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Abstract
Xylanase plays a crucial role in the degradation of hemicellulose and holds significant promise 
across a variety of biotechnological industries. This study investigates the effects of culture medium 
composition and initial pH on xylanase production by Aspergillus niger. Five different media; Mandels’, 
Vogel’s, Marciel’s, Okafor’s, and a modified Czapek-Dox, were evaluated for their ability to support 
enzyme synthesis. Additionally, initial pH levels ranging from 4.0 to 8.0 were tested to identify optimal 
production conditions. Among the tested media, Mandels’ medium supported the highest xylanase 
activity, while the optimal pH range for enzyme production was between 6.0 and 7.0. These findings 
provide valuable insights for optimizing large-scale xylanase production using A. niger, contributing 
to the development of more efficient and cost-effective bioprocesses. Notably, this study incorporates 
biomass-specific productivity metrics (IU/g biomass), allowing for a more accurate evaluation of the 
strain’s enzymatic efficiency. This quantitative approach may help inform future efforts to develop cost-
effective and scalable bioprocesses, particularly when applied to low-cost agro-industrial substrates.
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INTRODUCTION 

	 Hemicellulose, a major polysaccharide 
component of plant biomass, represents a 
significant renewable resource for the production 
of value-added bioproducts.1,2 Xylan, the most 
abundant form of hemicellulose,3 is composed 
of a a-1,4-linked xylose backbone with various 
side groups and requires a synergistic set of 
enzymes for its complete hydrolysis. Among 
these, xylanases (endo-β-1,4-xylanases; EC 
3.2.1.8) catalyze the random cleavage of the xylan 
backbone, making them critical for the efficient 
degradation of lignocellulosic biomass.4 Owing to 
their efficiency and versatility, xylanases are widely 
employed in several industrial sectors, including 
pulp and paper processing (for environmentally 
friendly bleaching), animal feed improvement, 
food and beverage clarification, textile processing, 
and biofuel production.5,6

	 Given the growing interest in sustainable 
bioprocessing, microbial production of xylanase 
has received considerable attention. Filamentous 
fungi, particularly Aspergillus species, are regarded 
as prolific producers due to their high secretion 
capacity and well-established fermentation 
profiles.7,8 Aspergillus niger has emerged as a 
leading organism for industrial enzyme production8 
due to its Generally Recognized as Safe (GRAS) 
status, robust growth on diverse substrates, 
and ease of genetic manipulation.9 However, 
the production yield and activity of fungal 
xylanases are highly sensitive to cultivation 
conditions, especially the composition of the 
culture medium10,11 and environmental pH.12,13

	 Among these variables, the composition 
of the culture medium plays a decisive role 
in modulating enzyme synthesis, not only by 
supplying essential nutrients but also by influencing 
regulatory pathways involved in enzyme induction 
or repression.14 For instance, the utilization of 
agro-industrial residues like wheat bran and 
corn cob has been shown to enhance xylanase 
production in A. niger strains under solid-state 
fermentation conditions.15,16 Additionally, pH plays 
a crucial role in enzyme production17 by influencing 
nutrient solubility, membrane transport, enzyme 
stability, and the activity of regulatory proteins.18,19 
Studies have demonstrated that A. niger can 
produce xylanase over a broad pH range, with 

optimal activity observed in both acidic and 
alkaline conditions, depending on the strain and 
cultivation parameters.20,21

	 Although numerous studies have 
investigated xylanase production, comprehensive 
comparative analyses of the effects of different 
culture media and pH conditions on A. niger 
remain limited. In this study, five culture media; 
Mandels’, Vogel’s, Marciel’s, Okafor’s, and a 
modified Czapek-Dox medium, were evaluated 
for their ability to support xylanase production 
by A. niger. In addition, the influence of initial 
pH (4.0-8.0) was examined to determine optimal 
conditions for enzyme synthesis. The findings 
provide valuable insights for the biotechnological 
optimization of A. niger xylanase production, with 
potential applications in diverse industrial sectors.

MATERIALS AND METHODS

Strain and inoculum preparation
	 A. niger ATCC 16888 was used as the 
enzyme-producing strain. It was cultivated on 
potato dextrose agar (PDA) at 30 °C for 7 days. 
Spores were harvested using sterile water, and the 
spore suspension was adjusted to 108 spores/mL. 

