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Abstract
Mosquitoes transmit life-threatening diseases to humans. The conventional mosquito control 
techniques that have been focused on population reduction by the application of insecticides or through 
source reduction by removing the larval habitat have become limited, and it has been evidenced by 
increased disease burden globally. This review focuses on advanced techniques that reduces and modify 
the mosquito population and limit their disease transmission by releasing the modified mosquitoes 
into the environment and that are presently under development and have the potential of controlling 
the mosquito-borne diseases. 
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INTRODUCTION

	 Mosquito-borne diseases (MBDs) are the 
major global health concern.1 Culex, Anopheles, 
and Aedes are the major vector mosquitoes that 
transmit pathogens causing filariasis, malaria, 
dengue, and chikungunya, respectively. Among 
MBDs, the parasitic infection such as malaria is 
transmitted by the Anopheline mosquito, it affects 
around 249 million people and causes 608000 
deaths every year globally. Dengue is the most 
widespread viral infection transmitted through 
Aedes mosquitoes and over 132 countries are 
under risk of contracting dengue. The estimated 
dengue cases are around 96 million and there are 
40000 deaths every year.2 The other arbovirus 
diseases, such as chikungunya, Zika, and yellow 
fever, are of major concern.2 Growing resistance 
in vector mosquitoes against currently available 
insecticide and the toxicity of chemical insecticides 
on ecosystems has encouraged researchers to 
opt for the alternative vector control methods.3 
As an alternative method, biotechnology offers 
several innovative techniques for mosquito 
control, focusing on reducing mosquito density 
or their capability to transmit diseases.4 The 
most prominent techniques used are sterile 

insect technique (SIT),5 release of insects having 
a dominant lethal (RIDL),6 Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR/
Cas9),7 Wolbachia bacteria-based control,8 RNA 
interference (RNAi),9 and Paratransgenesis.10,11 

This review provides the information on advanced 
techniques such as CRISPR/Cas9, RNAi, SIT, and 

Wolbachia used for vector control (Figure 1). 

Clustered regularly interspaced short palindromic 
repeat and their associated protein (CRISPR/
Cas9)
	 ‘Genome editing’, a branch of genetic 
engineering, is a technique in which the target 
genome is modified by removing/inserting 
nucleotide sequences in the living system.12 
CRISPR is one such genome editing tool found in 
prokaryotes, it is an adaptive immunity system that 
defends them against viruses or bacteriophages. 
CRISPR was first found during analysis of the gene 
alkaline phosphatase in Escherichia coli in 1987 by 
Japanese scientists.13 Later, the key role of CRISPR 
in the prokaryotic adaptive immune system against 
bacteriophages was experimentally proven during 
2007.14 The CRISPR system comprises two essential 
proteins components, such as guide RNA (gRNA) 
and Cas9 proteins. The CRISPR/Cas9 method has 

Figure 1. Advanced methods used to reduce or modify the vector mosquito population
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Figure 2. CRISPR/Cas9 targeted genes and their effects on Anopheles and Culex vector mosquitoes

three steps; they are detection, cleavage, and 
repair. Initially, the synthesized single guide RNA 
(sgRNA) identifies the sequence of interest in the 
target genome, and it forms a complementary 
base pair. In the second stage, Cas9 nuclease 
creates double-stranded breaks, and they are 
repaired by cellular mechanisms. CRISPR/Cas9 
is the most promising genome editing method 
employed in different disciplines of science. It is 
widely employed in agriculture to increase the 
nutritional content of the food grains. CRISPR/Cas9 
is being used to investigate cancers, HIV (human 
immunodeficiency virus), and gene therapy. 
CRISPR/Cas9 based gene drive mechanisms have 
been employed for mosquito vector control 
through population suppression or population 
replacement. Over the past decade, the CRISPR/
Cas9 based technique has become a promising and 
potential method for effective control of vector 
mosquitoes.15-19

