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Abstract
Environmental and biotic stresses are increasing globally due to anthropogenic activities. Omics 
approach including metagenomics, metatranscriptomics and interactome network analysis provide 
an insight into a comprehensive understanding of the plant’s response to abiotic stress as heat-
cold, drought and salinity. Understanding the structure and function of plant-associated microbial 
communities, their taxonomic composition, functional potential, dynamics of plant soil processes along 
with plant-soil interactions, is essential for strategizing sustainable agricultural strategies and advancing 
plant improvement tools, like CRISPR-Cas technologies. Transcriptome profiling using techniques, such 
as digital gene expression (DGE), RNA sequencing (RNA-seq), or SAGE (serial paired oligo-nucleic acid 
sequencing) have been done in crops like Angelica sinensis, Zea mays and other major cereal crops 
like wheat revealing information regarding the key regulators which play a positive role in controlling 
the abiotic stress responses. Chromatography techniques like gas chromatography-MS (GC-MS) and 
LC-MS/MS are widely used in metabolomics research due to their vast coverage of large metabolites 
in crops like mangosteen (Garcinia mangostana Linn.). In this article, we explain with examples, the 
network of transcriptional factors, plant immune hormones crosstalk and the signalling molecules 
involved in improved plant tolerance to abiotic stresses. We outline the instances where ‘omics’ research 
has pushed the boundaries of information about plant metabolites, plant gene expression pattern, 
soil and endophytic plant community composition, with a comprehensive view of recent advances 
in omics-driven research on plant gene expression, metabolites, and plant-soil-microbe interactions.
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INTRODUCTION

	 The production of sustainable agriculture 
in the twenty-first century faces a grave threat 
from climate change. Numerous studies have 
shown that biotic stressors (30%) and abiotic 
stressors (50%) are responsible for losses in global 
agricultural production, which is the main threat 
to future food security worldwide.1 Abiotic 
stressors primarily consist of  heat stress, cold 
stress, salinity, moisture, light intensity, drought, 
and lack of nutrition.2 As projected by the IPCC, 
atmospheric CO2 concentrations are also expected 
to rise to 605-755 ppm by 2070, with global 
temperatures increasing by 1.5 °C between 2015-
2050 and up to 3.0 °C by 2100. Simulation studies 
assess the combined impact of elevated CO2 and 
temperature levels suggesting how they negatively 
affect the yields of key crops such as rice (13%), 
maize (13%), jowar (21%), bajra (39%), wheat 
(25%) and barley (46%) during the kharif season 
when the temperature was increased by 3 °C.3

	 Microbial interactions are crucial 
for survival of soil ecosystem since climate 
change has altered plant chemoattractant 
profiles and the carbon-to-nitrogen (C/N) ratio, 
thereby influencing plant-microbe interactions. 
Awareness about  the associations and roles 
of various microbial communities requires an 
awareness of these interactions in soil microbial 
communities and biotic-abiotic variables. Among 
the several microbial interactions, plant-microbe 
interaction is the most important for maintaining 
the equilibrium in an ecosystem.4 Arbuscular 
mycorrhizal fungi (AMFs) mitigate abiotic stress 
through multiple mechanisms, including enhanced 
mineral uptake, improved water absorption, ionic 
balance, phytohormone modulation, increased 
photosynthetic efficiency, and elevated antioxidant 
enzyme production. Elevated soil Naz and Cl- levels 
under stress can hinder the transport of essential 
nutrients like Ca2+, P, K+, and Mg2+.5 Plants create 
a multitude of inorganic and organic substances 
that contribute to the establishment of a nutrient-
enriched environment that is advantageous for 
the substantial colonization of a diverse range 
of microorganisms.6 These interactions will help 
us decipher the role of microbes in enhancing 
plant health with reduced chemical inputs. 
Osmoprotectants like proline, serine, GABA 