Culture media and pH conditions
	 Five liquid media were tested: Mandels’ 
medium, Vogel’s medium, Marciel’s medium,22 
Okafor ’s medium,23 and modified Czapek-
Dox medium (CDM)24 as presented in Table 1. 
Birchwood xylan (1.0% w/v) was used as the 
carbon source. Initial pH was set to 5.6. To assess 
pH influence, Mandels’ medium was adjusted to 
4.0, 5.0, 6.0, 7.0, and 8.0 using acetate buffer (pH 
4.0-5.0) and phosphate buffer (pH 6.0-8.0).

Cultivation technique
	 Fifty milliliters of sterilized culture 
medium (e.g., Mandels’ medium) were dispensed 
into 250 mL Erlenmeyer flasks, adjusted to the 
desired initial pH (ranging from 4.0 to 8.0), and 
autoclaved at 121 °C for 15 minutes. After cooling, 
the media were inoculated with A. niger spore 
suspension at a concentration of 107 spores/mL. 
The cultures were incubated at 30 °C for 5 days 
with shaking at 120 rpm to ensure adequate 
aeration. Samples were collected at regular 
intervals to assess biomass accumulation and 
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xylanase activity. All experimental conditions 
were tested in triplicate to ensure accuracy and 
reproducibility.

Enzyme extraction and assay
	 Samples were centrifuged at 6,000 rpm 
for 10 minutes, after which the supernatant was 
collected for enzyme assays, and the biomass 
dry weight was measured. Xylanase activity was 
determined according to the method of Bailey 
et al.25 using birchwood xylan (1% w/v) as the 
substrate. The reaction mixture contained 0.5 mL 
of appropriately diluted enzyme solution and 0.5 
mL of substrate prepared in 50 mM sodium citrate 
buffer (pH 6.0). The mixture was incubated at  
50 °C for 10 minutes.
	 The amount of reducing sugars released 
was quantified using the 3,5-dinitrosalicylic acid 
(DNS) method,26 with absorbance measured at 
540 nm. One unit (IU) of xylanase activity was 
defined as the amount of enzyme required to 
release 1.0 µmol of xylose per minute under the 
assay conditions.

Determination of biomass
	 Fungal biomass obtained from the 
cultivation was harvested by filtration using pre-
weighed Whatman No. 1 filter paper, then washed 

thoroughly with distilled water to remove residual 
medium. The biomass was dried at 80 °C for 24 
hours or until a constant weight was achieved and 
subsequently weighed to determine dry biomass. 
All measurements were performed in triplicate to 
ensure accuracy and reproducibility.

Data analysis
	 All results are expressed as mean ± 
standard deviation (SD). Statistical significance 
was evaluated using one-way analysis of variance 
(ANOVA), followed by Tukey’s post hoc test for 
multiple comparisons at a 95% confidence level 
(p <0.05). All statistical analyses were performed 
using Minitab 19 software (Minitab Inc., State 
College, PA, USA).

RESULTS AND DISCUSSION

Effect of culture media composition on the 
biomass and xylanase production
	 The composition of the culture medium 
had a significant impact on xylanase activity 
and fungal biomass production by A. niger, as 
shown in Figures 1 and 2. Among the tested 
media, Mandels’ medium produced the highest 
biomass production and xylanase activity at 72 
and 96 hours, respectively. This suggests that its 

Table 1. Composition of the media for A. niger cultivation

Composition (g/L)	 Mandels’	 Vogel’s	 Marciel’s	 Okafar’s	 Modified CDM

Urea	 0.30	 -	 -	 -	 -
Peptone	 0.75	 -	 -	 -	 -
Yeast extract	 0.25	 -	 -	 -	 5.00
(NH4)2SO4	 1.40	 -	 -	 -	 -
NH4NO3	 -	 2.00	 -	 -	 -
KH2PO4	 2.00	 5.00	 -	 1.00	 1.00
K2HPO4	 -	 -	 0.23	 -	 1.00
MgSO4·7H2O	 0.30	 0.20	 0.05	 -	 0.50
CaCl2·2H2O	 0.40	 0.10	 0.01	 -	 -
NaNO3	 -	 -	 0.05	 3.00	 3.00
KCl	 -	 -	 -	 0.50	 0.50
Na3-citrate	 -	 2.50	 -	 -	 -
Trace elements (mg/L)				  
FeSO4·7H2O	 5.00	 0.75	 9.00	 10.00	 10.00
ZnSO4	 1.40	 3.00	 2.00	 1.00	 -
MnSO4	 1.60	 0.50	 12.00	 12.5	 -
CoCl2·6H2O	 20.00	 -	 -	 -	 -
CuSO4·5H2O	 -	 0.30	 -	 0.50	 -
H3BO3	 -	 0.05	 -	 -	 -
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balanced nutrient composition effectively supports 
both fungal growth and enzyme biosynthesis.27 
Mandels’ medium includes multiple nitrogen 
sources, including urea, peptone, yeast extract, 
and ammonium sulfate, that together provide 
a rich mixture of amino acids, peptides, and 
vitamins, all of which promote extracellular 
enzyme production.28,29

