
development. They conducted some tests on CD-1
mice and found endocrine-disrupting properties
in adolescent mice by multiple toxicological
bioassays.?? Benzo[b]fluoranthene (B[b]F), a
derivative of fluorene, synthesized glutathione
(GSH) in HepG2 cells (liver cells). GSH levels were
increased up to 3-fold by B[b]F than control levels,

and constant cytotoxicity IC_ > 100 uM after 24,
48, and 72 hours.?

Fluorene-9-bisphenol also had a toxic
effect on freshwater algae, Chlorella vulgaris,
which was sensitive to BHPF at a concentration of
>0.1 mg/L, and lipid peroxidation was remarkably
increased. Besides, the oxidative stress caused by
BHPF, the activities of superoxide dismutase (SOD)
were notably declined in algal cells by >0.5 mg/L
of BHPF.%#

Polycyclic aromatic hydrocarbon
contamination is widespread, particularly in
countries involved in oil production and processing.
Saudi Arabia is one of the petroleum-producing
countries, contaminated with several PAHs. Al-
Daghri et al. reported that they found at least 6
PAHSs, ranging between 54.5% and 90.9% positive
in the blood serum of some experienced teenagers
(195 children of 17 years and below from 11
locations in Saudi Arabia were examined).?®
Another research disclosed that 16 different PAHs
were determined from 50 locations in Riyadh
City. The concentrations of PAHs in road dust
were from 0.01-126 ng/g. Children at high risk for
asthma suffered more from PAH exposure dose by
ingestion and dermal absorption than adults in the
city.?®

The abundant presence and toxicity
of fluorene and other PAHs in our environment
remind us to mitigate them through a harmless
and cost-effective process like biodegradation.
Numerous studies have identified several bacteria,
archaea, fungi, and algae, and their co-cultures, for
PAH bioremediation. However, the key procedure
of the degradation is poorly understood (Table 1).

The biodegradation of PAHs by microorganisms

Microorganisms, mainly bacteria and fungi
can adapt themselves to various environmental
conditions. They can tolerate many toxic molecules
by changing their adaptation efficiency and gaining
essential exogenous DNA from the environment.
Mohapatra and Phale discovered several species
of Proteobacteria, Firmicutes, and Actinobacteria
from soil flora, which degrade several polycyclic
aromatic hydrocarbons.>?

Another group of researchers reported
that Pseudomonas aeruginosa san ai degraded
96%, 50%, and 41% of 20 mg/L of fluorene,
phenanthrene, and pyrene respectively, after
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Table 1. Toxicity of PAHs on human health and other species

PAHs Implementation Toxicity/Dose Impact Ref.
Naphthalene Healthy and non-smoking 0.02 mg/Kg, The PAHs were [27]
Fluorene participants (n = 8), serum, 0.04 mg/Kg, absorbed and
Phenanthrene and urinary metabolites. 0.02 mg/Kg, and eliminated from the
Pyrene 0.03 mg/Kg participants.
C3-Fluorene, Skeletal muscle and liver Mean: 632 ng/g Efficient and [28]
Dibenzothiophene, samples from stranded Bigg’s  (lipid weight) preferential
and Naphthalene Killer Whales and Southern contaminant
Resident Killer Whales, in exposure to the fetus.
British Columbia.
2-Fluorene Non-smoker adults in the USA  176.7 ng/L Most of the PAHs had [29]
3-Fluorene (n =2691), urinary PAH 68.7 ng/L inverse impacts on
9-Fluorene metabolites. 236.8 ng/L skin disease and
1-Phenanthrene 112.2 ng/L obesity.
1-Pyrene 77.7 ng/L
9,9-bis[4-(2- Immature female CD-1 mice. 10 mg/kg, BPEF had higher [22]
hydroxyethoxy) 30 mg/kg, and antiestrogenic effects
phenyl] Fluorene 90 mg/kg (body that disrupted CD-1
(BPEF) weight/day) BPEF mice female
in peanut oil development.
Fluorene Healthy and non-smoking Air 15.9 £ 23.7 ng/g The exposure level of [30]
Force employees in Denmark per 24 h, where the Fluorene was
(n =79), skin wipes, and reference was 5.28 significantly higher
urinary metabolites. +7.87 ng/g per than the reference
24 h, P =0.007) group (Biomarker).
Fluorene-9- Toxic effect of BHPF on green >1.0 mg/L C. vulgaris was [24]
bisphenol (BHPF) algae Chlorella vulgaris and its ~ >0.1 mg/L sensitive to BHPF.
metabolites. >0.5 mg/L Lipid peroxidation
was increased.
Fluorene-9- The livers of 20 day-old female 2 mg/kg, Leukocyte infiltration [31]
bisphenol CD-1 mice. 10 mg/kg, and and cytoplasmic
(BHPF) 50 mg/kg vacuolation were
(bw/3 day) detected in the liver
of the mouse.
Fluorene, and In Sweden, chimney sweeps, 0.32 and 0.37 pg/g PAH-exposed workers [32]
4-OH- Creosote-exposed, and (Chimney), had a higher risk of
Phenanthrene unexposed workers (n = 151, 53 and 1051 pg/g cancer, and AHRR
(4-OH-PHE) 19, 152), urinary (Creosote), and genes were markers
monohydroxylated metabolites. 0.15 and 15 pg/g for lung cancer risk.
(healthy samples)
Naphthalene, Asthmatic and healthy 26.2 and 10.7 ng/ml PAH pollution [25]