(γ-aminobutyric acid), myo-inositol, D-pinitol, 
sucrose, trehalose, etc., are secreted by plants 
to help maintain cellular balance during stress 
conditions. Another aspect of plant microbe 
interaction is knowing how plant pathogens are 
responsible for causing diseases the plant.  It is 
widely reported that effector proteins manipulate 
plant defense mechanisms and metabolism to 
the pathogen’s benefit, there is a significant 
knowledge gap about the specific roles played by 
the numerous effectors.7 All of this demonstrates 
that the diversity of microbial communities and 
their interactions with the plants are responsible 
for maintaining the ecological stability and for 
providing several benefits for the plant growth, 
disease resistance, and stress tolerance.8 Microbes 
enhance plant defenses, promote health, and 
improve adaptability to environmental stress. 
During drought, they activate molecular pathways 
that boost water uptake, stimulate root growth, 
and increase stress-related hormones and 
enzymes. They also produce osmoprotectants, 
which help maintain cell turgor and water balance. 
Additionally, some microbes modify root structure, 
enhancing nutrient and water absorption, 
thereby increasing the plant’s resilience to 
drought conditions.9 Certain soil bacteria produce 
polyextremophilic enzymes such as cellulases, 
xylanases, proteases, amylases, lipases, and 
gelatinases, which aid in plant resilience. Under 
drought conditions, the root microbiomes of crops 
like rice (Oryza sativa) and sorghum (Sorghum 
bicolor) are enriched with Actinobacteria, which 
may enhance stress tolerance even under hypoxic 
conditions. Additionally, many bacteria produce 
1-aminocyclopropane-1-carboxylate (ACC) 
deaminase to regulate ethylene levels, reducing 
stress-induced growth inhibition.10 Additionally, 
it has been reported that Pseudomonas cedrina, 
Brevundimonas terrae ,  and Arthrobacter 
nicotianae promote plant health under low-
temperature stress.11

	 Dec ipher ing  the  impact  o f  the 
environment on plant-microbe interactions is 
crucial to understand the symbiotic associations, 
inhibiting phytopathogens, and developing 
effective biocontrol agents for maximum crop 
productivity. Better understanding of plant-microbe 
interactions can be attained by integrating multi-
omics approaches, which combine experimental 
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and computational methods to identify the unique 
microbial role  in the system and various other 
mechanism that are involved in abiotic stress 
tolerance Comprehensive information about 
plant soil processes is essential for developing 
newer varieties and to modify cultivation practices 
for boosting crop productivity, increased stress 
tolerance and phytopathogen control and also for 
optimizing nutrient use efficiency. 

Plant response to stresses
	 The plant immune system is triggered 
by microbial signals of two different kinds 
and is comprised of an intricate network of 
transcriptional factors, hormone crosstalk, and 
signaling molecules. Broadly conserved microbe/
pathogen-associated molecular patterns (PAMPs) 
such as chitin and flagellin are included in the 
first category. PAMP-triggered immunity (PTI), 
which is thought to be the main element of basal 
defense against all microorganisms, is due to 
recognition of PAMPs. However, PTI is frequently 
inhibited by developed pathogens, primarily 
through virulence “effector” proteins that the 
pathogens introduce into the plant cell. Plants 
have developed the ability to detect individual 
effector proteins, which are a type of microbial 
signal that counteracts pathogen virulence. This 
recognition is made possible by nucleotide-binding 
leucine-rich repeat (NLR) immune receptors, which 
trigger a more potent type of immunity known 
as effector-triggered immunity (ETI). When plant 
immune receptors (R proteins) detect pathogen 
effectors, they trigger ETI. This often involves 
a signaling cascade that leads to localized cell 
death (hypersensitive response) and systemic 
resistance. Calcium signaling plays a key role in 
this process-recognition of effectors causes a rapid 
and sustained rise in cytoplasmic calcium, which 
activates defense-related genes, strengthens cell 
walls, and initiates programmed cell death to stop 
the spread of infection.12 PTI and ETI have distinct 
ways of perceiving signals, but they have several 
downstream reactions in common. Elevated abiotic 
stress brought on by climate change and global 
warming further worsens the problem of  plant 
response against  stress. It is well established 
that the microbial community that colonizes the 
rhizosphere and the surrounding soil influences 
plant’s ability to withstand abiotic stresses as 

