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Abstract

Snake venom has developed over millions of years as a tool for capturing prey and defending against
predators and other threats. Snake venom contains diverse proteins and peptides, which elicit a
range of pathophysiological abnormalities including cytotoxic, neurotoxic, myotoxic, hemolytic and
inflammatory effects in the victim, and cause severe morbidity. Although these venom proteins have
significant pharmacological potential, many remain insufficiently explored for therapeutic applications.
Therefore, this article critically reviews the attributes of selected toxic proteins, which make them
suitable drugs for the well-being of mankind. Although these toxins have serious adverse effects on
human health, research has shown that they can be modified to exhibit beneficial properties and
serve as potential treatments for various diseases. In addition to being a model protein for drug
development, the similarity in sequence and structure indicates that these toxic proteins can be used
in protein replacement therapy to combat several human diseases. The article also addresses the
challenges faced during the entire process, starting from the initial phase of choosing venom proteins
to drug formulation. While nanotechnology-based formulations of snake venom-derived drugs exhibit
promise across diverse therapeutic domains, additional research and development efforts on the
different variants of these proteins are essential to fully unlock their clinical advantages and enhance
their efficacy for disease treatment.
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INTRODUCTION

In 2017, the World Health Organisation
officially classified snakebite as a neglected
tropical disease (NTD). During a snakebite, venom
- a specialised toxic secretion is injected into the
victim. Globally, snakebites affect up to 2.7 million
people annually, leading to estimated 81,000 to
138,000 deaths yearly.! Survivors of snakebites
often face long-term consequences, with the
burden of premature death and disability measured
at 6.07 Disability-Adjusted Life Years (DALYS).?
Prevention and treatment of snakebites can be
achieved through education, improved access to
antivenom, and timely medical intervention by
trained healthcare workers, effective governance,
and related measures. Conventional surveillance
systems reveal that India records the highest
number of snakebite-related fatalities, accounting
for half of all global cases and contributing to
2.97 million DALYs. Around 70% of these fatalities
occur in eight states - Bihar, Jharkhand, Madhya
Pradesh, Odisha, Uttar Pradesh, Andhra Pradesh
(including Telangana), Rajasthan, and Gujarat,
which together account for more than half of
India’s population. Among these, Odisha is a
critical focus of India’s Avoidable Death Network
(ADN) Hub, as snakebite remains a significant and
pressing public health concern in the state.?

The interestin PLA,, LAAO, hyaluronidase,
and metalloproteinase is driven by their critical
contributions to the lethality of snake venom.
Their mechanisms of action reveal how venom can
rapidly immobilize or kill prey while also offering
insights into physiological processes that can be
harnessed for therapeutic purposes. Their study
provides opportunities for improving antivenoms
and exploring novel medical applications based on
their lethal properties. The major venom proteins
present in different snake toxin families are PLA,,
SVMP, SVSP, and three-finger proteins.*® SVSPs
cause a wide range of effects, including coagulation
activation, inflammation, and tissue damage.
Some SVSPs can interact with other venom
proteins to enhance their activity. Other proteinsin
the snake venom include LAAOs, Kunitz peptides,
disintegrins, NP, cysteine-rich secretory proteins,
and C-type lectins.

Some of the snake venom proteins
have potential for drug development but face

challenges in being toxic and storage instability.
Some venom proteins resemble human proteins,
offering targeted treatment possibilities. Lack
of detailed structure-function studies limits
therapeutic use and large-scale production.
Current antivenoms are broad-spectrum and
often miss specific toxins. Integrating venomics
data can help create more precise and effective
antivenoms. Research centered on exploring the
chemistry and understanding the relationship
between protein structure and function. Proteins
and peptides found in snake venom, as well as
the exploration of their potential therapeutic
applications, have gained considerable attentionin
biomedical research.” Recent venom-based drugs
currently on the market or in clinical trials have
been reviewed.®*® Though these review articles
provide valuable information, the significance of
snake venom proteins as therapeutic agents can
be better exploited if the sequence and structure
correlations of these proteins, especially in
relation to the human proteins, are completely
understood. This review examines the similarities
in amino acid sequences and structures between
major snake venom proteins and human proteins.
Further, challenges encountered during the
development of drugs from venom proteins and
the therapeutic potentials of the various venom
proteins for the treatment of different diseases
are discussed. To provide a holistic view, we have
also included some basic information about the
venom proteins, especially the venom composition
and the chemistry of selected enzymatic toxins,
which will benefit the readers. This study will
provide insight into the use of enzymatic toxins
as a substitute for non-functional human proteins
occurring during various disease states.

The complex chemistry of Snake venom
Although there are notable exceptions
and considerable species-level variability, certain
toxic proteins play a key role in the effects of
snake venom following a bite. 3FTx and PLA , are
the major components of elapid venoms, and
comprise about 65%-70% of the total proteins
of the venom proteome. Whereas, snakes from
the Dendroaspis genus (mambas) and various
Australian snakes exhibit significant deviations
in the composition and function of these toxins.
Mambas’ venoms lack PLA,, while venoms of
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Australian snakes have a notably low content
(<6%) of 3FTx. On average, 6% of elapid venom
is made up of SVMPs,** snake venom serine
proteases (SVSPs),''? and L-amino acid oxidases
(LAAOs).®**> About 5% of elapid venom is made
of Kunitz-type peptides,'>!® a group of serine
protease inhibitors recognized by the presence
of the Kunitz domain fold that are specific K*-
channel blockers. Mambas are extremely rich in
Kunitz-type peptides. Approximately 10%-12% of
the proteins are mostly non-toxic proteins, with
highly variable composition'**’* and the reason
for the occurrence of many of these proteins in
snake venom is not fully known.

The venoms of viperid snakes encompass
toxins from nine distinct protein families, such as
PLA,, SVMPs, SVSPs, C-type lectins (CTLs), LAAOs,
Disintegrins, Three-Finger Toxins, Kunitz-type
peptides, CRISPs families.?>*2 Again, there are
numerous exceptions and considerable variability
in toxin content in venoms within each species
and subspecies of snakes. PLAZ,“"11 SVMP,5-11.19
and SVSP2 toxins are prevalent in the majority
of species, accounting for an average of 70% of
the total venom proteome. Although viperid
PLA,, share higher sequence homology with the
neurotoxic PLA,, found in elapids, the majority of
viperid PLA,, exhibit myotoxic effects. LAAOs,"*"
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C-type lectins and C-type lectin-like proteins,?* and
natriuretic peptides,5” are other toxins present in
smaller quantities (4%-7%) (Figure 1), in the Viperid
family. Reports indicate that snake venom toxins act
synergistically. The pathophysiology of snakebite
envenomation is determined by the combination
and relative proportions of various toxins present
in the venom.*?®> Hemotoxicity, myotoxicity,
cardiotoxicity, neurotoxicity, and cytotoxicity are
the results of snakebite envenomation. Further,
these four major toxic proteins phospholipase A,
(PLA,), snake venom metalloproteases (SVMPS),
snake venom hyaluronidase and L-amino acid
oxidase (LAAO) from snake venom have been
reported to have both physiological effects and
therapeutic potential in humans. The intricate
interplay between the components of snake venom
and their varied concentrations among species
underpins their diverse pathophysiological effects.
The detailed chemistry of venom proteins not
only elucidates the mechanisms of envenomation
but also highlights their promise as a source of
novel drugs. Combining insights from venom
composition with molecular studies of individual
toxins bridges the gap between understanding
venom pathology and harnessing its benefits for
human health.
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Figure 1. Graphical representation showing the distribution of venom components in two snake families: Elapids and
Viperids. The X-axis displays different venom protein types, while the Y-axis indicates their percentage composition
in snake venom. Data, primarily highlighting SYMP, PLA,, and SVSP as dominant components, are sourced from the
Isbister and Tasoulis database and literature; non-toxic families were excluded
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Key Toxic Proteins in Snake Venom: Chemistry
and Mechanisms
Snake venom phospholipase