Phenanthrene,
Benzo(a)Pyrene,
Fluorene

children with PAHs in serum (n
=195), in Saudi Arabia.

20.3 and 6.2 ng/ml
4.8 and 2.1 ng/ml
3.6 and 2.5 ng/ml

strongly influences
childhood asthma.
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Table 3. Characteristics of biodegrading microbial species

Species (Strain) Sources Media Physical properties (tolerance) Ref.
pH Temp. Salt/
Metal
Rhodococcus sp. Purified strain LB with PAHs 7.0 28°C 0.5% [39]
Bacterial isolates Seawater and Marine Agar 6.8-7.2 29-31°C 30%-31% [14]
(Sp1, Sp2, Sp3, Marine Sponge with PAHs
and Sp4)
Aspergillus sydowii Marine sediment MSM with SE 4.0-10.0 10-40°C  1%-10% (w/v)  [36]
(BOBA1) Fungus (Opt.:5.0)  (Opt.: 25°C) (Opt.: 4%)
Mucor irregularis Marin soil MSM with FLU 7.0 29 °C 0.5% [37]
(bpo) Fungus
Pseudomonas sp. Previously studied MSM with FLU 7.0 20-42 °C 0.5% [19]
(SMT-1) (Opt.: 30 °C)
Nocardia sp. Wastewater, Soil, Sauton’s Medium 6.8-8.2 5-28 °C CPC 0.005% [35]
and Sediment with PAH 6.2-7.8 6-32°C
6.4-8.0 4-29 °C

P. aeruginosa Alkaline cutting oil MSM with FLU, upto 9.8 30°C NaCl 0.5% [34]

PYR, and PHE Cd 7.3 mM,

Cr5.0 mM

Coriolopsis byrsina  decayed wood Mineral Salt Broth  3.0-8.0 15-55°C 1-3.2% [43]
(APC5) (Fungus) surface with PYR (Opt.: 6.0) (Opt.: 25 °C)
Pleurotus Tropical rain forest MMB with PYR 2.0-10.0 04-60 °C 0.5% [8]
pulmonarius (Opt.:5.0) (Opt.:25°C) Tween 80
(FO43) (Fungus)
Penicillium Soil from a BSM with PYR 5.0 22 °C 0.5% [46]

janthinellum, gasworks site
and P. terrestre

(Fungi)

seven days.?* Desta et al. pointed out that SMT-
1 Pseudomonas sp. had a fluorene-degrading
4921-dioxygenase gene confirmed by primer-
specific PCR. The 4921-dioxygenase enzyme
exhibited the optimum activity at pH 7.5 and 25
°Cin Tris-HCl buffer after 1 minute, as indicated by
the reaction velocity.’® Some species of Nocardia
showed potential bioremediation on polycyclic
aromatic hydrocarbons, phenol, and sodium
sulfate; among them, N. farcinica was the most
prevalent contributor in PAHs biodegradation.®
A marine fungus named Aspergillus
sydowii BOBA1 was studied to degrade spent
engine oil and PAHs. The fungus carried several
genes such as dioxygenase, decarboxylase,
hydrolase, reductase, and peroxidase which
were integrated into PAHs and xenobiotic
metabolism.3 Another filamentous fungus, Mucor
irregularis (strain bpo1l), had degraded fluorene
efficiently through the Box—Behnken Design

(BBD) process with optimum parameters (pH-7,
temperature-32.5 °C, substrate concentration 100
mg/L, and dry weight 2 g), and resulted in 81.50%
fluorene degradation on 5" day.?’

