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Abstract
Escherichia coli are serious pathogens of concern responsible for intestinal and extraintestinal disorders. 
The presence of antibiotic-resistant pathogenic E. coli in seafood is a growing concern for food safety. 
This study investigated the antibiotic resistance profile of E. coli (n = 33) representing different 
pathogroups isolated from seafood. Pathogenic E. coli isolates from fresh seafood samples collected 
in Western and Southern Mumbai, India, were used for antibiotic susceptibility testing. The Kirby-
Bauer disc diffusion method was used for analysing the susceptibility patterns, and the results were 
interpreted according to the CLSI (Clinical & Laboratory Standards Institute) guidelines. The multiple 
antibiotic resistance (MAR) index was determined to understand the level of antibiotic resistance. 
The highest resistance was observed against the third-generation cephalosporins cefotaxime (97%) 
and cefpodoxime (87.8%), while the least resistance was against chloramphenicol (12.1%) and Co-
trimoxazole (18.2%). More than 50% of the isolates were resistant to third-generation cephalosporins, 
nalidixic acid, ciprofloxacin, aminoglycosides such as gentamicin and amikacin, imipenem, meropenem, 
piperacillin-tazobactam, Amoxycillin-clavulanic acid, and colistin. The highest (0.95) and the lowest 
(0.09) MAR indices were recorded for isolates belonging to enterohaemorrhagic E. coli (EHEC) and 
enteroaggregative E. coli (EAEC) pathogroups, respectively. The high resistance to multiple drugs in 
various pathogroups of E. coli from seafood emphasizes the need to trace and contain the sources of 
resistant bacteria to ensure the safety of seafood for consumption and prevent dissemination of such 
strains in the seafood consumer community. 
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INTRODUCTION

	 The growth of antimicrobial drug 
resistance in bacteria is a one-health issue 
that poses significant health challenges to the 
public, impacts food security, and undermines 
sustainable development globally.1 The surge in 
the occurrence of resistant superbugs has become 
a global concern and has threatened the future 
of antimicrobial therapy.2 Recurrent misuse and 
overuse of antibacterial agents like antibiotics in 
humans and animal health has a direct influence 
on the emergence of drug resistance in bacterial 
pathogens of human health significance.3 Humans 
can acquire resistant enteric pathogens through 
various sources, such as contaminated food 
and water. The coastal-marine environment 
is readily prone to faecal contamination from 
human and animal wastes introduced through 
land runoff, sewage discharge, and various other 
anthropogenic activities.4 Consequently, fish and 
shellfish harvested from faecally contaminated 
waters harbour enteric pathogens. Among others, 
E. coli is an important bacterium from a human 
health perspective, found associated with fish 
and shellfish exposed to faecal contamination.5 
Although E. coli strains are well-known common 
commensals residing in the digestive tract of 
humans and the endotherms, distinct clonal types 
have acquired virulence traits, making them highly 
pathogenic, capable of triggering various intestinal 
and extraintestinal infections.
	 The traditional indicator status of E. coli 
changed with the identification of pathogroups 
that can cause diverse infections across all age 
groups. E. coli indicates the existence of other 
enteric bacteria, viruses, and parasites, which 
are introduced via faecal contamination, and is 
also a pathogen itself capable of causing diverse 
infections. Based on the serovar distribution, 
presence of virulence genes, and the interactions 
with the cultured cells, pathogenic E. coli are 
broadly classified into five pathogroups, namely 
enterotoxigenic E. coli (ETEC), enteropathogenic 
E. coli (EPEC), enterohemorrhagic (Shiga toxin-
producing) E. coli (EHEC/STEC), enteroaggregative 
E. coli (EAEC), and enteroinvasive E. coli (EIEC).6

	 Resistance to antibiotics is increasingly 
being reported in food-associated E. coli. The 
imprudent use of antibiotics in healthcare services 

and agriculture is one of the key determinants 
contributing to the rising resistance against 
antibiotics in pathogenic E. coli. Food as a 
vehicle for resistant pathogens can have serious 
implications for the health of the consumer 
community, as well as the dissemination and 
evolution of resistant clones.7

	 Anthropogenic contamination of coastal-
marine waters contributes to the incidence of 
enteric bacterial and viral pathogens. The level of 
faecal contamination, the incidence of E. coli, and 
their different pathogroups in fresh and processed 
seafood have been reported from India.8,9 However, 
the problem is more confounding when multidrug-
resistant strains are encountered in seafood, 
like the extended-spectrum b-lactamase (ESBL) 
or the carbapenemase-producing strains.10,11 
The incidence of blaNDM-harboring E. coli in wild-
caught seafood from India has emphasized the 
need to focus on the consequences for public 
well-being due to seafood-originated antibiotic-
resistant bacteria. The ability of E. coli to persist 
continuously in seawater over an extended 
period can contribute to its wider dissemination 
and exposure to horizontal gene transfer events, 
leading to the acquisition of Antimicrobial 
resistance (AMR) genes from the environment. 
E. coli contamination of seafood is a significant 
challenge for food safety in developing economies 
with strained sanitation infrastructure, owing 
to the large population, particularly in urban 
areas.12 Recently, we reported the isolation of 
E. coli belonging to all pathogroups (EHEC/STEC, 
EPEC, ETEC, EAEC, and EIEC) from fresh finfish 
and shellfish samples marketed in Mumbai, 
Maharashtra, India.9 In this study, we investigated 
the pattern of resistance of pathogenic E. coli 
isolates from seafood representing distinct 
pathogroups towards important antibiotics. This 
will further help us understand the implications of 
such bacteria on consumer health. 