presented in the Figure 1. In continuation to 
this, effect of microbes in plant abiotic stress 
response has been briefly described in Table 1. 
Plants defense mechanism, mainly hormonal, is 
strengthened by biological and chemical priming. 
Priming, also known as acclimatization, is a 
complicated process that involves preconditioning 
the plant’s abiotic and immunological systems to 
increase the speed, potency and effectiveness of 
its responses to stress.13 Multi-omics studies have 
demonstrated the potential to greatly advance our 
understanding of rhizospheric science by enabling 
the characterization of beneficial microorganisms 
associated with plants and their roles.14

Plant omics 
	 Use of  Omics  tool   i s  a  modern 
a p p r o a c h  t h a t  o f f e r s  t e c h n o l o g i c a l 
advancement and multidisciplinary approach 
to enhance our  understanding  of all genomic 
and transcriptomic events that occur inside 
the  plants.18 It helps the plant during abiotic 
stress by recognizing key genes responsible as 
presented in Figure 2. Genomic,  transcriptomic 
and  metabolomic  techniques provide data 
for over-expression/under-expression of gene 
of interest.17 Reference genetic databases, 
transcriptomic, metabolomic databases of 
plant response  under var ied s ituat ions 
include KBase, MOCAT2, Metawrap, DRAM/
DRAM-v. Bioinformatic programmes included 
in metagenome assembled genome (MAG) 
refinement programme use tools like FastQC, 
MultiQC, Meta-IDBA, Maxbin2, Check M and Meta 
Gene Mark for sequence reads.19 Arabidopsis, 
used as a starting point for developing models 
that aid in examining different aspects of the 
complex interaction between bacteria and plants.20 
The effective application of different markers for 
early-generation population monitoring, such as 
in marker-assisted crossbreeding programmed 
has been made possible by these  resources in 
crops. The paradigm of crop breeding has been 
greatly altered by use of genomic selection and 
CRISP-Cas systems like CRISPR-Cas9, CRISPRi 
(CRISPR interference) and CRISPR-Cpf1.21 When 
combined, the abundance of omics resources 
and breeding techniques enabled by omics would 
improve genetic gain in crop  development  and 
hasten the release of crop  varieties that  satisfy 
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growing productivity and quality standards in 
crops like wheat, maize, soybean and tomato.22 
In a study, Paraburkholderia phytofirmans PsJN 
displayed a distinct gene expression response 
when exposed to osmotic stress within its host 
plant since plants frequently experience shifts 
in their cellular redox state in response to 
environmental changes and developmental cues.23 
The effective application of different markers for 
early-generation population monitoring, such as in 
marker-assisted crossbreeding programs has been 
made possible by these that enhance productivity, 
maximize nutrient resource efficiency are being 
developed.24

Genomics
	 DNA and RNA are the nucleic acids that 
carry genetic information collectively known as a 
genome. Advances in molecular biology methods 
have sped up the process of characterizing 
the genome, analyzing gene expression, and 
sequencing high-throughput genomes. It ’s 
through the  high throughput next-generation 
sequencing (NGS) technology, that a  genome 
can be decoded. The process involves isolating 
genomic DNA, amplifying it through Polymerase 
Chain Reaction (PCR), sequencing the DNA and 
evaluating the integrity of the sequence. Large-
scale genomic studies have been made possible 
by the sequencing, assembly and structural and 
functional annotation of DNA, which also explains 
the relationships between genomic  products 
on  organism  as well as  cellular  levels RNA 
interference (RNAi) approaches have been 
employed to reveal the functions of different genes 
in plant species’ responses to abiotic stress. 
	 The overexpression of the Tubby-like 
protein gene GmTLP8 in soybeans increased their 
resistance to salt stress and drought, whereas its 
silencing reduced their tolerance.25 Many genes 
that regulate a plant’s response to drought have 
been found through studies on gene expression. 
The majority of the genes that are regulated by 
drought also respond to light stress (KNAT3, KNAT4, 
SEN1, DIN9, DIN10, and ACP4) and/or circadian 
rhythm (e.g., CCA1, WNK1, and FSD1), according 
to the results, suggesting that drought may have 
an impact on a plant’s ability to respond to light 
and/or circadian cycles. Accumulation of abscisic 
acid (ABA) during drought conditions  triggers a 