Struszczyk-wita et al. described that
creosote, composed of aromatic hydrocarbons, is
normally an undegradable compound. However,
Bjerkandera adusta DSM-3375 mycelium contained
Mold cells that obtained enzyme was used in the
bioremediation of soil contaminated with creosote
(2% w/w). The B. adusta degraded 35% of creosote
and almost 73%, 79%, and 72% of fluoranthene,
pyrene, and fluorene, respectively, after 15 weeks
(Table 2).38

Microbial culture for PAHs biodegradation
According to previous research, bacteria
and fungi were collected from contaminated soil,
wastewater, sediments, and marine water, and
sponges. It seemed that the microbes grown in

Journal of Pure and Applied Microbiology 6

www.microbiologyjournal.org



Ali et al | J Pure Appl Microbiol. 2025. https://doi.org/10.22207/JPAM.19.4.39

Table 4. The sources and function Enzymes for PAH bioremediation

Species Enzyme(s)

Activities Ref.

Pseudomonas sp.
(SMT-1)

4921-Dioxygenase

The metal salt (FeCl,) exhibited the enzyme’s low [19]
activity in Fluorene degradation; the enzyme was

most active at pH 7.5 and 25 °C in Tris-HCl buffer.

Aspergillus sydowii Dioxygenase, Decarboxylase,
(BOBA1) Fungus Hydrolase, Reductase,

and Peroxidase
Dihydrodiolde-

hydrogenase
Ring-hydroxylating oxygenase
(oe and B subunits), Aldehyde
dehydrogenase, Dihydrodiol
dehydrogenase, Ring cleavage
dioxygenase, and Hydratase-
aldolase

Ligninolytic enzyme

Nocardioides sp.
(KP7)
Mycobacterium
vanbaalenii
(PYR-1, and 6PY1)

Coriolopsis byrsina
(APC5) Fungus

Cycloclasticus sp.  Dioxygenase (pahA 1-4 gene

(78-ME) cluster)
Alteromonas sp. Naphtalene dioxygenase
(SN2) (nahAc/NDO)

These enzymes have a potential role in the [36]
metabolism of PAHs and xenobiotic compound.

The enzyme is involved in phenanthrene degradation. [51]

The enzymes are the parts of the o-phthalate and [51-
the beta-ketoadipate pathway for PAH degradation. 53]

C. byrsina produced a significant amount of enzyme. [43]

The enzyme and gene products had significant PAHs  [54]
degrading capacities up to 5 rings.

The enzyme functions in gentisate and catechol [55]
metabolic pathways and degrades naphthalene (PAH).

PAH-contaminated environments can degrade
PAHs. The studies targeted to find out the most
efficient species of microbes to degrade PAHs.
However, the strains of microbes were developed
by repeated subcultures on a suitable medium and
abiotic parameter or stress (pH, temperature, salt
concentration, and metal or compound tolerance).
In most cases, we noticed that microbes were
cultured in Mineral Salt Medium (MSM) with
different PAH doses, moreover, other media like
marine agar, nutrient broth, etc. were also used.*#
To detect the PAH metabolism by microorganisms,
sophisticated chromatographic techniques
like High-Performance Liquid Chromatography
(HPLC), Gas Chromatography (GC), Thin Layer
Chromatography (TLC), Mass Spectrophotometry
(MS), and Fourier-Transform Infrared Spectroscopy
(FTIS) were used (Table 3), and to execute these
experiments some essential chemicals like
Anhydrous Na,SO,, methanol, n-hexane, and
nitrogen gas were also used.'*194%

General pathways of PAH degradation
The mechanism of PAH degradation
needs several catabolic reactions in the presence

of specific enzymes (Table 4). Some bacteria
such as Pseudomonas sp., Rhodococcus sp.,
Mycobacterium sp., and Staphylococcus sp.,
for example, start PAH catabolism with ring
hydroxylation and oxygenation to activate
benzene rings.*” The hydroxylated and dihydrodiol
intermediates undergo dehydrogenation and
yield the central intermediates catechols or
protocatechuates. Enzyme, dioxygenase performs
an ortho and a meta-cleavage of catechols to
muconic acids by completing the tricarboxylic
acid (TCA) cycle and finally degrades the PAH into
the end-product as carbon dioxide (CO,).** On the
other hand, most fungi cannot use PAHs as their
main carbon sources but can co-metabolize PAHs
to other products. However, ligninolytic fungi like
Aspergillus sp., Cladosporium sp., Cunninghamella
sp., and Penicillium sp., have PAHs catabolic ability
(2-5 rings). They primarily oxidize PAH by the
cytochrome P450 and oxygen to form unstable
arene oxide intermediates that are later converted
into tarns-dihydrodiols and phenols, and finally to
glucosides, glucuronides, xylosides, methoxyls,
and sulfates (Figure). Whereas the white-rot fungi
produce extracellular ligninolytic enzymes, such as
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Figure. Biodegradation pathway of PAHs: Bacteria with some extracellular enzymes, examples of some PAHs, and
the mechanism of enzymatic degradation of PAHs; the figure illustration followed by Liang et al.; Zhang et al.>®*’
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lignin peroxidases, manganese, and laccases that
oxidize PAHs in the presence of H,0,to quinones.
Finally, the fungi cleave quinones to CO,.**