	 Traditional methods for controlling 
mosquito-borne diseases are becoming less 
effective due to vaccine development challenges 
and growing insecticide resistance. As a result, 
gene editing technologies like CRISPR-Cas9 
are being explored as innovative alternatives. 
Researchers are targeting mosquito genes that 
influence pathogen reproduction, immune 
responses, and vector capacity (Figures 2 and 3). 
For malaria, genes like FREP1, LRIM1, and CTL4 
in Anopheles mosquitoes have been edited to 
reduce Plasmodium infection and transmission 
while also affecting mosquito development and 
reproduction.20-22 Similar strategies have been 
applied to Aedes aegypti for arboviruses like dengue 
and Zika, with genes like Obp10, Obp22, AaRel1, 
and GCTL-3 being modified to suppress virus levels 
or transmission.23-26 Additionally, manipulating 
endogenous viral elements (EVEs) in mosquito 
genomes has shown potential in controlling viral 



	  www.microbiologyjournal.org1723Journal of Pure and Applied Microbiology

Renuka | J Pure Appl Microbiol. 2025;19(3):1720-1732. https://doi.org/10.22207/JPAM.19.3.38

replication through natural immune pathways.27 
CRISPR-Cas9 and gene drives disrupt mosquito 
fertility and suppress the mosquito population. 
In male mosquitoes, genes like b2-tubulin,28,29 
fruitless,30 and Nix31 have been edited to impair 
fertility, disrupt mating behavior, or increase the 
number of male progeny. In the female mosquito, 

genes such as tweedledee and tweedledum,32 

CRVP379,33 b-Tubulin 85D,34 core clock CYC,35 

kynurense hydroxylase kh,36 dsx37,38 were targeted 
to interfere with egg development and reduce 
fertility. Deletion of CYP9M10 gene in Ae. aegypti 
greatly reduces resistance to pyrethroids18 and 
mutation in the mJHBP gene increases mosquito 

Figure 3. CRISPR/Cas9 targeted genes and their effects on Aedes vector mosquitoes
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susceptibility to bacterial infection, and it leads 
to sepsis.39 In Culex quinquefasciatus, the kmo 
gene, which is responsible for eye pigment,  
was the first target for CRISPR/Cas9-mediated 
gene knockouts in embryos, and it resulted in 
homozygous mutants with white-eye phenotypes 
in the following generation alone.40 Culex Hsu cell 
lines were used to express Cas9 and sgRNA using 
Culex-optimized plasmid. This system well edited 
the immune-related targets such as Dicer-2 and 
PIWI4, enabling the study of the antiviral gene 
function.41 Cas9 expressing Culex cell lines were 
established to validate the immune genes such 
as dicer 2, argonaute 2b, vago, piwi5, piwi6a, 
and cullin4a roll in antiviral responses.42 CRISPR-
based split-gene drive system was developed to 
study the super-Mendelian inheritance rates in 

Cx. quinquefasciatus.43 These findings highlight 
the potential of gene editing in the control of 
mosquito-borne disease transmission.

Ribonucleic Acid interference (RNAi)
	 RNAi is a well known in vivo technique 
that reduces the mRNA transcripts through post-
transcriptional modification with the help of a 
sequence that is complementary with double-
stranded RNA.44 The two core proteins such as 
dicer and argonaut proteins, are involved in this 
pathway. The dicer protein is an endonuclease, 
which identifies the dsRNA and processes it 
into small RNAs. Later, the argonaut protein 
takes these small RNAs and searches for target 
complementary messenger ribonucleic acid 
(mRNA). In this process, the target mRNA will 

Figure 4. Different delivery techniques such as soaking, yeast carrier and Nanoparticles used to introduce RNAi 
into the host mosquito
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degrade, or its translation will halt. This process is 
called posttranslational gene silencing.45 The RNAi 
technique was first developed to manipulate the 
gene expression in the nematode, Caenorhabditis 
elegans,46 later this technique was successfully 
used to control the agricultural insect pests by 
using host-induced gene silencing (HIGS), spray-
induced gene silencing (SIGS), and virus-induced 
gene silencing (VIGS) methods.47 As the RNAi 
technique is successfully employed in agriculture 
to control insect pests, researchers consider 
implementing this technique in mosquito control 
as a biopesticide. In mosquitoes, RNAi is one of 
the promising techniques to modify the mosquito 
gene expression (endogenous) and suppress the 
gene that encodes for pathogens in vivo. It disrupts 
the mosquito physiology by suppressing the gene 
required for blood feeding, reproduction, behavior 
pattern, longevity, and vector status, so thereby 
the burden of mosquito-borne diseases could be 
reduced.48