series of events for closing the  stomata to stop 
transpiration of water. Consequently, stomatal 
movement assisted by ABA  is a desirable target 
in the quest to increase agricultural drought 
resistance. Under drought stress, abscisic acid 
blocks the action of plasma membrane proton 
(H+)-ATPases, which causes stomatal closure. 
Tissue-specific Cas9 cassette has been successfully 
used to modify the gene encoding OPEN STOMATA 
2 (OST2), formerly known as AHA1, in Arabidopsis. 
This has improved ABA-induced stomatal closure 
and reduced transpirational water loss when 
compared to the wild-type and T-DNA insertion 
mutant. MicroRNAs or miRNAs are viable targets 
for genetic engineering aimed at enhancing crop 
resistance to abiotic stress. Transgenic plants with 
modified miRNA expression have shown increased 
sensitivity or tolerance to various abiotic stressors, 
contingent on the target genes.26 Similarly, drought 
tolerance is demonstrated by the null mutant, 
or so-called miR169a gene knockout, which is a 
negative factor of drought tolerance regulated 
by the ABA-dependent pathway generated using 
the dual-sgRNA CRISPR/Cas9 system. It suggests 
functional knockout of miRNA using CRISPR/
Cas system as a viable strategy for miRNA-based 
crop breeding. Molecular markers are useful for 
marking genomic features, including tolerance to 
abiotic stress, quantitative analysis, and disease 
resistance. It has opened up new possibilities for 
the genetic enhancement of features resistant 
to pressures like salt, drought, and other 
environmental factors. Thus far, a number of 
molecular markers have been reported to assist 
in the identification of polymorphism in plants. 
These markers consist of sequence-tagged sites 
(STS), restriction fragment length polymorphism 
(RFLP), amplified fragment length polymorphism 
(AFLP), random amplified polymorphic DNA 
(RAPD),  single-nucleotide polymorphism (SNP) 
and simple sequence repeats (SSR).

Transcriptomics
	 The term “transcriptome” refers to the 
complete set of transcripts in an organism’s cell. 
Study of transcriptome is known as transcriptomics. 
It primarily aids in the identification of RNA or 
gene transcripts linked to a plant’s phenotypic 
expression under various environmental 
circumstances. A group of genes known as 



	  www.microbiologyjournal.org1737Journal of Pure and Applied Microbiology

Garcha & Tohani | J Pure Appl Microbiol. 2025;19(3):1733-1743. https://doi.org/10.22207/JPAM.19.3.41

cytokinin-related receptors such as AHK2, AHK3, 
and CRE1 appear to negatively influence the 
drought response, suggesting a fine balance 
between different hormonal pathways. Similarly, 
under iron deficiency, plants like tomato and 
Arabidopsis activate specific genetic mechanisms 
to manage nutrient uptake. The FER gene in 
tomato and its counterpart FIT in Arabidopsis 
play key roles in iron absorption. Additionally, 
several transcription factors from the bHLH family-
including AtbHLH38, AtbHLH39, AtbHLH100, 
and AtbHLH101-are significantly upregulated in 
Arabidopsis under iron stress, indicating a strong 
transcriptional response to nutrient limitations. 
These findings help deepen our understanding 
of how plants adapt to stress and offer potential 
genetic targets for improving crop resilience. 
Transcriptome profiling of Bacillus mycoides 
EC18 revealed upregulation of genes related to 
amino acid metabolism, regulatory proteins, 
and signaling pathways, suggesting their role 
in ecological adaptation of the endophyte.30 In 
rice, inoculation with Trichoderma asperellum 
SL2 triggered significant upregulation of genes 
involved in photosynthesis, hormone signaling 
and nutrient uptake. Specifically, genes like RBCS 
and its isoforms promoted Rubisco biosynthesis 
has been corrected to specifically, the nuclear-
encoded RBCS multigene family, which produces 
the small subunits of Rubisco, promoted Rubisco 
biosynthesis while CYP38 and CYP20-2 were linked 
to improved stress tolerance. The expression of 
OsGAE1 and MOC1 pointed to enhanced growth 
regulation through gibberellin pathways and tiller 
development, respectively. A comprehensive 
tabulated form of transcriptomic approaches to 
reveal gene functions is presented in Table 2.