Phospholipase A (PLA,) enzymes cause a
range of pathological effects. PLA, exerts distinct
effects on the nervous and cardiovascular systems
through high-affinity interactions with specific
receptors, a mechanism that is independent of its
enzymatic function. Once attached to the target,
they produce pharmacological effects with or
without catalytic activity.”® PLA,, in snake venom
cause neurotoxicity, thus damaging the neurons
at the presynaptic cleft. Bulk of pre-synaptic
neurotoxins derived from snake venom discovered
so far are protein complexes containing PLA,.
When they bind to receptors or lipid domains
in the motor neuron plasma membrane at the
neuromuscular junction, they induce changes in
membrane activity. This modification in membrane
potential facilitates the influx of Ca* from the
extracellular environment. The resulting changes

Neunrotoxicity
{Pre-symaptic)
ﬁ Nenronal junction

in membrane permeability enhance the exocytosis
of synaptic vesicles (Figure 2).7

Myotoxic svPLA,, generally possess
aspartic acid at position 49, which is important
for their enzymatic activity. Asp49-PLA,, are
catalytically active, but Lys49 homologs exhibit
either weak catalytic activity or are catalytically
inactive. Additionally, substitutions such as Ser49,
Argd9, Asn49, or GIn49?® have been identified
and are known to alter catalytic activity, thereby
influencing the toxic effects of this venom protein.
Asp49 PLA,, hydrolyzes phospholipids to release
lysophospholipids, which leads to the skeletal
muscle necrosis by directly disrupting membrane
stabilization and/or indirectly altering membrane
biophysics.”® On the other hand, Lys49 PLA,,
myotoxins do not have catalytic activity and exist
as homodimers.* The C-terminal regions (residues
115-129) of these peptides are rich in basic,
aromatic, and hydrophobic amino acids, which
are responsible for their myotoxic effects.3!3?
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Figure 2. Mechanism of action of snake venom PLA, . Aspartate (Asp) at position 49 (D-Asp49 type PLA,) and Lysine
(Lys) at position 49 (K-Lys 49 type PLA,), Platelet- Actlvatlng Factor (PAF): platelet
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Site-directed mutagenesis studies have identified
Tyrl17, Arg118, Tyrl19, Lys122, and Phel25 as key
residues significantly influencing myotoxicity.**

Venom protein PLA , variants can broadly
be divided into D49 acidic PLA,, (Asp-49), S49 PLA,,
(Ser-49), and K49 basic PLA,, (Lys-49 replacing
Asp-49). Basic PLA,, homologs, whose amino acid
residues, such as K49 and S49 PLA,, are involved
in different Ca** independent functions, but they
are still catalytically inactive.3* Among these, K49
basic PLA,, exhibits higher cytotoxicity compared
to D49 acidic PLA,. Generally, acidic PLA,, has a
higher IC,, value than basic PLA,, indicating lower
cytotoxic potency.

S49PLA,, variants, identified in the venom
of saw-scaled vipers (Echis sp.), exhibit enzyme
activity that is independent of calcium ions and
exhibits higher toxicity to cells in comparison
to K49 PLA,, (IC,, = 2.5-12.2 uM).* However,
K49 PLA,, demonstrates greater lipolytic activity
compared to S49 PLA,.*

Snake venom metalloproteases (SVMPs)
SVMPs account for 30%-60% of the
snake venom in the Viperidae family and are
categorized into three distinct classes (P-I, P-II
and P-11l) mainly depending on their organization
of the protein domain and therefore their
functional variation. All classes of SVMPs contain
the zinc ion-binding domain, which is involved in
enzymatic activity. P- SVMPs exclusively possess
the zincion-binding domain and exhibit molecular
weight range of 20 to 30 kDa. However, P-Il and
P-111 SYMPs contain an additional domain that
confers additional functional characteristics to
these proteins. P-Il SVMPs contain a disintegrin-
like domain and have a molecular weight of 30-60
kDa, whereas P-1ll SVMPs, have a molecular weight
in the range of 50 to 70 kDa, are composed of a
cysteine-rich and disintegrin-like domain. Some
of them have a quaternary structure, whereas a
disulfide bond of a smaller lectin type C subunit
is linked to the P-1ll SVMP subunit.?® These snake

Snake venom metalloproteases
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Figure 3. Mode of action of snake venom metalloproteinase
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venom metalloproteases activate prothrombin,
defibrinogenesis, and coagulation X factor,
which results in fibrinolytic stimulation.?”® They
contribute actively to the breakdown of the
extracellular matrix and induce an inflammatory
response.? Snake venom metalloproteases have
the potential to act as thrombolytic agents. For
example, a fibrinolytic enzyme isolated from
Agkistrodon contortrix has potent fibrinolytic
activity (Figure 3). Alfimeprase recombinant
form is employed in the treatment of abnormal
blood clot formation by efficiently promoting
thrombolysis in case of acute limb ischemia.*

Snake venom hyaluronidase

Hyaluronidases are a diverse group
of enzymes found in various organisms,
primarily responsible for cleaving hyaluronic
acid, a glycosaminoglycan molecule of high
molecular weight. Some of these enzymes
can also degrade other glycosaminoglycans,
although at a slower rate.** In snake venom,
hyaluronidases function as spreading factors
during envenomation, when hyaluronic acid
present in the extracellular matrix of the local
tissues gets broken down into smaller molecules.
These venom hyaluronidases are classified as
neutral endo-f-N-acetyl-D-hexosaminidases, with
a different range of molecular weight from 33 kDa
to 110 kDa. They display structural diversity due
to post-translational modifications or truncation
of transcripts. The translated proteins typically
consist of 440 to 450 amino acids.** Snake venom
hyaluronidase facilitates the breakdown of internal
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glycoside bonds in acidic muco-polysaccharides
and decreases the integrity and viscosity of
connective tissues. As the hyaluronic acid barrier
is ruptured, other venom components penetrate
the tissues effectively. The breakdown of HA in
the extracellular matrix enhances membrane
permeability, making tissues more susceptible to
injected fluids.*®

L-amino acid oxidase (LAAO)

The homodimeric flavoenzyme LAAO (EC
1.4.3.2) contains covalently linked flavin adenine
dinucleotide and renders the snake venom its
characteristic yellow colour (FADs). Each LAAO
subunit has a molecular weight of 50-70 kDa
and 110-159 kDa in its dimeric state.**** The
three major domains of the LAAO are substrate
binding, FAD binding, and helical domains. It
has been reported that the substrate-binding
domain contains 7 mixed B-pleated sheets.*® The
enzyme engages with amino acid residues (serving
as substrates) and oxygen to create a ternary
complex, subsequently catalyzing the reduction
of flavin semiquinone. During the reductive half-
reaction, the FAD cofactor undergoes re-oxidation,
generating hydrogen peroxide in the process, as
described by Kang.®

The structural and functional resemblance
of snake venom proteins to human counterparts
allows them to interact with human physiological
systems with high specificity. These similarities
explain their potent effects in envenomation
and their emerging therapeutic applications.
Snake venom proteins exploit conserved
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Figure 4. Sequence alignment for the snake venom PLA, and the corresponding human protein, which has the most
similarity. In the figure, the protein with UniProt ID P15445 represents a snake venom Naja naja species PLA , while