MATERIALS AND METHODS

Isolates of Escherichia coli
	 Confirmed isolates of E. coli (n = 33) 
used in this study were previously recovered 
from fresh seafood samples collected from 
fish landing centres, retail fish markets, and a 
retail supermarket, all located in Mumbai, India  
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Table 1. Escherichia coli isolates used in this study, their pathogroup affiliations, serogroups and the source of 
isolation

No.	 Isolate	 Pathogroup	 Serogroup	 Source

1	 PSE64	 EHEC	 O120	 Parapenaeopsis stylifera
2	 PMH55	 EHEC	 O157	 Penaeus monodon
3	 MPH7	 EHEC	 026	 Polydactylus heptadactylus
4	 LSHM6	 EHEC	 083	 Harpadon nehereus
5	 4SBD12	 EAEC	 O18	 Harpadon nehereus
6	 TIS71	 EHEC	 O120	 Parapenaeopsis stylifera
7	 TIE83	 ETEC	 07	 Parapenaeopsis stylifera
8	 CRS10	 EIEC	 07	 Metapenaeus affinis
9	 HNE10	 EHEC	 083	 Harpadon nehereus
10	 NET87	 EHEC	 O149	 Odontamblyopus roseus
11	 4MSH40	 EHEC	 O134	 Parapenaeopsis stylifera
12	 DHS39	 ETEC	 07	 Johnius macrorhynus
13	 TMOT1	 EHEC	 O20	 Opisthopterus tardoore
14	 TEC19	 ETEC	 O83	 Meretrix casta
15	 TMSA2	 EHEC	 O157	 Opisthopterus tardoore
16	 SC2	 EHEC	 083	 Harpadon nehereus
17	 PSM65	 EHEC	 O120	 Parapenaeopsis stylifera
18	 BDS6	 ETEC	 O7	 Harpadon nehereus
19	 BD651	 EHEC	 O83	 Harpadon nehereus
20	 TMA7	 ETEC	 O134	 Fenneropenaeus indicus
21	 MLV17	 EHEC	 O135	 Metapenaeopsis stridulans
22	 LSBD21	 EHEC	 O120	 Harpadon nehereus
23	 MAM8	 EHEC	 O135	 Megalaspis cordyla
24	 BDE6	 EHEC	 O120	 Harpadon nehereus
25	 4MSH38	 EHEC	 O135	 Parapenaeopsis stylifera
26	 MLV18	 EHEC	 O134	 Metapenaeopsis stridulans
27	 4SSH61	 EHEC	 O135	 Parapenaeopsis stylifera
28	 TIM651	 EPEC	 O120	 Parapenaeopsis stylifera
29	 TSOT13	 EHEC	 O134	 Opisthopterus tardoore
30	 TECL3	 EHEC	 O7	 Meretrix casta
31	 LEBD13	 EAEC	 O134	 Harpadon nehereus
32	 PMM31	 EHEC	 O157	 Penaeus monodon
33	 PMH14	 EPEC	 O135	 Penaeus monodon

(Table 1).9 Among 33 E. coli isolates, 16 were 
isolated from finfish and 17 were from shellfish 
(Table 1). Of these, 23 isolates belonged to EHEC/
STEC, five to ETEC, two to each of EPEC and EAEC, 
and one to EIEC. The EHEC isolates consisted of 
serotypes O120, O157, O26, O83, O149, O134, 
O20, O135 and O7. ETEC isolates belonged to O7, 
O83, and O134; EPEC isolates to O120 and O135; 
EAEC to O18 and O134; and EIEC to O7. The isolates 
were stored in glycerol broth at -80 °C till further 
analysis. 

Antibiotic susceptibility testing
	 The susceptibility of E. coli isolates to 21 
antibiotics was studied using the disc diffusion 