Table 1. Effect of microbes in plant abiotic stress response

Abiotic Stress	 Effect on Plant & Microbiome	 Microbial Role	 Ref.

Salt stress	 Alters microbial community in rhizosphere	 Pseudomonas spp. modulate phytohormones,	 15
	 and phyllosphere; affects plant genotype 	 improve water and ion uptake, and soil 
		  structure	
Low temp.	 Affects plant metabolism and survival	 Microbe-plant interactions enhance starch and	 16
		  carbohydrate metabolism for cold tolerance	
High temp.	 Induces oxidative stress in plants	 Some microbes trigger production of ROS to	 17
		  help plants endure heat	

regulatory genes and functional genes are elicited 
by different stressors in plants.  These stressors 
induce  the initiation of different proteins that 
initiate signalling pathways for providing tolerance 
against stress. The transcription factors (TFs) 
encoded by the regulatory group of genes control 
many genes that respond to stress in a collective 
and distinct manner. To conduct a transcriptome 
study, a range of techniques, such as digital gene 
expression (DGE), RNA sequencing (RNA-seq), or 
SAGE (serial paired oligo-nucleic acid sequencing) 
are used in crops like Angelica sinensis, a medicinal 
plant, known for its pharmacological and anti-
inflammatory properties. The genes annotated 
through DGE technique gave information on 
the biosynthesis of secondary metabolites, 
signal transduction, and transcriptome analysis 
in regard to the early flowering of the plant.27 

Metagenomes are characterized using  True-Seq 
(soil and rhizosphere) or Nextera XT Low-Input 
methods (root endosphere). NGS technologies, 
which include the 454 and MiSeq platforms, 
facilitate the identification of complex microbial 
networks and the connections between the roles 
of the corresponding niche and the microbial 
community.28 Researchers use well-established 
databases like PlantExp, PPRD, Genevestigator, 
ePlant, and PlantGenIE, which offer a variety of 
transcriptomic data sets for many crop species, to 
access bulk transcriptome data for crop plants.29 

Recent transcriptomic studies have provided 
valuable insights into how plants respond to 
environmental and nutrient-related stress at the 
molecular level. In the case of drought stress, 
certain histidine kinases like AHK1/ATHK1 have 
been identified as positive regulators of abscisic 
acid (ABA)-dependent stress responses, helping 
the plant cope with water scarcity. Conversely, 
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Proteomics
	 Proteomics is the study of the  entire 
protein sequence that is present in a cell, species 
or an organ  in a specific moment/experimental 
set-up.36 A gene expresses itself differently in 
response to varied environments, including biotic 
and abiotic stresses. Consequently, cells synthesize 
different sets of proteins. Therefore,  some 
proteins act as distinct biomarkers during abiotic 
stress conditions.37 Shotgun proteomics helped 
identify drought-responsive genes in Oryza 
sativa present in the vegetative tissues and leaf 
proteins. Similar study was conducted using 
comparative proteomics technique, to understand 
the complexity of protein abundance in chickpea 
roots during drought stress.38 Proteomics relates 
proteins with stressful environmental conditions, 
together with their activity patterns, post-
translational modifications (PTMs) and their 
interactions with each other.39 Different proteins’ 
up- and down-regulation primarily impacts 
photosynthesis by preserving protein production, 
energy metabolism, and detoxification in salty 
environments. Quantitative proteome investigation 
of Malus halliana exposed to salt-alkali mixed 
stress revealed 179 differentially expressed salt-
responsive proteins using proteomics.40