6Q42 corresponds to a human PLA, protein
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biochemical pathways in humans, such as
membrane dynamics (PLA,), matrix remodelling
(SVMPs), redox processes (LAAOs), and tissue
permeability (hyaluronidases). Understanding
the chemistry of venom proteins and their
mimicry of human proteins aids in repurposing
them for medical use, such as anti-inflammatory
agents (PLA,), thrombolytics (SVMPs), cancer
therapeutics (LAAOs), and drug delivery systems

(hyaluronidases). Snake venom proteins often
exhibit enhanced efficiency and potency compared
to their human analogues, providing a blueprint for
designing synthetic or recombinant therapeutics.
By linking the chemistry of these toxins to their
similarities with human proteins, researchers can
harness venom proteins’ dual roles-mitigating their
toxic effects while leveraging their therapeutic
potential.
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Figure 5. Sequence alignment for the snake venom metalloprotease and the corresponding human protein, which
has the most similarity. In the figure, the protein with UniProt ID D3TTC2 represents a snake venom metalloprotease
from Naja atra species, while XP_011542671.1 corresponds to a human metalloprotease protein
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Similarities between snake venom toxins and
human proteins

As indicated earlier, understanding the
sequence and structural similarities of the selected
snake venoms and the human counterparts will
be of high value for exploiting the therapeutic
benefits of snake venom proteins. Investigating
the similarity of human proteins with snake venom
proteins will be of potential help to design the
model compounds for targeting human diseases
and to develop enzyme-based replacement
therapy for the enzyme-deficient disorder or
diseases in humans.

Phospholipase A, (PLA,)

Sequence analysis reveals that human
pancreatic phospholipase A,, (accession number
3ELO_A) has the highest sequence similarity with
svPLA,, of Naja naja species (UniProt accession
number P15445) with 98% query coverage, 48.03%
identity and 69.4% similarity (Figure 4). However,
the lowest sequence similarity is with group IIF

secretory phospholipase A, isoform X1 (Homo
sapiens) (accession number XP_011540257.1) with
63% query coverage, 38.67% identity and 48.0%
similarity. However, snake venom PLA,, (svPLA)
enzymes share significant structural and functional
similarities with human PLA, such as high catalytic
activity, specificity towards phospholipids, and pro-
inflammatory responses.*” The domain structure
of snake venom PLA,, varies between different
species, but generally consists of a calcium-binding
loop, a helical domain, and a catalytic domain.
The calcium-binding loop stabilizes the reactive
intermediate,* while the helical domain stabilizes
the enzyme structure and contains residues
involved in substrate recognition. The amino acids
in the catalytic domain are highly conserved and
are responsible for phospholipid hydrolysis, and
are highly specific to phospholipids with fatty acid
chains of 16-20 carbon atoms.? In comparison,
human PLA,, also consists of a calcium-binding
loop, a helical domain, and a catalytic domain,
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Figure 6. Sequence alignment for the snake venom Hyaluronidase and the corresponding human protein, which
has the most similarity. In this figure, the protein with UniProt ID V8PG63 represents a snake venom hyaluronidase
of Ophiophagus hannah species, while KAI2529754.1 corresponds to a human hyaluronidase protein
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but has greater structural complexity and diversity
due to alternative splicing, post-translational
modifications, and the presence of multiple
isoforms with different tissue expression patterns
and substrate specificities. Human PLA, is classified
into several subfamilies, including cytosolic PLA,
(cPLA)), calcium-independent PLA_ (iPLA,), secreted
PLA,, (sPLA,), and platelet-activating factor acetyl-
hydrolase (PAF-AH).* There are differences in
the amino acid sequence and 3D structure that
confer distinct biochemical and pharmacological

properties to these enzymes.*° For example, some
svPLA,, enzymes have a myotoxic or neurotoxic
effect, while human PLA,, is involved in the
regulation of various physiological mechanisms
such as inflammation, lipid metabolism, and
cell signalling. With the identification of diverse
targeted delivery systems with high specificity, the
enzyme replacement therapeutic approaches are
highly feasible to combat the pathophysiological
effects related to the underexpression of PLA,.
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Figure 7. Sequence alignment for the snake venom L-amino acid oxidase (LAAO) and the corresponding human
protein, which has the most similarity. In this figure, the protein with UniProt ID P81383 represents a snake venom
L-amino oxidase of Ophiophagus hannah species, while AAH64378.2 corresponds to a human L-amino acid oxidase

protein
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Metalloproteinase

Sequence analysis indicates that ADAM
metallopeptidase domain 28 (Homo sapiens)
(accession number XP_011542671.1) has the
highest sequence similarity with snake venom
metalloprotease of Naja atra species (UniProt
accession number D3TTC2) with 96% query
coverage, 43.16% identity and 58.5% similarity
(Figure 5). Lowest sequence similarity is with
ADAM metallopeptidase domain 9 (meltrin
gamma), the isoform CRA_a (H. sapiens) (accession
number EAW63283.1) with 68% query coverage,
36.74% identity and 54.0% similarity. Snake
venom metalloproteases (SVMPs) and human
metalloproteases (HMPs) are part of the broader
metalloproteinase family, characterized by
the presence of a zinc ion in the enzyme’s
active site. In Class P-1 SVMPs, alongside the
catalytic domain, there is a disintegrin domain
responsible for inhibiting platelet aggregation.
Class P-1l SVMPs feature a cysteine-rich domain
that facilitates binding to the extracellular
matrix, while Class P-Ill SVMPs encompass both
a disintegrin-like domain and a cysteine-rich
domain. In contrast, human HMPs are divided
into six groups based on their domain structure.
These metalloproteases play crucial roles in the

Bedngto

Disorganization of actin

Cancer cell  Gmesmest | Immunogenic
wese

regulation of various physiological mechanisms
such as tissue regeneration and wound healing.
However, their dysregulation has been implicated
in various pathological conditions, including
cancer and inflammatory diseases. Similarly,
SVMPs contribute to the pathogenesis of oedema,
inflammation, myonecrosis, skin damage, and the
onset of cardiovascular failure.?51%2

Hyaluronidase

Sequence analysis indicates that
hyaluronidase 3 and hyalurono-glucosaminidase 3
of Homo sapiens (accession number KAI2529754.1)
has the highest sequence similarity with snake
venom hyaluronidase of Ophiophagus hannah
species (UniProt accession number V8PG63)
with 82% query coverage, 48.65% identity and
63.0% similarity (Figure 6). Lowest sequence
similarity is with hyaluronidase 2, partial (Homo
sapiens) (accession number KAI2529781.1) with
11% query coverage, 32.08% identity and 47.8%
similarity. Hyaluronidases are enzymes that break
the glycosidic bond between glucuronic acid and
N-acetylglucosamine to degrade hyaluronic acid, a
significant component of the extracellular matrix.
Despite playing a crucial role in the dissemination
and toxicity of venom, snake venom hyaluronidases

-33‘&-

cell death

filaments

Inhibition of STATS3 signal

Bensepnensntridine ammatolss
‘of the bemsyt Isoquinoline.