method. The following antibiotics were tested; 
Cefotaxime (CTX; 30 µg), Ceftazidime (CAZ; 30 µg), 
Cefoxitin (CX; 30 µg), Cefpodoxime (CPD; 10 µg), 
Ceftriaxone (CTR; 30 µg), Cephalothin (CEP; 30 µg), 
Chloramphenicol (C; 30 µg), Ciprofloxacin (CIP; 
5 µg), Co-Trimoxazole (COT; 25 µg), Gentamicin 
(GEN; 10 µg), Imipenem (IPM; 10 µg), Meropenem 
(MRP; 10 µg), Nalidixic acid (NA; 30 µg), Ertapenem 
(ETP; 10 µg), Piperacillin/Tazobactam (PIT; 
100/10 µg), Aztreonam (AT; 30 µg), Amoxycillin-
clavulanic acid (AMC; 30 µg), Colistin (CL; 10 µg), 
Amikacin (AK; 30 µg), Tetracycline (TE; 30 µg) and 
Trimethoprim (TR; 5 µg). 
	 The Kirby-Bauer method was used to 
determine the antibiotic sensitivity of E. coli. 
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Bacteria were grown in Mueller-Hinton (MH) 
medium (Hi-Media, Mumbai, India) to 0.5 
McFarland turbidity unit. The broth culture was 
inoculated onto a Mueller-Hinton agar plate by 
spreading it uniformly on the agar with a sterile 
swab. After drying the plates for 5 minutes, the 
antibiotic discs were placed on the agar surface 
using sterile forceps. After incubation at 37 °C for 
18 hours, the diameter of the zones of inhibition 
was measured. Interpretations as susceptible, 
intermediate and resistant were made as per the 
guidelines of Clinical and Laboratory Standards 
Institute (CLSI).13 

Multiple Antibiotic Resistance (MAR) index
	 The level of resistance against antibiotics 
was calculated employing the formula,
MAR index = a/b, 
where 
a is the number of antibiotics to which the 
bacterium is resistant, and b is the total number 
of antibiotics tested.14 

RESULTS 

Susceptibility patterns of isolates of pathogenic 
E. coli against antibiotics
	 Table 1 presents the details of E. 
coli isolates used in this study, including their 
pathogroup affiliations, serogroups, and the source 
of isolation. The majority of the isolates screened 
belonged to the EHEC pathogroup, followed 
by ETEC, EPEC, EAEC, and EIEC. The serogroup 
O120 was the most prevalent serogroup among 
EHEC isolates, and O7 was the most prevalent 
among ETEC isolates. The susceptibility patterns 
of pathogenic E. coli isolates against selected 
antibiotics are shown in Table 2 and Figure 1. Third-
generation cephalosporin resistance was found to 
be common in the tested isolates, with 32 out of 
33 (97%) isolates being resistant to one or more 
cephalosporins. The highest resistance was against 
cefotaxime (97%), followed by cefpodoxime 
(87.8%), ceftazidime (78.8%), ceftriaxone (66.7%), 
cephalothin (63.6%), and cefoxitin (57.6%). 

Table 2. Antibiotic susceptibility patterns of E. coli isolates

Antibiotics used	 No. (%)  	 No. (%)  	 No. (%) 
	 resistant 	 intermediate	 sensitive
		  resistant

Cefotaxime (CTX) 	 32 (97)	 1 (3)	 0
Ceftazidime (CAZ) 	 26 (78.8)	 4 (12.1)	 3 (9.1)
Cefoxitin (CX) 	 19 (57.6)	 7 (21.2)	 7 (21.2)
Cefpodoxime (CPD) 	 29 (87.8)	 2 (6.1)	 2 (6.1)
Ceftriaxone (CTR)	 22 (66.7)	 3 (9.1)	 8 (24.2)
Cephalothin (CEP) 	 21 (63.6)	 8 (24.2)	 4 (12.1)
Chloramphenicol (C)	 4 (12.1)	 8 (24.2)	 21 (63.6)
Ciprofloxacin (CIP)	 22 (66.7)	 4 (12.1)	 7 (21.2)
Co-Trimoxazole (COT)	 6 (18.2)	 17 (51.5)	 10 (30.3)
Gentamicin (GEN)	 26 (78.8)	 3 (9.1)	 4 (12.1)
Imipenem (IPM)	 22 (66.7)	 7 (21.2)	 4 (12.1)
Meropenem (MRP)	 25 (75.8)	 3 (9.1)	 5 (15.1)
Nalidixic Acid (NA)	 24 (72.7)	 5 (15.2)	 4 (12.1)
Ertapenem (ETP)	 16 (48.5)	 10 (30.3)	 7 (21.2)
Piperacillin/Tazobactam (PIT)	 28 (84.8)	 3 (9.1)	 2 (6.1)
Aztreonam (AT)	 28 (84.9)	 1 (3.0)	 4 (12.1)
Amoxycillin-clavulanate (AMC)	 19 (57.6)	 10 (30.3)	 4 (12.1)
Colistin (CL)	 31 (93.9)	 2 (6.1)	 0
Amikacin (AK)	 29 (87.9)	 3 (9.1)	 1 (3.0)
Tetracycline (TE)	 10 (30.3)	 5 (15.2)	 18 (54.5)
Trimethoprim (TR)	 9 (27.3)	 15 (45.4)	 9 (27.3)
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	 Further, 28 (84.9%) isolates were resistant 
to aztreonam, 25 (75.8%) to meropenem, 22 
(66.7%) to imipenem, and 16 (48.5%) were 
resistant to ertapenem. A high level of resistance 
was noted against quinolone antibiotics, with 
24 (72.7%) isolates being resistant to nalidixic 
acid and 22 (66.7%) isolates being resistant to 
ciprofloxacin. The aminoglycoside resistance 
was also significant. Twenty-nine (87.9%) and 
26 (78.8%) isolates were resistant to amikacin 

and gentamicin, respectively. Thirty-one (93.9%) 
isolates were resistant to colistin.
	 Among other antibiotics, 28 (84.8%) 
exhibited resistance to piperacillin/tazobactam, 
and 19 (57.6%) were resistant to the amoxycillin-
clavulanate antibiotic-inhibitor combination. 
The isolates were relatively more susceptible 
to co-trimoxazole, tetracycline, trimethoprim, 
and chloramphenicol antibiotics, with 6 (18.2%), 
10 (30.3%), 9 (27.3%), and 4 (12.1%) isolates, 