	 Proteomics investigations include  mass 
spectrometry-based protein identification 
and protein electrophoresis. Two-dimensional 
electrophoresis (2-DE) and Difference In-Gel 
Electrophoresis (DIGE) are two examples of 
conventional gel-based protein electrophoresis 
techniques.41 The drawbacks of 2-DE have 
been widely  addressed by the non-gel 
approach known as Multi-dimensional Protein 
Identification Technology (MudPIT), which 
allows for both qualitative and quantitative 
proteomic investigations. Techniques including 
liquid chromatography-Mass Spectrometry (LC-
MS/MS), Ion Trap-MS (IT-MS), and matrix-assisted 
laser desorption/ionization-MS (MALDI-MS) 
are employed in the mass spectrometry (MS) 
method.42 The development of label-free MS-
based quantification and fluorophore-tagged 
protein immune-precipitation techniques has 
led to a greater degree of accuracy in the 
identification of regulatory protein complexes and 
low-abundance signaling.43
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Metabolomics
	 Metabolites carry out vital functions 
in a spatiotemporal way and are present in the 
quantitative, qualitative and dynamic study of all 
endogenous, low molecular weight molecules (less 
than 1000-1500 daltons) within the cells, tissues or 

organs. There are roughly 0.2-1.0 million different 
macromolecules in the kingdom of plants. The 
amounts of these molecules differ throughout 
species. The classifications, physiochemical 
characteristics, chemical structures and polarity 
levels of these compounds differ from one 

Figure 1. Microbial communities influencing the plant tolerance to abiotic stress

Figure 2. Omics approach for studying plant abiotic stress tolerance
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another.44 Metabolomics offers an advantage 
over proteomics, transcriptomics and genomes. 
The by-product of gene and protein activity 
that determines the impact on physiological 
activity and other aspects of living phenotype 
is called a metabolite.45 Metabolites are divided 
into two categories-primary and secondary 
metabolites. Secondary metabolites are crucial 
for defense responses in the face of a variety 
of abiotic challenges. Primary metabolites are 
vital for plant growth and have a broad role in 
physiological activities.46 Secondary metabolites 
are particular to certain species and conditions 
whereas primary metabolites, such sugars, amino 
acids, and TCA (Krebs) cycle intermediates (citric 
acid, a-ketoglutarate), are directly involved in 
the regular growth and development of plants. 
As a result, the overall metabolite profile of a 
particular plant species reveals the degree of 
integration of several regulatory systems, including 
gene expression and gene-protein interaction. 
Metabolomics also reveal how plants adjust their 
metabolite profiles by revealing temporal and 
spatial insights over time and across tissues in 
response to stress as presented in Table 3. This 
knowledge supports breeding efforts by identifying 
stress-protective compounds like proline, glycine 
betaine, and trehalose, which help plants 
manage drought and salinity by maintaining cell 
stability and osmotic balance. In oxidative stress, 

metabolomics highlights the increased production 
of antioxidants such as ascorbate, glutathione, 
and flavonoids that protect cells by neutralizing 
harmful reactive oxygen species.47 Advances like 
imaging mass spectrometry (MSI) have improved 
spatial metabolomics by providing sensitive 
and detailed metabolite coverage. Additionally, 
microtechnologies such as lab-on-a-chip and 
microfluidics, when combined with ESI or MALDI-
MS, enhance throughput, sensitivity, and data 
reliability, making metabolomics more efficient 
and precise.48 Plants display a range of reactions 
in response to unfavorable environmental 
conditions, many of which are linked to specific 
stress tolerance and metabolic changes. Work 
on metabolite alterations brought on by stress is 
receiving more focus in the twenty-first century.49 