=..B98 <" — Autophagy
)
— Apoptosis — Cels death

5

Increase of calcium ion influx

ROS generation

d to cell

Pathways targeted by snake venom

proteins for anti-tumor effect

brane
Inhibition of cell proliferation

/

Induction of Cytochrome C release

Figure 8. Putative targets of snake venom-derived proteins involved in antitumor mechanisms
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(svHA) have received less attention in comparison
to exploring the human hyaluronidase enzyme.>?
Human and snake venom hyaluronidases both
have conserved amino acid residues in the catalytic
domain. The catalytic domain of hyaluronidases
is classified as a glycoside hydrolase family 56
(GH56) domain and has a characteristic (B/a) 8
barrel fold. A non-catalytic linker found in the link
domain of human hyaluronidase (hHA) is thought
to be involved in protein-protein interactions
and the regulation of enzyme activity. However,
snake venom hyaluronidases are simple molecules
and do not possess a separate link domain, but
the catalytic domain contains surface-exposed
loops that may participate in substrate binding.
Some svHA also contain a C-terminal disintegrin-
like domain, such as the hyaluronidase from
the venom of the snake Bothrops asper, which
may be involved in binding to integrins and
other extracellular matrix proteins. Despite the
similarities between the catalytic domains of
human and snake venom hyaluronidases, there
are also differences in their biochemical properties
and substrate specificities.>** For example, snake
venom hyaluronidases often exhibit broader
substrate specificity, degrading not only hyaluronic
acid but also chondroitin sulfates, whereas human

Enalapril is a prodrug

The haemocoagulase
enzyme system,
consisting of batroxobin
and an SVMP, activates
factor X, exhibiting
anti-haemorrhagic.

and an angiotens

in-

converting enzyme

(ACE) inhibitor that
regulates blood pressure
and maintains fluid and
electrolyte balance.

hyaluronidases are more selective. Additionally,
venom hyaluronidases are generally more heat-
stable and function effectively across a wider pH
range compared to their human counterparts.

L-amino oxidase

Sequence analysis indicates that L-amino
oxidase isoform 1 precursor and interleukin 4
induced 1 of Homo sapiens (accession number
NP_690863.1) has more sequence similarity with
snake venom L-amino oxidase of Ophiophagus
hannah species (UniProt accession number
P81383) with 96% query coverage, 37.17% identity
and 56.5% similarity (Figure 7). Although the
alignment with peroxisomal N(1)-acetyl-spermine/
spermidine oxidase isoform 4 (Homo sapiens)
(NP_997011.1) shows relatively high similarity
(64.2%) within the aligned region, it spans only
56% of the query sequence. Snake venom LAAOs
are typically monomeric proteins with molecular
weights ranging from 50-140 kDa. They are known
to contain two or more domains. N-terminal
flavin adenine dinucleotide (FAD)-binding domain
and a C-terminal catalytic domain are the two
constitutive domains in these proteins. The
catalytic domain is more variable and can vary
in length and sequence composition, whereas

Exanta (ximelagatran) is
an investigational oral
direct thrombin inhibitor
developed for preventing
strokes in patients with
atrial fibrillation and
blood clotting issues.
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Figure 9. Chronological overview of Food and Drug Administration (FDA) approved drugs derived from snake

venom toxins
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the FAD-binding domain is highly conserved and
crucial for enzyme function. Some snake venom
LAAOs also contain additional domains, such as
a C-type lectin-like domain or a disintegrin-like
domain, which may contribute to their distinct
biological activity and toxicity. LAAOs in humans

are expressed in a variety of tissues, including
the placenta, kidney, and liver. The molecular
weight of human LAAOs is approximately 140
kDa and is a homo-dimeric protein. They contain
three domains: N-terminal signal peptide, a
middle domain, and a C-terminal FAD-binding

Table 1. Antibacterial activity of snake venom protein against different bacteria with their proposed active

components
Snake Venom Species Antibacterial Effective Ref.
protein Component against
L-amino oxidase B. leucurus BleuLAAO S. aureus 128
Agkistrodon halys Pallas LAAO E. coli K12D31 129
B. jararaca LAAO S. aureus 130
B. marajoensis BmarLAAO S. aureus and 128
P. aeruginosa
T. jerdonii TI-LAO E. coli, S. aureus, 131
P. aeruginosa,
and B. megaterium
Trimeresurus TM-LAAO E. coli, S. aureus 132
Mucrosquamatus and B. dysenteriae
Agkistrodon
blomhoffii ussurensis Akbu-LAAO S. aureus 133
Bothrops BmLAAO Gram-positive and 134
Mattogrossensis -negative bacteria
Ophiophagus King cobra L-amino Gram-positive and 135
hannah acid oxidase (Oh- -negative bacteria
LAAO)
B. alternatus Balt-LAAO-I E. coliand S. aureus 135
Daboia russellii DRS-LAAO S. aureus (ATCC 66
siamensis 25923), P. aeruginosa
(ATCC 27853) and
E. coli (ATCC 25922)
King cobra venom LAAO S. aureus, S. epidermidis, 136
P. aeruginosa, K.
pneumoniae, and E. coli
Naja naja oxiana LAAO B. subtilis and E. coli 65
C. durissus
Cumanensis CdcLAAO S. aureus and 71
A. baumannii
Porthidium nasutum PnPLA, S. aureus 137
PLA, Bothrops asper PLA2 myotoxins S. typhimurium and 138
S. aureus
Vipera berus berus VBBPLA2 B. subtilis 139
Echis carinatus EcTx-I E. aerogenes, E. coli, 140
P. vulgaris, P. mirabilis,
P. aeruginosa and
S. aureus
Agkistrodon spp. AgkTx-Il S. aureus, P. vulgaris 141
and B. pseudomallei
Bungarus fasciatus BFPA E. coliand S. aureus 67
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domain. The middle domain is more variable and
contributes to the substrate specificity and impacts
the catalytic efficiency of the enzyme.®

The structural and functional similarities
between venom proteins and human counterparts
underpin their dual applications in venomics.
The resemblance of venom proteins to human
enzymes and receptors enables their direct
application in drug development. For instance,
PLA,, interaction with lipid membranes inspires
anti-inflammatory and anti-cancer strategies.
Understanding these similarities helps predict
venom protein interactions in the human body,
enabling targeted inhibition of toxic effects while
preserving therapeutic potential. By addressing
these gaps, venomics can fully leverage the
similarities between snake venom and human
proteins to optimize drug discovery and improve
antivenom therapies. While many venom proteins
show promise as drug candidates, their inherent
toxicity issues limit their clinical application.
There is a lack of detailed structure-function
studies and scalable production methods for
venom-derived drugs. Traditional antivenoms are
broad-spectrum but lack efficacy against specific
venom components. There is limited integration
of venomics data into antivenom production to
achieve species-specific or toxin-specific efficacy.

Harnessing Snake venom proteins for biomedical
breakthroughs

Interestingly, the same properties that
make venom harmful in envenomation hold
significant promise for developing innovative
therapies. Snake venom proteins offer significant
benefits due to their relatively low molecular
mass. Their compact size makes them easier to
be synthesized, both biologically and chemically,
allowing for large-scale production. The simple
structure of these proteins, in terms of their
secondary and tertiary conformations, facilitates
a clearer understanding of their roles and
interactions, making them valuable templates
for drug design. Furthermore, the flexible loops
within snake venom proteins grant those unique
biological activities and therapeutic potential.
These loops can interact with a wide range of
targets, adding versatility and efficacy, and they
can be customized for specific binding with high
precision, making them useful for molecular

recognition and modulation. Since these proteins
lack complex post-translational modifications,
production, characterization, and application are
simplified, reducing both complexity and costs.
This simplicity also makes it easier to study their
structure-function relationships and biological
activities, offering insights into their mechanisms
of action. There has been a mixed information in
literature regarding the thermodynamic stability
of the snake venom proteins. Such instability
also has been pointed out to be a deterrent for
the production of snake antivenom. Therefore,
a clear investigation on the thermodynamic
stability of different snake venom proteins should
be taken up. This necessitates the production of
mutant proteins with significant stability. Stable
proteins are more likely to behave consistently and
predictably, which is crucial for drug discovery and
diagnostic applications.