Figure 1. Antibiotic susceptibility patterns of pathogenic E. coli

Figure 2. The multiple antibiotic resistance (MAR) index ranges of E. coli patho groups
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respectively exhibiting resistance to these 
antibiotics. 
	 None of the isolates were sensitive to 
cefotaxime and colistin. A very few isolates showed 
sensitivity towards amikacin (1, 3.0%), cefpodoxime 
(2, 6.1%), and piperacillin/Tazobactam (2, 6.1%), 
indicating a high level of resistance of the tested 
isolates towards these antibiotics. A relatively high 
level of sensitivity was noted against tetracycline 
(18, 54.5%) and chloramphenicol (21, 63.6%), 
where the number of sensitive isolates exceeded 
that of resistant and intermediate-resistant 
isolates. However, in the case of co-trimoxazole 

and trimethoprim, the number of intermediate-
resistant isolates exceeded that of resistant and 
sensitive isolates, at 17 (51.5%) and 15 (45.4%), 
respectively. 
 
Multiple drug resistance profiles of E. coli isolates 
and the MAR index	
	 Most of the tested isolates displayed 
multiple drug resistance (MDR) phenotypes. The 
MAR index of the tested E. coli ranged from 0.09 
to 0.95 (Table 3 and Figure 2). Two isolates, PSE64 
and TSOT13, belonging to the EHEC pathogroup, 
had a MAR index of 0.95. On the contrary, isolate 
LEBD13, which belonged to EAEC, showed the 
least resistance (two antibiotics), with a MAR 
index of 0.09. Two other isolates, PMH14 (EPEC) 
and TEC19 (ETEC), exhibited resistance to three 
and five antibiotics, respectively, with minimum 
MAR indices of 0.14 and 0.24 (Table 3). TIS71, 
MLV17, LSBD21, and BDE6, belonging to the EHEC 
pathogroup, exhibited a high level of resistance, 
with each having an MAR index of 0.9. All isolates 
of EHEC O120 serogroup, the most prevalent 
among others, had a comparatively high MAR 
index, ranging from 0.76 to 0.95 (Table 3). 
	 The one isolate representing the EIEC 
pathogroup (CRS10) showed resistance to 9 out of 
21 antibiotics, with an MAR index of 0.43 (Table 3 
and Figure 2). The two EAEC isolates (4SBD12 and 
LEBD13) exhibited a difference of 0.39 in value. 
The range of MAR index obtained for the five 
ETEC and two EPEC isolates tested varied from 
low to high, with values of 0.24 to 0.81 and 0.14 to 
0.62, respectively. Fifteen out of 23 (65.2%) EHEC 
isolates had a MAR index above the average MAR 
index of 0.65. Overall, the MAR index range of 
isolates belonging to the EHEC pathogroup ranged 
between 0.33 and 0.95, and the least MAR index 
was noted for the isolate PMM31 (0.33). All three 
EHEC O157 isolates, PMH55, TMSA2, and PMM31, 
tested in this study showed a varied MAR index 
of 0.86, 0.81, and 0.33, respectively. These were 
isolated from shrimp (Penaeus monodon) and fish 
(Opisthopterus tardoore) samples. 
	 Of 23 EHEC isolates tested in this study, 
two were resistant to 20 antibiotics, 4 to 19,  
2 to 18, 3 to 17, 3 to 16, 1 to 15, 3 to 13, 2 to 12, 
and one each to 9, 8, and 7 antibiotics (Table 3). 
Multidrug-resistance patterns of EHEC isolates 
are shown in Figure 3. All the EHEC isolates tested 

Table 3. Multiple antibiotic resistance (MAR) indices 
of the isolates  

Isolate	 Patho-	 Sero-	 Number of	 MAR
	 group	 group	 antibiotics to 	 index
			   which resistant