	 Modified Czapek-Dox (CMD) medium 
also supported relatively high xylanase activity. 
However, its dependence on sodium nitrate 
as the sole nitrogen source may have reduced 
nitrogen uptake efficiency.30 In contrast, Vogel’s, 
Marciel’s, and Okafor’s media yielded significantly 
lower enzyme activity. This can be attributed to 
their limited nitrogen diversity and the lower 

Figure 1. Biomass production of A. niger during cultivating in different media

Figure 2. Xylanase activity from A. niger during cultivating in different media
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bioavailability of their nitrogen sources. Vogel’s 
medium primarily uses ammonium nitrate, while 
Marciel’s and Okafor’s formulations rely heavily 
on sodium nitrate.
	 Inorganic nitrogen sources like nitrate 
(NO3

-) require enzymatic reduction to nitrite 
(NO0

-) and then to ammonium (NH4
+) before 

the fungus can assimilate them.30 This multi-

step reduction, mediated by nitrate and nitrite 
reductases, consumes energy and may delay 
nitrogen assimilation during early fungal growth 
and enzyme synthesis.31 As a result, media that 
rely mainly on nitrate may not support optimal 
xylanase production.
	 In contrast, organic nitrogen sources, 
such as those found in Mandels’ medium are more 

Figure 3. Xylanase activity of A. niger during cultivating in the Mandels' medium at various initial pHs

Figure 4. Biomass production of A. niger during cultivating in the Mandels' medium at various initial pHs
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easily metabolized and require less energy for 
assimilation. They supply readily available building 
blocks for protein and enzyme biosynthesis, which 
enhances both fungal growth and secondary 
metabolite production.32 The lowest biomass yield 
and xylanase activity were observed in Okafor’s 
medium, further underscoring the importance of 
nitrogen source composition and bioavailability in 
supporting efficient enzyme production.
	 These results are consistent with earlier 
studies showing that complex nutrient sources 
enhance xylanase secretion, especially when 

agro-industrial residues are used as carbon 
sources. For example, Izidoro and Knob33 reported 
that brewer’s spent grain significantly increased 
xylanase production by A. niger, particularly in 
nutrient-rich media. Similarly, Fasiku et al.34 found 
that A. niger GIO achieved the highest xylanase 
activity during solid-state fermentation (SSF) using 
alkaline-pretreated maize straw. In that study, 
optimal enzyme activity occurred at 40 °C and pH 
5.0, demonstrating that agro-waste pretreatment 
can improve nutrient availability and enzyme yield.

Figure 5. pH change of the medium during cultivating in the Mandels' medium at various initial pHs

Table 2. Summary of maximum biomass production and xylanase activity, and xylanase production capacity of A. 
niger cultivated in different media

Media	 Maximum biomass	 Maximum xylanase	  Xylanase production capacity
	 (g/mL), Time (h)	 activity (IU/mL),	    of A. niger (IU/g biomass)
		  Time (h)
			   72 h	 96 h