Snake venom proteins for human therapeutics
Antibacterial activity

Toxins from various Viperid and Elapid
species exhibit bactericidal effects. The basic PLA,,
extracted from Bothrops marajeonsis showed no
inhibitory effect against Pseudomonas aeruginosa
or Staphylococcus aureus,*® while the acidic PLA,,
isolated from Bothrops erythromela inhibits the
growth of Gram-positive bacteria but does not
affect Gram-negative bacteria.>” In contrast, basic
PLA,, derived from Daboia russellii pulchella
demonstrated enhanced bactericidal activity
against Gram-positive bacteria, while showing
less impact on Gram-negative bacteria.*® The
bactericidal effect of PLA,, especially the basic
form, has been linked to its ability to disrupt
bacterial membrane integrity.>® Although catalytic
activity is not the sole determinant of bactericidal
effect, there appears to be a correlation between
hemolytic and bactericidal activity of D. russellii
pulchella PLA,.*® Additionally, p-bromophenacyl
bromide (p-BPP) not only helps in reducing enzyme
activity but also helps in destabilizing the cell wall
of the bacteria.®®

Crotoxin A and B (PLA,, -CA and
PLA,, -CB) from Crotalus durissus terrificus
exhibit antibacterial activity against Ralstonia
solanacearum.®® Likewise, crotoxin B from C.
durissus terrificus and daboiatoxin from Daboia
russelli show inhibitory effect against two strains of
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Burkholderia pseudomallei (TES and KHW).%* While
some PLA,, variants display bactericidal activity
against various range of bacteria, including Gram-
positive and Gram-negative.?*% others specifically
target Gram-positive bacteria.®* This suggests a
complex relationship between the bactericidal
effects of PLA,, and its sequence and structure.

L-amino acid oxidases (LAAOs) also
exhibit antibacterial activity.>®%>-%® |t has been
reported that Bothrops leucurus venom can
cause a dose-dependent inhibition of S. aureus
growth, with a MIC value of 25 pg/ml. SVLAAOs
from Crotalus adamanteus and Bothrops asper
show antibacterial activity against S. aureus
and Proteus mirabilis, similar to SVLAAOs from
Bothrops venoms.>®%7° Additionally, Pseudomonas
aeruginosa and Escherichia coli growth are
inhibited by svLAAO from Bothrops pirajai
venom.”® Peptides derived from svLAAO showed
enhanced antibacterial effects compared to the
whole protein, suggesting that smaller peptide
fragments may be promising candidates for novel
peptide-based antibiotics.”® The bactericidal
mechanism of svLAAOs is generally attributed to
the induction of oxidative stress in bacterial cells,
leading to disruption and increased permeability
of the plasma membrane, ultimately causing cell
death. This process is associated with the presence
of hydrogen peroxide in the reaction medium.”

The three-finger toxin (3FTx) family
member, gamma toxin from the cobra Naja
nigricollis venom, increases the membrane
permeability of both Gram-positive and Gram-
negative bacteria, causing bactericidal effects.
Its physical interaction with primary membrane
proteins demonstrates direct molecular activity
on the components of Gram-negative and Gram-
positive bacteria, namely lipopolysaccharide (LPS)
and lipoteichoic acid (LTA), respectively. Disrupting
the LPS layer and inhibiting LTA production leads
to bactericidal effects.” Cardiotoxin 3 from venom
of Naja naja atra, another 3FTx family member,
shows a similar mode of action but is more
effective against S. aureus than E. coli.™®

Lectins and their homologs, like BIL from
Bothrops leucurus venom, also have antibacterial
properties. BIL and a protein from Bothrops
jararacussu venom inhibit S. aureus by interfering
with biofilm formation.” The Minimum Inhibitory
Concentration (MIC) and Minimum Bactericidal

Concentration (MBC) for S. aureus are 31.5 pg/
ml and 500 pg/ml, respectively, while for Bacillus
subtilis, the corresponding values are 125 pg/ml
and 250 pg/ml.’

Antimicrobial peptides (AMPs) are a
critical part of the innate immune defense on
human skin. Two main categories of AMPs found
in humans are defensins and cathelicidins, many
of which are effective against Staphylococci.”
These peptides help to eliminate bacteria from
neutrophil phagosomes through phagocytosis.
Like humans, snakes also produce cathelicidins,
which are smaller cationic AMPs (cAMPs).
These peptides are highly effective against
various bacteria, enveloped viruses, and fungi.”
Ophiophagus hannah cathelicidin (OH-CATH)
and its analogues exhibit potent antibacterial
and moderate hemolytic effects.” They are more
effective than commonly used natural antibiotics
against Acinetobacter species, including multi-
drug-resistant Acinetobacter baumannii (MRAB)
and metbhicillin-resistant S. aureus (MRSA).&° AMPs
rich in cysteine demonstrate broad antibacterial
activity, with their positively charged surface
and flexible shape facilitating interaction with
the negatively charged components of bacterial
membranes, thus enhancing their antibacterial
effects.”® CoaTx-Il, a small peptide derived from
Crotalus oreganus abyssus based on the primary
structure of Lys49 PLA,, shows antibacterial
activity against drug-resistant clinical isolates.
The peptide’s charged and aromatic amino acids
are crucial for its interaction with bacterial cell
membranes?! (Table 1).

Analgesic and antinociceptive activity
Controlling pain with the best and most
appropriate drugs is still a challenge in healthcare
systems.®? Researchers have discovered that
PLA,, derived from snake venom exhibits efficacy
in alleviating pain and inflammation in animal
models experiencing arthritis and neuropathic
pain.®® Distinct mechanism of action and potent
analgesic effects exhibited by the isolated
neurotoxin, PLA,, and myotoxin from snake venom
make them potential therapeutic drugs for pain
treatment.®* Several studies have highlighted the
analgesic potential of various snake venom toxins.
For example, k-bungarotoxin has been shown
to exhibit significant analgesic effects in animal
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Table 2. Anticancer agents from snake venom proteins

No. Snake venom Snake Mechanism Ref.
component - species of Action
(UniProt ID)

1. Phospholipases Cerastes It acts specifically on integrins aff and a5B1 and has 142
A2 (POCASO) cerastes antiangiogenic and anticancer activities

2. Hyaluronidase Mesobuthus Degrades hyaluronan and alters the expression of a 143
(P86100) martensi CD44 isoform in breast cancer cells

3. L-amino acid Ophiophagus Reduces cell proliferation and declines thymidine therefor 13
oxidase (P81383) hannah decreases the uptake of thymidine in murine fibrosarcoma,

melanoma, and colorectal cancer

4. Cathelicidin-BF Bungarus Cell Proliferation of B16F10 cell line and B16 cell line 144
(B6D434) fasciatus is inhibited

5. Disintegrin Vipera Prevents tumor cell invasion and inhibits OVCAR-5 cell 145
(POC6S4 - xanthine attachment to extracellular matrix proteins
Predicted)

6. Viperistatin Vipera The engagement of integrins with the extracellular 146
(POC6E2- palaestinae matrix is crucial for the migration and invasion of cancer
Predicted) cells; disrupting this interaction hinders both their

adhesion and movement.