DISCUSSION

Polycyclic aromatic hydrocarbons are
naturally occurring organic molecules originating
in the mine of petroleum, discharged into the
environment with industrial wastes and incomplete
combustion of fossil fuels.>® The toxicity of PAHs
is directly proportional to their molecular weight,
which means the heavier, the more toxic to the
victims. Nevertheless, low molecular weight PAHs
like fluorene and its derivatives are also harmful.*
Fluorene can affect embryonic stem cells, neurons,
lymphatic cells, and T-cells and can regulate several
genes abnormally.?*

The common procedures to detect
the presence and quantity of PAHs, even their
degradation level and byproducts production,
HPLC, TLC, paper chromatography, GC-MS, SFC-
MS, and FTIR UV-spectrophotometer are used
and analyzed.*® The optimum wavelength for PAH
detection was examined at 254-255 nm, and other
chemicals like n-hexane, methanol, liquid nitrogen,
etc. were used to prepare samples for analysis.>*’

The key components of PAH
biodegradation are enzymes that enhance the rate
of biochemical reactions for stepwise degradation
of PAHs. The most crucial enzymes for degradation
are the Ligninolytic enzymes like decarboxylase,
dioxygenase, hydrolase, oxidase, and reductase.
During PAH catabolism several intermediates are
produced in different steps; finally, the TCA cycles
are completed by yielding simpler molecules and
some byproducts.3®43

The bioremediation of PAHs is executed
by biological tools like microorganisms and
plants. The degradation by plants is known as
phytoremediation, and degradation by microbes
is well-known as biodegradation. A lot of bacteria
and fungi are around us which can combat from
LMW PAHs to HMW PAHs using their metabolites.
PAHs contaminated soil and marine resources
are the main targets for collecting samples of
biodegradable species. After a fruitful selection by
lab experiments, the strains are identified through
DNA sequencing and analyzing alignment with the
previous database via Bioinformatic tools.3*%

According to previous studies some
efficient species of bacteria are Sphingobium
sp., Bacillus licheniformis, Sphingobacterium
sp., Pseudomonas aeruginosa, Massili, Bacillus,
Coriolopsis byrsina, which could degrade PHAs
for more than 50%-95% from the culture. On the
other hand, some potential fungi are Penicillium
janthinellum, Pleurotus pulmonarius, Coriolopsis
byrsina, Cladosporium sp., Marasmiellus sp,
Aspergillus sydowii, etc; they could degrade more
than 70%-98% PAHs from the culture media.®*®

The suitable media for biodegradation
were MSM, LB, Marin agar, Nutrient broth,
Sauton’s broth, BSM, and MMB; both solid and
broth were used in various previous studies.
Most of the strains had better growth at around
pH 7.0 and temperature 22-25 °C, though some
strains could grow a wide range of pH (2.0-10.0)
and temperature 4.0-60.0 °C, and the overall
time range was between 7 and 30 days for
degradation. 14260

This study focuses on PAHSs, their toxicity,
degradation mechanisms, necessary methods,
materials, and microbial species that excellently
degrade PAHs. The future perspective is to search
for and develop a novel microbe that can degrade
many PAHs significantly, to mitigate toxic PAHs
from the environment.

CONCLUSION

The use of PAHs is increasing regularly
from the industries to the consumers which
consequently poses a permanent danger to human
beings as well as other species. It is high time to
make sensitization about the safe use of toxic
organic compounds like fluorene. PAHs pollute
the environment in three directions (soil, air,
and water). Contaminated soil is dangerous for
plants, crops, and animals, whereas air pollution
with PAHs increases the risk of liver cancer and
respiratory disorders especially in children. It has
been uncovered that long-time exposure to high
molecular weight PAHs can alter DNA in some
organisms, CD-1 mice, for instance. Hopefully,
many marine symbiont bacteria and fungi have
the potential to degrade PAHs significantly, such
as Aspergillus sydowii, Mucor irregularis, and
Marasmiellus sp. However, some species degrade
one or two PAHs separately, but our focus should
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be to find a unique species that can realistically
mitigate multiple PAHs.
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