PSE64	 EHEC	 O120	 20	 0.95
TSOT13	 EHEC	 O134	 20	 0.95
TIS71	 EHEC	 O120	 19	 0.9
MLV17	 EHEC	 O135	 19	 0.9
LSBD21	 EHEC	 O120	 19	 0.9
BDE6	 EHEC	 O120	 19	 0.9
PMH55	 EHEC	 O157	 18	 0.86
4MSH38	 EHEC	 O135	 18	 0.86
TIE83	 ETEC	 O7	 17	 0.81
4MSH40	 EHEC	 O134	 17	 0.81
TMSA2	 EHEC	 O157	 17	 0.81
TECL3	 EHEC	 O7	 17	 0.81
MPH7	 EHEC	 O26	 16	 0.76
SC2	 EHEC	 O83	 16	 0.76
PSM65	 EHEC	 O120	 16	 0.76
TMA7	 ETEC	 O134	 15	 0.71
MLV18	 EHEC	 O134	 15	 0.71
LSHM6	 EHEC	 O83	 13	 0.62
BD651	 EHEC	 O83	 13	 0.62
4SSH61	 EHEC	 O135	 13	 0.62
TIM651	 EPEC	 O120	 13	 0.62
HNE10	 EHEC	 O83	 12	 0.57
NET87	 EHEC	 O149	 12	 0.57
BDS6	 ETEC	 O7	 12	 0.57
4SBD12	 EAEC	 O18	 10	 0.48
CRS10	 EIEC	 O7	 9	 0.43
DHS39	 ETEC	 O7	 9	 0.43
TMOT1	 EHEC	 O20	 9	 0.43
MAM8	 EHEC	 O135	 8	 0.38
PMM31	 EHEC	 O157	 7	 0.33
TEC19	 ETEC	 O83	 5	 0.24
PMH14	 EPEC	 O135	 3	 0.14
LEBD13	 EAEC	 O134	 2	 0.09



	  www.microbiologyjournal.org7Journal of Pure and Applied Microbiology

Prakasan et al | J Pure Appl Microbiol. 2025. https://doi.org/10.22207/JPAM.19.4.32

showed resistance to colistin, and 21 isolates 
each exhibited resistance to aminoglycosides, 
monobactams, and amoxycillin-clavulanate. Five 
isolates were resistant to phenicol (Figure 3). Five 
ETEC isolates were tested, with one isolate each 
being resistant to 17, 15, 12, 9, and 5 antibiotics. 
Five isolates, three of which belonged to the O7 
serotype and one each to O83 and O134, exhibited 
varying drug resistance patterns, with their MAR 
indices ranging from 0.24 to 0.81 (Figure 3). All 
the isolates were resistant to third-generation 
cephalosporins (Figure 3). 
	 Two EPEC isolates tested were resistant 
to 13 and three antibiotics, respectively, while 

two isolates of EAEC were resistant to 10 and two 
antibiotics. Two EPEC isolates differed significantly 
in terms of antimicrobial resistance, with isolate 
TIM651 exhibiting resistance to 13 antibiotics, 
including cephalosporins,  carbapenems, 
aminoglycosides, b-lactam/inhibitor combinations, 
aztreonam, and colistin. In contrast, isolate PMH14 
was resistant to only three antibiotics: cefotaxime, 
aztreonam, and colistin (Table 4). A similar trend 
was observed in EAEC isolates also. 
	 The least resistance was observed in an 
isolate of EAEC (LEBD13), which was resistant to 
only two antibiotics, colistin and amikacin (Table 
4). This isolate was recovered from a sample 

Figure 3. Multidrug-resistance patterns of E. coli pathogroups
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Table 4. Antibiotic resistance profiles of E. coli isolates exhibiting multidrug-resistance (MDR) phenotypes