7. Colombistatin Bothrops Inhibition of ADP-induced platelet aggregation
(P18618- colombiensis 65
Predicted)

8.  Blcul (lectin) Bothrops Inhibits tumor progression and endothelial cell
(P83519- jararacussu proliferation, while also promoting erythrocyte 147
Predicted) agglutination

9. Obtustatin Vipera It possesses antiangiogenic activity 148
(P83469- lebetina
Predicted) obtuse

10. Lebestatin Macrovipera Specifically binds to the a1f1 integrin found on laminin-1 149
(Q3BK14- lebetina and collagen. The interaction between integrins and the
Predicted) extracellular matrix is vital for cancer cell adhesion and

migration

11. Rhodostomin Agkistrodon Disrupts the binding between integrins and extracellular 150
(P30403- rhodostoma matrix proteins, an interaction essential for cancer cell
Predicted) proliferation

12. Batroxobin Bothrops Inhibits the differentiation and metastatic progression of 151
(P04971) atrox cancer cells

13. Snake venom Vipera Restricts the proliferation of cancer cells by inducing cell 152
toxin (Q9PT41) lebtina cycle arrest at the G2-M phase. It also suppresses NF-kB, a

turanica key anti-apoptotic transcription factor, and significantly
inhibits the nuclear translocation of the p50 subunit

14. Saxatilin Gloydius Decreased cell invasion through MMP-9 regulation function 153
(Q9DGH®6) saxatilis in MDAH 2774

15. Lebectin Macrovipera Impedes tumor cell adhesion, migration, and invasion, while 154
(W5XDMO) lebetina also inhibiting angiogenesis

16. Eristostatin Eristicophis Suppresses the establishment of melanoma cells in lung and 155
(POC6S4) macmahoni liver tissues

17. Ammodytoxin-C Vipera Induces autophagy by enhancing autophagosome formation 156
(P11407) ammodytes and simultaneously promotes apoptosis

18. Crotatroxin 2 Crotalus atrox Prevents fibrinogen from binding to GP IIb/llla receptors, 157
(P68520) while also inhibiting cell migration and tumor colonization
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Table 2. Cont...
No. Snake venom Snake Mechanism Ref.
component - species of Action
(UniProt ID
19. A-Bungarotoxin Bungarus Exerts antiproliferative effects on cancer cells by inducing
(P60615) multicinctus G1 phase arrest and counteracting nicotine-induced NK 158
cell-mediated proliferation
20. MVL-PLA, Macrovipera Inhibits angiogenesis and triggers alterations in the actin 159
(B5U622) lebetina cytoskeleton
21. Dendroptoxin-k Dendroaspis Demonstrates antitumor activity by disrupting the G1 to 160
polylepis S phase transition, increasing the expression of p27+¥?,
p21Waf/Aet and p15™%8, and inhibiting cyclin-
dependent kinases (CDKs) involved in cell cycle regulation
22. Contortrostatin Agkistrodon Blocks platelet aggregation and inhibits cancer cell growth, 161
(Q9IABO) controtrix adhesion, migration, and the formation of new blood vessels
23. Mojastinl Crotalus Interferes with ADP-induced platelet aggregation and 161
(POC7X7) scutulatus suppresses cell migration, invasion, and tumor establishment
24. Leucurogin Bothrops It possesses antiangiogenic activity 162
(PODJ87) leucurus
25. Leucurolysin-B Bothrops Demonstrates cytotoxic effects against a range of cancer cell
(P86092) leucurus lines, including U87, T98, MCF7, RT2, EAC, and UACC. 163
26. Vicrostatin Echis Limits the migration potential of human umbilical vein 164
carinatus endothelial cells (HUVECs)
27. Pooled venom Montivipera Displays dose-dependent cytotoxicity and inhibits cell 165
(AOA7R7T1Q6) Xanthine proliferation
28. Viridistatin 2 Crotalus Suppresses proliferation, migration, adhesion, and survival 166
(A2CJEb) viridis of human pancreatic carcinoma (BXPC-3) cells by inducing
apoptosis
29. Tzabcanin Crotalus Prevents the adhesion of melanoma (A-375) cells and lung 167
(COHK50) tzabcan carcinoma (A-549) cells to vitronectin
30. Ophiophagus Ophiophagus Showed inhibitory properties on tumour cell induced 168
hannah venom hannah angiogenesis
(12€090)

models.® Crotoxin has also demonstrated efficacy
in treating neuropathic pain and inflammation.*®
These peptides work by rapidly and irreversibly
inhibiting specific subtypes of neuronal acid-
sensing ion channels (ASICs) found in the central
nervous system (CNS).%¢ ASICs are typically
activated by protons, which induce pain sensations
in a reversible manner. By blocking these channels,
these toxins provide an analgesic effect in both
acute and chronic inflammatory pain conditions.®”

Anti-arthritic and anti-inflammatory activity
Various animal models are being utilized
to examine the pathophysiological effects of
snake venom toxins on arthritis. For instance, the
venom of Naja kaouthia has been shown to induce
significant changes in arthritis biomarkers in mouse

models, including alterations in paw and ankle
diameter, urinary markers such as hydroxyproline
and glucosamine, biochemical markers like acid
and alkaline phosphatase, the molecular marker
IL-10, and liver antioxidant parameters such
as catalase and glutathione.®® Additionally, the
anti-arthritic and anti-inflammatory effects of
the NN-32 peptide, derived from Indian cobra
venom, were evaluated using mouse models
of Freund’s complete adjuvant (FCA)-induced
arthritis and carrageenan-induced inflammation.
The results demonstrated that NN-32 peptide
treatment significantly reduced physical and
urinary parameters, serum enzyme levels, and
cytokine levels compared to the arthritic control
group. Furthermore, NN-32 peptide treatment
effectively alleviated carrageenan-induced
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inflammation in rats, suggesting that this cytotoxic
NN-32 protein possesses both anti-arthritic and
anti-inflammatory properties.®

The prolonged anti-inflammatory effects
observed with crude Crotalus durissus terrificus
venom are attributed to crotoxin, an isoform of
PLA,, by activating the formyl peptide receptors,
which acts as a major factor in enhancing the
anti-inflammatory effects.”® In a related study, a
single dose of Crotalus durissus terrificus venom
(CdtV) results in prolonged effect of altering the
inflammatory response with changes in the major
symptoms such as paw edema and migration of
the cells observed in the mice, where inflammation
isinduced by carrageenan compound similar to the
effects observed with the crude venom.*®

Anti-cancer activity

Multiple research has stated that snake
venom protein PLA, and LAAO possess anti-cancer
property by inducing apoptosis mechanism leading
to cell death, altering the cell cycle, reducing the
cell growth to GO and G1 phase, and further stops
the proliferation of the cells, thereby helping in
controlling the cancer metastasis in the body.
Both apoptosis and necrosis are observed in cells
treated with these enzymes. The cytotoxicity
of PLA, is mainly attributed to its C-terminal
region, which interacts with the cell membrane.
In contrast, LAAO produces significant amounts
of H,0, through its enzymatic activity, leading to
cell death by accumulating the reactive oxygen
species (ROS) in the cells. Along with LAAO, some
disintegrins are also known to induce apoptosis.
The disintegrin derived from Naja naja venom
has been reported to suppress the proliferation
of MCF-7 (IC,, = 2.5 £ 0.5 pg/mL), A549 (3.5 + 0.5
pg/mL), and HepG2 (3 + 0.5 pg/mL) cell lines.**
Additionally, some compounds extracted from
the snake venom toxins are reported to possess
anti-melanoma activity. The possible mechanism
of action for anti-melanoma activity might be
because of the highly specificity of the disintegrins
for disrupting the integrity integrins.®

PLA,, and LAAO also demonstrate
anticoagulant activity, presenting potential
applications in cancer treatment, particularly in
addressing venous thromboembolism frequently
seen in cancer patients. Nevertheless, the precise
mechanism by which these enzymes induce

cell death remains unclear, particularly their
interactions with death receptors, is not well
understood and requires further investigation.
Ensuring the selectivity of enzymes towards cancer
cells is essential, as non-cancer cells are less
sensitive to their cytotoxic effects. These enzymes
exhibit stronger cytotoxic activity in cancer cells
than in normal cells, making them promising
candidates for potential use as chemotherapeutic
agents. It is believed that these enzymes promote
oxidative stress. PLA, during lipolysis, can
generate ROS, while LAAO produces H,0, both of
which contribute to cell death®® (Table 2, Figure 8).