When a metabolic pathway is triggered, bioactive 
substances such as antioxidants, signalling 
molecules, biosynthesis intermediates for cellular 
structures and storage compounds are synthesized. 
The controller triggers the synthesis of other 
substances or mediators that can feedback activate 
or deactivate certain metabolic processes.50 The 
organism’s metabolite profile is kept in balance 
by changes in a variety of metabolic pathways 
found in plant cells and organs. The metabolomic 
profile of an organism is now visualized by the 
combination of various detection methods and 
analytical separation techniques. Numerous 

Table 3. Metabolomic approaches to understand crop responses and tolerance mechanisms under stress

Crop	 Stress	 Metabolomics	 Key Metabolomics Insight	 Ref.
		  technique

Rice (Oryza sativa)	 Drought	 GC-MS	 Metabolomic profiling has revealed drought-	 55
	 stress		  induced shifts in metabolite levels, helping to 
			   understand stress adaptation.
Wheat (Triticum	 Drought	 UPLC-MS	 Changes in specific metabolite pathways under	 56
aestivum)	 stress		  drought conditions suggest metabolic strategies 
			   for stress resilience.
Maize (Zea mays)	 Drought	 GC-TOF-MS	 Identified metabolite markers and altered pathways	 57
	 stress		  linked to tolerance, aiding stress-resilient breeding 
			   efforts.
Barley (Hordeum	 Salinity	 LC-MS	 Salinity stress led to changes in root phytohormones	 58
vulgare)	 stress		  and metabolite composition, shedding light on salt 
			   tolerance mechanisms.
Rice (Oryza sativa) 	 mQTL	 LC-MS	 Metabolome QTL analysis linked specific metabolite	 59
& Maize (Zea mays)	 mapping 		  concentrations to genetic loci, offering candidate
	 for trait 		  biomarkers for breeding.
	 discovery
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metabolite analyses and investigations have been 
very useful for scientists due to advancements in 
chromatographic, nuclear magnetic resonance 
(NMR) and MS techniques.51 The techniques of gas 
chromatography-MS (GC-MS) and LC-MS/MS are 
widely used in metabolomics research due to their 
vast coverage of large metabolites and unmatched 
sensitivity in crops 52 like mangosteen (Garcinia 
mangostana Linn.) fruit during ripening.53 More 
precise descriptions of metabolite interactions in 
a particular plant species are possible due to the 
development of new analytical techniques such 
capillary electrophoresis (CE), Fourier transform 
infrared spectroscopy (FTIR), GC, and LC coupled 
to MS, NMR, and FTIR.54

CONCLUSION 

	 Multiomics approaches enable the 
construction of regulatory networks that depict the 
interactions among genes, proteins, metabolites, 
and epigenetic factors involved in stress response 
pathways. Understanding these regulatory 
networks helps decipher the complex signaling 
cascades and regulatory mechanisms governing 
stress adaptation in plants. The various omics 
techniques currently used are coupled to one 
another, making it possible to identify integrated 
cellular processes that result in a plant’s tolerance 
levels and stress responses. Using multiple omics 
approaches together offers a powerful way to 
understand how plants respond to stress at every 
level-from genes to metabolites. Instead of looking 
at just one type of data, integrating these layers 
helps reveal how different parts of the plant work 
together to adapt. Multi-omics data collected 
via different omics pipelines must be integrated 
to properly comprehend and draw conclusions 
about the primary cell response cascades that 
differ between tolerant and sensitive plants in 
specific abiotic stress situations. This approach 
helps identify important regulatory networks, 
biomarkers and candidate genes that can be 
targeted for breeding efforts and for enabling 
precision agriculture strategies. Research has 
demonstrated the potential benefits of combining 
multiple omics techniques to discover putative 
candidate genes and associated pathways. The 
likelihood of successfully creating crop types 
resistant to stress is increased by this strategy. 

The large data acquired from the multi-omics 
layers along with sophisticated bioinformatics and 
computational tools can potentially be utilized for 
precision breeding and predictive modelling. These 
accomplishments help to ensure food security 
in the face of shifting environmental conditions 
by advancing the creation of crop types that can 
withstand stress and sustainable agricultural 
techniques.
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