Isolate 	 No. of	 Resistance profile
	 antibiotics 
	 to which 
	 resistant

PSE64	 20	 CAZ, CTR, CTX, CX, CPD, CEP, GEN, CIP, COT, NA, IPM, MRP, ETP, PIT, AT, AMC, CL, AK, TE, TR  
TSOT13	 20	 CAZ, CTR CTX, CX, CEP, CPD, CIP, GEN, COT, IPM, MRP, ETP, NA, PIT, AT, AMC, CL, AK, TE, TR
MLV17	 19	 CAZ, CTX, CX, CTR, CPD, CEP, GEN, COT, MRP, CIP, NA, PIT, ETP, AT, AMC, C, CL, AK, TE 
TIS71	 19	 CTX, CTR, CAZ, CX, CPD, CEP, CIP, GEN, COT, IPM, MRP, ETP, PIT, AT, NA, AMC, CL, AK, TR
LSBD21	 19	 CAZ, CTR, CTX, CX, CPD, CEP, CIP, COT, GEN, MRP, NA, ETP, PIT, AMC, C, CL, AK, TE, TR
BDE6	 19	 CAZ, CTR, CX, CTX, CPD, GEN, CEP, CIP, IPM, MRP, NA, ETP, PIT, AT, AMC, C, CL, AK, TE
PMH55	 18	 CAZ, CTX, CPD, CX, CEP, GEN, MRP, IPM, CIP, NA, PIT, AT, ETP, C, CL, AK, TE, TR  
4MSH38	 18	 CAZ, CTX, CX, CTR, CPD, GEN, CEP, CIP, IPM, MRP, NA, ETP, PIT, AT, AMC, CL, AK, TE 
TIE83	 17	 CTX, CTR, CAZ, CX, CEP, GEN, CIP, IPM, COT, PIT, AT, NA AMC, CL, AK, TE, TR
4MSH40	 17	 CTX, CTR, CAZ, CX, CPD, CEP, GEN, CIP, IPM, MRP, NA, ETP, PIT, AT, AMC, CL, AK
TMSA2	 17	 CAZ, CTX, CX, CTR, CPD, CEP, GEN, CIP, IPM, MRP, NA, ETP, PIT, AT, AMC, CL, AK
TECL3	 17	 CAZ, CTX, CX, CTR, CPD, CEP, CIP, IPM, MRP, GEN, NA, ETP, PIT, AT, AMC, CL, AK 
MPH7	 16	 CTX, CX, CAZ, CTR, CPD, CEP, IPM, MRP, GEN, CIP, NA, PIT, AT, AMC, CL, AK
SC2	 16	 CAZ, CTX, CX, CTR, CPD, CEP, GEN, CIP, IPM, MRP, NA, ETP, PIT, AT, CL, AK
PSM65	 16	 CAZ, CTX, CX, CTR, CPD, GEN, CEP, CIP, IPM, MRP, ETP, PIT, AT, AMC, CL, AK
TMA7	 15	 CAZ, CTX, CX, CTR, CPD, GEN, CEP, CIP, IPM, MRP, ETP, PIT, AT, CL, AK
MLV18	 15	 CTX, CAZ, CX, CPD, CTR, CEP, GEN, IPM, MRP, NA, PIT, AT, AMC, CL, TR
LSHM6	 13	 CTX, CPD, CAZ, CIP, GEN, COT, MRP, PIT, NA, AT, AMC, CL, AK
BD651	 13	 CAZ, CTX, CTR, CX, CEP, CIP, CPD, NA, GEN, AT, AMC, C, CL
4SSH61	 13	 CTX, CPD, CAZ, CTR, GEN, IPM, NA, MRP, PIT, ETP, AT, CL, AK
TIM651	 13	 CAZ, CTX, CEP, GEN, CPD, MRP, IPM, PIT, ETP, AT, AMC, CL, AK 
HNE10	 12	 CTX, CPD, CIP, GEN, IPM, MRP, NA, PIT, AT, AMC, CL, AK 
NET87	 12	 CAZ, CTX, CIP, CPD, GEN, PIT, MRP, NA, AT, AMC, CL, AK
BDS6	 12	 CTX, CAZ, CX, CPD, CEP, MRP, NA, ETP, PIT, AMC, C, CL
4SBD12	 10	 CTX, CPD, CIP, GEN, NA, PIT, AT, CL, AK, TR
CRS10	 9	 CTX, CAZ, CPD, CIP, GEN, MRP, NA, CL, AK
DHS39	 9	 CTX, CAZ, CPD, CTR, CEP, NA, PIT, AK, TE
TMOT1	 9	 CTX, CAZ, CPD, CTR, CEP, NA, PIT, AT, CL
MAM8	 8	 CTX, CPD, CTR, MRP, PIT, AT, CL, AK
PMM31	 7	 CTX, COT, GEN, CL, AK, TE, TR
TEC19	 5	 CTX, CX, CPD, MRP, AK
PMH14	 3	 CTX, AT, CL
LEBD13	 2	 CL, AK

of Bombay duck fish (Harpadon nehereus) and 
belonged to the serotype O134. The second EAEC 
(4SBD12) isolate of this study was resistant to 10 
antibiotics (Table 4). The isolate was sensitive to 
carbapenems, some cephalosporins, amoxicillin-
clavulanate, tetracycline, chloramphenicol, etc. 
Both the EAEC isolates were resistant to colistin 
and the aminoglycoside antibiotic amikacin. 
In contrast, both the EPEC isolates showed 
resistance to third-generation cephalosporins 
in addition to these antibiotics (Figure 3). A 
single isolate of EIEC (CRS10) from shrimp was 
susceptible to multiple cephalosporins, as well 

as some carbapenems, including imipenem and 
ertapenem, amoxicillin-clavulanate, piperacillin-
tazobactam, and tetracycline (Table 4). 

DISCUSSION

	 Addressing antibiotic resistance has 
become an international focus as it affects 
humans, animals, and agricultural systems. In this 
investigation, E. coli isolates representing different 
pathogroups recovered from seafood samples 
collected from Mumbai were examined for their 
susceptibility to antimicrobials. Considering the 
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persistent contamination of coastal waters in 
this densely populated metropolitan city, we 
anticipated an increased incidence of antibiotic-
resistant E. coli. 
	 The results of antibiotic susceptibility 
testing indicated the occurrence of E. coli 
pathogroups resistant to most clinically relevant 
antibiotics. The result is alarming, as E. coli in 
general is intrinsically susceptible to nearly all 
the antimicrobial agents of clinical significance.15 
However, E. coli is known for its receptive capacity 
to accumulate resistant genes, especially through 
horizontal gene transfer; this might have played 
an important role in its evolution with respect 
to antimicrobial resistance and its rapid spread 
among pathogroups.5,16 For the last decades, the 
number of resistance genes in E. coli has been 
steadily increasing, which has made E. coli a 
bacterium with the highest burden of antibiotic 
resistance.17,18