Anti-viral activity

Recent studies have highlighted
the antiviral effects of various snake venom
components.’*** Non-cytotoxic fractions of Cdt
venom have shown anti-viral activity against
the measles virus, inhibiting its replication
in Vero cells at concentrations of 0.1 pug/mL
and 100 pg/mL.>> Naja nigricollis venom has
demonstrated in controlling the viral load in the
human erythrocytes which are infected with
the Sendai virus. Virus-infected cells exhibited
tenfold higher susceptibility, by lysing the two
among five venom toxins selected for the study,
with 4 identified cytotoxins from Naja nigricollis
venom showing that virus-infected cells were ten
times more vulnerable to cytotoxic effects than
healthy cells.?®* Additionally, LAAO from Bothrops
jararaca has been shown to inhibit the viral growth
of dengue virus, therefore possessing antiviral
properties. Another study states that the cells
infected with dengue type 3 virus (DENV-3) had
reduced viral load after treatment with LAAO
compared to untreated cells.”

The venom of Naja siamensis contains
an oxidized derivative of alpha-toxins and
immunokines, which suppresses the
lymphocytes infection caused by HIV and Feline
Immunodeficiency Virus (FIV). There is a significant
resemblance between the amino acid sequences
of long-chain neurotoxins protein present in Naja
siamensis and Bungarus multicinctus venoms and
a short sequence in the HIV-1 gp120, suggesting
that these molecules may compete for the same
binding sites.®*%” Additionally, a metalloprotease
inhibitor isolated from Trimeresurus stejnegeri
venom has the potential to block protease
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Table 3. Food and Drug Administration (FDA) approved snake venom-based drugs

Approved  Drugs Venomous Mode of Medical Production Ref.
drugs Snake action Treatment
FDA Captopril Bothrops Inhibiting Hypertension, Synthetic 169,
approved  (Capoten®) jararaca ACE cardiac failure 170
Hemocoagulase Bothrops Coagulation Abdominal surgery, Purified 111,
atrox of the blood human vitrectomy, from 171
is catalyzed and plastic surgery venom
Eptifibatide Sistrurus Inhibits the Coronary syndrome, Synthetic 172,
(Integrilin®) miliarus platelet acute 173
barbouri aggregation by
preventing ligand
binding to
Glycoprotein (GP)
lIb/llla platelet
receptor
Tirofiban Echis Acts as an Heart attack Synthetic 174-
(Aggrastat®) carinatus ~ antagonist by 176
preventing
fibrinogen from
binding to the
GPlIb/llla
receptor
on platelets
Batroxobin Bothrops Cleaves alpha- Associated with Purified 171,
(Defibrase®, atrox & chain of conditions such from 177
Plateltex-Act®,  B. moojeni fibrinogen as deep vein venom
Vivostat®) thrombosis, stroke,
pulmonary embolism,
and myocardial
infarction
Exanta Cobra Inhibiting Thromboembolic Synthetic 178
(Ximelagatran)  venom direct side effects associated
thrombin with atrial fibrillation
Cobratide Naja naja  Inhibits the Chronic arthralgia, Purified 84
(Ketonging, atra activity of sciatica, from
cobrotoxin) nicotinic neuropathic venom
acetylcholine headache

receptors

enzymes and prevent the formation of new virus
particles.

PLA,, from snake venom prevents HIV-
1 replication in primary human leukocytes by
blocking viral entry before the virus uncoats and
releases proteins from the viral capsid.?®%

LAAO from venoms of Crotalus
atrox, Pseudechis australis, and Trimeresurus
stejnegeri showed dose-dependent inhibition of
HIV-1infection and replication by blocking the p24
antigen.*+100.10! Free radicals like H.O_, produced

272

during LAAO activity, contribute to the antiviral

effects by preventing HIV infection and replication,
though H,O, interaction with catalases may
reduce its antiviral activity.'®* Snake venoms from
Crotalus adamanteus, Oxyuranus microlepidotus,
Bungarus candidus, Hydrophis cyanocinctus, Naja
naja, Notechis ater, Naja sumatrana, and Naja
kaouthia have also been reported to exhibit anti-
HIV activity.61102103

HIV entry requires CD4 and a coreceptor,
primarily CCR5 or CXCR4, which determine viral
tropism and disease progression. Discoveries
of coreceptor roles and CCR5 mutations have
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provided key insights into HIV biology and
therapeutic targets.?*

PLA,, from snake venom prevents HIV-
1 replication in primary human leukocytes by
blocking viral entry before the virus uncoats and
releases proteins from the viral capsid.®®99104
Anti-HIV activity has been demonstrated by
synthetic peptides derived from PLA,, including
p3bv peptide, which blocks HIV-1 attachment
to T cells by binding to the CXCR4 receptor,
thereby preventing virus entry.® Crotoxin, a
phospholipase isolated from Crotalus durissus
terrificus venom, has been shown to inhibit HIV
in vitro.*®® Chemokines and their derivatives can
compete with the HIV-1 gp120 for binding to
receptors like CXCR4, effectively suppressing HIV
replication.104107

PLA, from snake venom has antiviral
potency against SARS-CoV-2, particularly the
dimeric form. On the other hand, dimeric PLA,
catalytic activity determines its virucidal and
antiviral properties. The unique ability of PLA, is
to inactivate the virus from spreading infection.%®
Batroxobin is a safe drug that is used extensively
for perioperative bleeding and is effective for a
variety of illnesses, such as deep vein thrombosis
and pulmonary embolism.}® This provides the
opportunity to introduce Batroxobin, which
is isolated from Bothrops atrox venom and
catalyzes the conversion of fibrinogen to fibrin
(Pefakit Reptilase Time; Pentapharm), as part of
an anti-COVID-19 therapeutic strategy aimed at
preventing the deadly pulmonary embolism that
can lead to severe SARS-CoV-2 infections.''°

Obstacles encountered in the drug development
journey

The most common application of animal
toxins is as pharmacological tools for target
validation. Although there have been many
instances of success, the availability of authorized
compounds possessing significant pharmacological
properties derived from animal venoms remains
limited. Challenges in developing animal toxin-
based drugs are commonly linked to gaps in
fundamental research, preclinical assessment,
and clinical trials (Figure 9). Additionally, a lot of
the difficulties encountered during the different
phases of drug development are not been
sufficiently documented in the scientific literature

because the information about compounds that
are in the development stage and for which the
development is halted due to many internal
problems, as they are protected by intellectual
property rights.*

During the initial phase of research

Studies utilizing animal toxins are not
simple tasks because several concerns need to be
overcome. Genomic analysis and cDNA library are
the choices which can be explored to strengthen
the research.!?? Recent studies have shown that
these toxic molecules can be obtained by utilising
organoid technology. However, this is still a
challenging and daunting task.!*?