Mandels 	 0.39 ± 0.04a, 72 h	 135.8 ± 7.1a, 96 h	 333.3a	 378.2b

Vogel 	 0.34 ± 0.05b, 72 h	 120.1 ± 4.0c, 96 h	 294.1d	 333.3c

CDM	 0.35 ± 0.03b, 72 h	 126.0 ± 4.6b, 96 h	 314.3c	 331.6c

Marciel 	 0.26 ± 0.03c, 72 h	 90.2 ± 12.6d, 96 h	 269.2d	 310.3d

Okafar 	 0.17 ± 0.02d, 72 h	 85.4 ± 2.8e, 96 h	 352.9a	 425.0a

Note: Data are presented as mean ± standard deviation. Different superscript letters in the same row indicate significant 
differences (p < 0.05).
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	 The carbon source’s structure and 
concentration also play a critical role. Tan et al.35 
showed that corn cob xylan at 3.5 g/L resulted in 
higher xylanase activity than empty fruit bunches 
during A. niger fermentation. This highlights 
the importance of substrate accessibility and 
composition in inducing enzyme production.
	 In addition to macronutrients, trace 
elements such as iron, zinc, and manganese are 
essential for xylanase biosynthesis.36-38 These act 
as cofactors that maintain enzyme stability and 
support catalytic function.39 Mandels’ and CMD 
media, which produced higher enzyme activity, 
included a more balanced profile of these trace 
elements. In contrast, Vogel’s medium contained 
fewer essential minerals, which may explain its 
lower enzyme yields.
	 Recent advances in strain improvement 
have also demonstrated the potential for 
enhancing xylanase production beyond medium 
optimization. Sharma et al.40 reported that A. niger 
mutants developed through UV irradiation and 
5-bromouracil treatment exhibited up to a fourfold 
increase in xylanase activity compared to wild-type 
strains. These improved mutants were selected 
based on colony morphology, stability, amino acid 
requirements, and enzyme output. Combining 
genetically enhanced strains with nutrient-rich 
media, such as Mandels’, offers a synergistic 
approach to improving industrial xylanase yields.
	 Marciel’s medium, which lacks nitrogen 
source diversity, showed the lowest enzyme 
activity among the tested media. Although 
Okafor’s medium contains a relatively high 
concentration of sodium nitrate, it was less 
effective than Mandels’ or CMD in supporting 
xylanase production. This is likely due to the slower 
uptake of nitrate compared to ammonium and 
organic nitrogen sources like peptone and yeast 
extract, as nitrate must be enzymatically reduced 
before it can be assimilated.41

	 Mandels’ and CMD media also provided 
a better balance of trace elements, likely 
contributing to enhanced xylanase stability and 
catalytic efficiency. In contrast, Vogel’s medium, 
with fewer essential minerals, resulted in lower 
enzyme production. These findings support the 
use of A. niger as a preferred microorganism 
for enzyme production. Its GRAS status, rapid 
growth, and ability to metabolize lignocellulosic 

substrates make it highly suitable for industrial-
scale fermentation.40 Enzymes from A. niger are 
widely applied in the paper and pulp industry, food 
processing, and biofuel production, emphasizing 
the importance of process optimization strategies 
such as those presented here.
	 The data summarized in Table 2 
demonstrates the xylanase production capacity, 
expressed as enzyme activity per gram of biomass 
(IU/g), provides a more accurate assessment 
of the fungus’s efficiency in enzyme secretion 
independent of biomass quantity. Based on Table 
2, the highest specific xylanase productivity was 
observed in Okafor’s medium (425.0 IU/g biomass 
at 96 h), despite its low overall xylanase activity and 
biomass yield. This indicates that under nitrogen-
limited conditions, A. niger may redirect metabolic 
energy toward secondary metabolite synthesis 
rather than growth, a phenomenon often reported 
in filamentous fungi during nutrient stress.40 
Mandels’ medium, which supported the highest 
overall xylanase activity and biomass production, 
showed a moderate xylanase production capacity. 
While the total enzyme output is greater, the 
enzyme yield per unit biomass is slightly lower 
than that in Okafor’s medium, likely due to the 
nutrient-rich conditions favoring both primary 
and secondary metabolism. CMD medium also 
exhibited relatively balanced performance with a 
xylanase activity of 331.6 IU/g biomass, suggesting 
efficient enzyme production under semi-defined 
nutrient conditions. Vogel’s and Marciel’s media 
had lower capacities, consistent with their limited 
nitrogen availability and reduced metabolic 
flexibility. 
	 These findings underscore the inverse 
relationship that can sometimes occur between 
biomass yield and enzyme productivity per 
biomass unit. Therefore, optimizing culture 
conditions should not focus solely on maximizing 
biomass or enzyme titer alone but rather on 
enhancing specific productivity, particularly in 
industrial settings where enzyme yield per input 
biomass is economically critical.