	 Re s i s ta n c e  to  t h i rd - ge n e rat i o n 
cephalosporins was prevalent (97%) among 
the pathogenic isolates (Table 2, Figure 1). 
We observed the highest resistance against 
cefotaxime (97%) and the lowest resistance 
against ceftriaxone (66.7%) in our E. coli isolates. 
Singh et al. reported a similar level of resistance in 
Enterobacterales isolated from seafood in Mumbai, 
where a majority (>90%) of the tested isolates 
showed resistance to cefotaxime, cefpodoxime, 
and ceftazidime, which are third-generation 
cephalosporins.11 The percentage of resistance 
shown by the isolates towards cefotaxime (95%) 
was high and comparable to our results. High 
cephalosporin resistance in E. coli isolates from 
frozen shrimp has been reported from Saudi 
Arabia.19 However, this study reported high 
resistance towards first-generation cephalosporins 
compared to resistance to third-generation 
cephalosporins observed in our study. Our study 
also showed high resistance to aminoglycosides, 
monobactams, carbapenems, quinolones, and 
fluoroquinolone antibiotics. Ibrahim and Elhadi  
reported a different susceptibility pattern for 
penicillin (ampicillin 90.7%, piperacillin 87.1%), 
quinolones (nalidixic acid 64.2%), sulfonamides 
(trimethoprim/sulfamethoxazole 50.7%), and 
tetracycline (41.4%).19 Contrary to our findings, 
a study from China reported high resistance of 
E. coli isolates isolated from fish and shellfish 

towards chloramphenicol (72.1%) and tetracycline 
(93.7%).20 E. coli isolated from fish samples in 
Cameroon, Africa, showed high resistance to 
trimethoprim-sulfamethoxazole, ampicillin, and 
ticarcillin compared to other antibiotics.21 Notably, 
different resistance patterns are usually observed 
for pathogenic and non-pathogenic strains of E. 
coli owing to the presence of resistant genes on 
plasmids. In addition to several plasmid-borne 
antibiotic resistance genes, E. coli possesses the 
marRAB locus. This chromosomally encoded 
intrinsic resistance mechanism confers resistance 
to various antibiotics, including tetracyclines, 
chloramphenicol, cephalosporins, nalidixic acid, 
penicillins, rifampin, and fluoroquinolones.22 
Overall, the isolates screened in this present 
study were largely resistant towards beta-lactam 
antibiotics, and relatively more sensitive to non-
beta-lactam antibiotics. Resistance towards beta-
lactam antibiotics is common among bacteria, 
and its emergence is on the rise due to their 
widespread use.23

	 Among 23 EHEC isolates tested, a large 
proportion of EHEC/STEC isolates were resistant 
to 7-20 antibiotics with their MAR indices ranging 
from 0.33-0.95 (Tables 3 and 4). Some of these 
included the well-known EHEC serogroups O157 
and O26 involved in several food-borne outbreaks. 
EHEC O26 is an important non-O157 serogroup 
along with O103, O111, and O145 recognized as 
emerging, virulent non-O157 EHEC capable of 
causing bloody diarrhoea and haemolytic uraemic 
syndrome (HUS).24 Other STEC serogroup such as 
O7, O20, O149 (Table 3) have been reported to 
be associated with cattle, which are the major 
reservoirs of STEC strains.25,26 Three isolates of 
EHEC O157, isolated from different seafood 
samples, were resistant to 7, 17, and 18 antibiotics, 
respectively (Table 3). The isolation of serogroup 
O157 resistant to only ciprofloxacin from fish was 
reported by Onmaz et al. in 2020.27 Two EHEC/STEC 
isolates were resistant to each antibiotic tested 
except chloramphenicol. Overall, the tested EHEC 
isolates showed high resistance towards colistin, 
aminoglycosides, and lactamase inhibitor (Figure 
3). A recent study characterizing STEC isolated from 
shellfish in Egypt reported resistance to multiple 
antibiotics, including b-lactams and b-lactam 
inhibitors, ciprofloxacin, colistin, tetracycline, and 
fosfomycin.28 
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	 Surprisingly, in our study, two EPEC 
isolates exhibited markedly different resistance 
profiles. The isolate TIM651 was resistant to 13 
antibiotics, while PMH14 was resistant to only 
three antibiotics (Table 4). Even though many 
EPEC isolates share similar antibiotic resistance 
profiles, variations can be expected, as these 
pathogenic strains are highly diverse in nature.29 
Both the isolates showed resistance towards 
third-generation cephalosporins, monobactam, 
and colistin (Figure 3). Studies from India suggest 
that EPEC clinical strains have gained resistance 
to multiple antibiotics commonly employed 
in the treatment of diarrheal diseases.30,31  
A study reported total resistance to cephalothin, 
cefuroxime, and sulfamethoxazole, as well as 
very high resistance to tetracycline (76.3%) and 
streptomycin (84.2%) in clinical EPEC isolates.29 In 
our isolates, tetracycline resistance was not found, 
and also, only one isolate showed resistance to 
cephalothin. 
	 Varying antibiotic resistance patterns 
were observed among the ETEC isolates. The 
isolate TIE83 with a MAR index of 0.81 was 
sensitive to cefpodoxime, chloramphenicol, 
ertapenem, and meropenem, and was resistant 
to all other 17 antibiotics, including third-
generation cephalosporins (Table 4 and Figure 
3). In contrast, the isolate TEC19 was resistant to 
five antibiotics, including cefotaxime, cefoxitin, 
cefpodoxime, meropenem, and amikacin. Two 
isolates were resistant to ciprofloxacin in addition 
to cephalosporins and carbapenems. Since 
the emergence of ciprofloxacin-resistant ETEC 
in 2001, there has been a trend of increasing 
resistance patterns of ETEC to fluoroquinolones.32,33  