Second phase of research (preclinical phase)
The pharmaceutical applications of
drugs formulated from snake venom toxins
have been extensively investigated due to their
diverse range of biological activities. These toxins
showed shown significant activity in areas such
as anticoagulation, anti-thrombosis, antimicrobial
activity, analgesic properties, and potential
for anti-tumour treatments. However, several
limitations and challenges need to be resolved
before using snake venom toxins as drugs.
Selectivity, mode of action, formulation, stability,
and cost of production are some constraints with
toxin-based drugs.'** The selectivity of snake
venom toxins may have off-target effects due
to their non-specific binding to other proteins
and enzymes, which can result in unwanted side
effects. Therefore, the development of toxin-
based drugs is a major challenge for achieving
high selectivity for the target protein or enzyme.
Understanding the mechanism of action of toxin-
based drugs is vital in developing pharmaceuticals
reliant on their biological activity. Nevertheless, it
is challenging to determine the exact mechanism
of action and the complexity of the interactions
between toxins and their target molecules,
which often requires extensive research and
experimentation. Another challenge in the
development of drugs based on snake venom
toxins is that the size of the molecules is often
large, complex, and unstable. However, compared
to humans, these have better physicochemical
properties. The purification, storage, and delivery
of these drugs entail a multifaceted process that
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demands meticulous attention to factors like pH,
temperature, and stability. The stability of snake
venom toxins is a crucial factor in the development
of drugs based on toxins. These molecules limit
their therapeutic efficacy unless targeted delivery
systems are chosen, are prone to degradation and
can be rapidly eliminated from the body. Therefore,
appropriate drug delivery systems should be
developed. The cost of production of snake venom
toxin-based drugs is also a major challenge. The
extraction and purification process of toxins is
both time-consuming and expensive, making it
challenging to produce these molecules on a large
scale, often rendering it infeasible. Purification also
introduces complexity, as many of the proteins
are bound to each other, especially when they are
being purified under native conditions. Cloning
and expression of certain snake venom proteins
can help to overcome the problems associated
with purification.*>!¢ Despite the obstacles
faced, there have been notable advancements
in drug development through the utilization of
snake venom toxins. For example, the snake
venom derived Echistatin,’'” has been used as
an antiplatelet agent, and extensive research
has been conducted on crotoxin, a constituent
extracted from the venom toxins of the South
American rattlesnake Crotalus durissus terrificus,
because of its potential antitumor properties. To
advance the formulation of snake venom toxin-
oriented drugs and enhance their effectiveness
and safety, additional research is required to tackle
the associated challenges.”

Final phase of research (clinical trial)

The standard method for assessing certain
drug-related issues involves assessing the efficacy,
safety and the long-term effects. However, at times
the studies lack access to specific population,
especially children, pregnant women and elderly
people.''® Therefore, the developmental process
needs to address these constraints and identify
which drugs need more epidemiological research.
Electronic health care records for post-marketing
and comparing the safety of the medication can
be utilized to overcome these limitations.'*® In
addition, snake venom toxin-based drugs face
regulatory challenges, particularly in countries
where there is limited experience with these types

of drugs. Moreover, the regulatory process for
approving drugs is lengthy and not economical.
There are also ethical considerations related to the
applications of snake venom toxins in clinical trials,
and obtaining venom, even for research purposes,
is becoming a cumbersome process. The challenge
also includes concerns about exposing patients
to unnecessary risks or about the use of animal
testing in the formulation of new and suitable
drugs.’ Due to these constraints, despite the high
therapeutic potential of snake venom proteins,
the transition from the laboratory to bedside is
very slow and challenging. Drugs, which are in the
phase of trials and being approved by the Food and
Drug Administration (FDA) are listed in Table 3.

Snake venom proteins represent a
promising candidate for human therapeutics,
with active compounds showing significant effects
in treating conditions such as cardiovascular
diseases, cancer, and pain management. Notable
compounds include Bradykinin Potentiating
Peptides and snake venom metalloproteinases,
which are being explored for their medicinal
properties.

Snake venom proteins offer significant
benefits due to their relatively low molecular mass.
Regulatory challenges and scalability issues further
hinder progress. Integrating nanotechnology into
this process offers promising solutions, enabling
improved drug delivery, enhanced stability, and
targeted action while minimizing side effects.
Nanocarriers such as liposomes, nanoparticles,
and dendrimers can optimize venom-derived
therapeutics, overcoming conventional barriers.
This innovative approach not only enhances
efficacy but also reduces the risks associated
with venom-based drugs, marking a significant
advancement in addressing critical challenges in
modern drug development.

Integrating nanotechnology in drug development

Nanotechnology has become a promising
approach in the development and formulation of
drug, offering improved effectiveness and reduced
adverse effects when compared to conventional
therapies. Through use of nanoscale drug
delivery systems, nanoparticle technology alters
the kinetics, distribution, and release of drugs,
providing several benefits, such as increased
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patient compliance, lower healthcare costs, and
enhanced drug efficacy while reducing toxicity.*
Various nanoparticle formulation approaches
have been investigated to improve the targeted
delivery of venom peptides. This approach is
gaining momentum due to its ability to reduce
systemic toxicity and improve therapeutic efficacy.
For instance, the use of nanoparticle systems that
efficiently destroy tumor cells directed by immune
cells to play an important role in preventing
the tumors development. Recent studies have
focused on the development and exploration
of nanoparticle-conjugated venom peptides to
enhance therapeutic efficacy and reduce toxicity.'?

Establishing the efficacy, potency,
and safety of enzymatic toxins is crucial before
they can be developed into chemotherapeutic
agents. Targeted delivery approaches, such
as nanoparticles formulation or conjugating
with the ligands or production of monoclonal/
polyclonal antibodies, need to be explored to
recognize cancer cells. NN-32 purified toxin and
toxin conjugating with nanogold GNP-NN-32
demonstrates remarkable cytotoxic potential
against MCF-7 and MDA-MB-231 cell lines,
effective interaction with dose and duration
exposure.'?

Formulation of gold nanoparticles
with Naja kaouthia cytotoxin 1 (NKCT1) have a
synergistic effect that reduces the required dosage
and course of action of the NKCT1. This controlled
release of NKCT1 to target cells via GNP also
increases the cytotoxic effect by two to threefold
and minimizes the toxic effects of NKCT1. Due
to its ability to induce cell cycle arrest, promote
apoptosis, and regulate nuclear fragmentation,
conjugation has shown high antileukemic action.
GNP-NKCT1 treatment supports the emerging
concept that conjugating nanoparticles may
prove advantageous for leukemia, as GNP-
NKCT1 regulates various biochemical pathways
by inhibiting transcriptional and translational
levels.’?* Chitosan nanoparticles encapsulated with
Echis carinatus snake venom result in increased
efficacy compared to traditional adjuvant systems
and also enhance the stability of the snake
venom proteins in physiological systems.?* In
another study, the apoptotic action of venom

from Walterinnesia aegyptia (WEV) on breast
cancer cells using free WEV and WEV formulated
with silver nanoparticles has been able to inhibit
the cell proliferation in a dose-dependent
manner, with Walterinnesia aegyptia venom
silver nanoparticle conjugate (WEV-NP) exhibiting
greater efficacy and substantially enhancing the
anticancer properties of WEV, according to WEV
conjugated with silica nanoparticles (WEV-NP).12¢
In a recent study, CdtV (rattlesnake) was used
to develop a fibrin sealant. This enzyme, which
resembles thrombin, can convert fibrinogen into
fibrin, which can naturally gel and is non-toxic,
non-immunogenic, and biodegradable. For the
formulation of fibrin sealant, multi-layered carbon
nanotubes were utilized and nanohydroxyapatites
for potential application in bone regeneration.*”’
The utilization of targeted delivery systems in
employing snake venom toxins as therapeutic
agents is crucial due to their ability to enhance
specificity and minimize side effects on normal
cells.

CONCLUSION

Snake venom research isadvancing rapidly
due to breakthroughs in genomics, proteomics,
nanotechnology, and bioactivity assays, offering
significant potential for therapeutic development.
The structural and functional similarities between
snake venom proteins and human proteins make
them valuable models for designing enzyme
inhibitors and drug candidates. These proteins
exhibit diverse biological activities, supporting
their use in treating various diseases. However,
challenges remain in terms of ensuring target
specificity, reducing toxicity without compromising
function, delivering precise dosages, and scaling
up production efficiently. Existing venom-derived
drugs demonstrate that toxic components can be
repurposed into safe and effective therapeutics.
Moving forward, integrating bioinformatics for
predictive modeling, enhancing delivery systems
through nanotechnology, and deepening our
molecular understanding of venom actions will
be crucial to overcoming current limitations and
translating venom-based research into innovative,
clinically viable treatments.
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