Effect of culture pH on the biomass and xylanase 
productions of A. niger
	 The influence of initial pH on xylanase 
production by A. niger is shown in Figure 3. The 
highest enzyme activity (141 IU/mL) occurred at 
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pH 6.0, consistent with previous studies.42 Enzyme 
activity declined sharply at more acidic pH values (≤ 
5.0), likely due to poor fungal growth (Figure 4) and 
reduced enzyme stability.43,44 A similar reduction 
at pH 8.0 suggests that alkaline conditions are also 
unfavorable for enzyme synthesis.45

	 Xylanase showed optimal stability and 
productivity in a slightly acidic to neutral pH range, 
which is ideal for food industry applications, such 
as baking and beverages, where controlled pH 
is important.46 The steep decrease in activity at 
pH 4.0-5.0 may be due to enzyme denaturation, 
conformational changes, and inhibited fungal 
metabolism.29,31 On the other hand, reduced 
enzyme production at pH ≥7.0 could result 
from suppressed fungal growth or disruption of 
metabolic pathways.46

	 Interestingly, although maximum activity 
was recorded at pH 6.0, xylanase production 
remained relatively stable between pH 6.0 and 
7.0.47 This suggests that small pH fluctuations 
within this range may not significantly affect 
enzyme output, a beneficial trait for industrial 
processes where exact pH control is difficult.45

	 The tendency for fermentation pH to 
stabilize between 6.2 and 6.4 during cultivation, 
regardless of the starting pH (Figure 5), further 
supports process robustness. This buffering effect 
is likely caused by fungal metabolism and the 
release of organic acids or bases.46 In addition, 
changes in colony color (black under acidic and 
white under alkaline conditions) suggest that pH 
affects fungal physiology, possibly influencing 
sporulation or metabolic behavior.43

	 As summarized in Table 3, pH also 
influenced the efficiency of enzyme production in 
relation to fungal biomass. Although pH 6.0 led to 
the highest xylanase titer and biomass yield, pH 
7.0 produced the highest xylanase productivity 
per gram of biomass (325.3 IU/g), suggesting 
more efficient enzyme synthesis at this pH. In 
contrast, extreme acidic (pH 4.0) and alkaline (pH 
8.0) conditions resulted in much lower specific 
productivity (195.9 and 277.0 IU/g, respectively). 
These findings confirm that maintaining culture 
pH between 6.5 and 7.0 is ideal for maximizing 
enzyme production efficiency in submerged 
fermentation systems.

Table 3. Summary of maximum biomass production and xylanase activity, and xylanase production capacity of A. 
niger cultivated in Mandels’ medium at different pH values

pH	 Maximum	 Maximum	 Fermentation	 Xylanase production
	 biomass	 activity	 time (h)	 capacity of
	 (g/mL)	 (IU/mL)		  A. niger 
				    (IU/g biomass)

4.0	 0.22 ± 0.02c	 43.1 ± 3.4c	 120	 195.9c

5.0	 0.27 ± 0.04b	 70.3 ± 9.8b	 72	 292.9a

6.0	 0.41 ± 0.03a 	 120.0 ± 9.6a	 72	 292.7a

7.0	 0.38 ± 0.05a	 123.6 ± 14.7a	 72	 325.3a

8.0	 0.27 ± 0.03b	 74.8 ± 13.5b	 72	 277.0b

Note: Data are presented as mean ± standard deviation. Different superscript letters in the same row indicate significant 
differences (p <0.05).

CONCLUSION

	 This study underscores the critical 
influence of culture medium composition and 
initial pH on xylanase production by Aspergillus 
niger. Among the evaluated media, Mandels’ 
formulation proved most effective, primarily 
due to its balanced combination of organic and 
inorganic nitrogen sources and essential trace 

elements. Optimal enzyme yields were achieved 
within a pH range of 6.0-7.0, conditions that also 
supported robust fungal growth and enhanced 
enzyme productivity. These findings provide a solid 
framework for scaling up fermentation processes, 
with potential to increase process efficiency, lower 
production costs, and ensure consistent xylanase 
output.
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	 Given the broad industrial relevance 
of xylanase, the implications of this work are 
far-reaching. In the pulp and paper industry,  
A. niger derived xylanase enables eco-friendly 
bio-bleaching and improves fiber quality. In food 
and feed sectors, it enhances product texture, 
nutrient release, and digestibility. Furthermore, 
in lignocellulosic biorefineries, xylanase is vital for 
the hydrolysis of hemicellulose into fermentable 
sugars, facilitating the sustainable production of 
biofuels and bio-based chemicals.
	 The demonstrated compatibility of A. 
niger with low-cost agro-industrial substrates, its 
resilience under mildly acidic to neutral pH, and 
its GRAS (Generally Recognized as Safe) status 
reinforce its value as a workhorse for industrial 
enzyme production. Overall, this study contributes 
to the optimization of key bioprocess parameters 
and supports the development of scalable, 
sustainable, and economically viable strategies 
for industrial xylanase manufacturing.
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