High prevalence of resistance to trimethoprim-
sulfamethoxazole, ampicillin, and tetracycline 
was seen among the ETEC isolates obtained 
from ready-to-eat foods in China.20 This study 
reports tetracycline resistance as 66.7%, whereas 
we found 40% resistance against tetracycline. 
Among 33 isolates screened, 32 isolates showed 
multidrug-resistance. Studies on the prevalence 
of seafood-originated drug-resistant E. coli from 
samples collected from Southern India reported 
the occurrence of strains with multiple drug 
resistance, implicating seafood as the carrier of 
MDR bacteria.34,35 According to a new investigation 
on the occurrence of ESBL-producing bacteria 

in seafood, 169 (78.60%) isolates of different 
Enterobacterales species showed an ESBL-
positive phenotype, with E. coli representing 
the major species.36 Various ESBL-encoding 
genes were also identified in these isolates. 
Further, the occurrence of blaNDM-harboring E. 
coli has also been reported in seafood.10,36 A few 
other studies have reported the prevalence of 
antibiotic-resistant E. coli in commercial seafood 
samples in Korea,37,38 commercial fish captured 
from Conception Bay, Chile,39 shellfish from 
retail markets of Vietnam,40 shrimps and shrimp 
farm environments in Thailand,41 in oysters and 
mussels in Atlantic Canada,42 and fish from retail 
markets of Cambodia.43 A study from Mizoram, 
Northeast India, reported high prevalence of 
multidrug-resistant E. coli isolates belonging 
to EPEC and EIEC pathotypes associated with 
paediatric diarrhoea.30 The MDR phenotype was 
observed in 41.4% of the isolates, which showed 
high resistance against cephalosporin drugs, 
aminoglycosides, carbapenem, fluoroquinolone, 
and sulphonamides. Multidrug-resistance involving 
b-lactams, third-generation cephalosporins, 
piperacillin, levofloxacin, and gentamicin has been 
described in E. coli pathogroups isolated from 
diarrheic children in Bihar, India.44 Recently, Ghosh 
et al. reported a high incidence of diarrheagenic E. 
coli resistant to a minimum of six different classes 
of antimicrobials.45 The endemicity of different 
pathogroups of E. coli means that they could be 
found in the environment and consequently in 
foods, including seafood, when the sanitation 
infrastructure is inadequately disproportional 
to the population, particularly in developing 
nations.46 All these studies highlight the exposure 
of seafood to highly antibiotic-resistant E. coli from 
diverse sources, including humans and animals, 
and the need to identify contaminated sources and 
contain the spread of MDR pathogens via seafood. 
	 An interesting observation from this 
study was the increased sensitivity to antibiotics 
such as chloramphenicol, co-trimoxazole, and 
tetracycline (Figure 1). The clinical application of 
these antibiotics has declined significantly over 
the last three decades due to the development 
of widespread bacterial resistance.47-49 The 
increased susceptibility of diarrheagenic E. 
coli observed in this study warrants further 
investigation to understand the factors that have 
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contributed to the susceptibility of E. coli to these 
antibiotics, particularly in light of the drastic rise in 
resistance to other antibiotics, such as b-lactams, 
aminoglycosides, and fluoroquinolones. 
	 The MAR indices of 33 isolates ranged 
from 0.09 to 0.95 (Table 3), suggesting that these 
strains were from a high-risk environment where 
they were exposed to higher levels of antibiotics 
due to extensive use. A similar range of MAR index, 
extending to 1.0 from 0.09, was also reported 
from the same location in seafood samples.11 The 
antibiotic resistance patterns of seafood isolates of 
this study are comparable with clinical isolates of 
pathogenic E. coli. The multidrug-resistance traits 
reported in clinical isolates of diarrheagenic E. coli 
in India suggest that these strains have a human 
reservoir, and enter the aquatic environment 
through various routes of contamination. 

CONCLUSION

	 This study reports a high prevalence 
of antibiotic resistance, as well as multidrug- 
resistance, among pathogenic E. coli isolated from 
seafood samples. A higher MAR index indicates 
that these isolates originated from high-risk 
environments with antibiotic contamination. 
The presence of extremely resistant pathogenic 
strains compromises the safety of seafood for 
consumption. With the rise of extremely drug-
resistant clonal strains of E. coli that can spread 
rapidly in the community, causing significant 
morbidity and mortality, their presence in seafood 
will further complicate control measures. The 
aquatic environment is a hotspot for horizontal 
gene transfer events that can lead to the emergence 
of extremely antibiotic-resistant strains. In this 
context, to mitigate the selective pressure from 
antibiotics, scientific measures under the “One 
Health concept” are needed to reduce imprudent 
antibiotic use and to treat wastewater, thereby 
containing the dissemination of virulent and 
antimicrobial-resistant E. coli through seafood. 
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