	 RNAi is a promising, species-specific 
method for mosquito control. By knocking 
down essential genes or those related to sex 
determination or fertility, RNAi can kill mosquitoes 

or reduce their reproduction without disturbing 
other species.47 Interfering RNAs (iRNAs), like 
small interfering RNAs (siRNAs), short hairpin RNAs 
(shRNAs), and double-stranded RNAs (dsRNAs), 
are delivered through soaking, feeding, injection, 
or using nanoparticles. Oral delivery is preferred 
for large-scale use. RNAi can also support genetic 
control programs by improving sexing strategies for 
male-only mosquito releases.49 Insects, including 
mosquitoes, possess the RNAi machinery, and 
RNAi is widely used to study the function of 
the gene and mosquito-pathogen interactions, 
mainly through adult-stage injections.50 Genome 
sequencing of major mosquito species enabled 
broader RNAi applications. More recently, RNAi 
has been successfully applied to mosquito larvae, 
with gene silencing confirmed by molecular 
and phenotypic changes like mortality. Delivery 
method is crucial for RNAi success. Two main 
delivery categories exist: non-vector mediated 
(e.g., soaking, injection, nanoparticles)44 and 
vector mediated (e.g., using bacteria, yeast, algae, 
and viruses)51 (Figures 4 and 5).49

	 Injection is an effective method for 
delivering dsRNA into mosquitoes, especially 

Figure 5. Different delivery techniques such as injection, algal and bacterial carriers used to introduce RNAi into 
the host mosquito
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in larvae and adult stages, as it ensures direct 
entry into the hemocoel and bypasses barriers 
like the cuticle and gut.52 The cold-anesthetizing 
mosquitoes were injected with a small quantity 

(nanoliter) of dsRNA into the thorax using fine 
glass needles to knock down the target genes in 
mosquitoes. Most of the studies were conducted 
using adult mosquitoes to block the pathogen 

Figure 6. Effects of Wolbachia infection in vector mosquito

Figure 7. Infection of Wolbachia at different body parts of the vector mosquito
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replication.53 Yeast has proven to be an effective 
RNAi delivery system and attractant for mosquito 
larvae and females.54-57 For adult mosquito control, 
sugar-based baits (Attractive Targeted Sugar Baits 
(ATSBs)) show promise for oral delivery of RNAi,58,59 

while other strategies like viral vectors and 
symbiotic microbes are under development. RNAi 
could also be used to block disease transmission 
or alter mosquito behavior.51 RNAi can cause both 
local and systemic effects and may influence both 
larvae and adults, making it a promising tool for 
mosquito control strategies.

Sterile insect technique (SIT) 
	 SIT is a safe and species-specific insect 
population control method that works on the 
systematic release of a large number of sterilized 
male insects into the ecosystem.60 Sterile males 
mate with wild females, resulting in no offspring, 
thereby reducing the reproductive potential of 
the target insect. The release of sterile males in 
adequate quantities over a prolonged duration 
can result in considerable suppression or even 
local elimination of the targeted species.61 SIT has 
been effectively implemented in a larger scale. 
During 1989, SIT was successfully employed in 
the United States, Mexico, Central America, and 
Libya to eradicate the screwworm fly Cochliomyia 
hominivorax.62 Some other insect populations 
that were reduced using SIT technology were the 
Ceratitis capitata,63 Pectinophora gossypiella,64 and 
Cydia pomonella65 from America, Africa, Europe, 
and Asia. The magnitude of these operations can 
be considerable; for instance, the El Pino facility 
in Guatemala generates approximately two billion 
sterile male C. capitata weekly, which is roughly 
equivalent to 20 tons, primarily for deployment 
in California and Central America.60 SIT has 
demonstrated itself to be a cost-effective method 
to suppress or eradicate the insect populations.
	 The success of SIT encouraged researchers 
to implement the technique in vector control 
programs to reduce or to replace the mosquito 
populations. The preliminary study using SIT 
against mosquitoes was initiated during 1959 on 
the genera Culex, Anopheles, and Aedes. The trails 
were impeded due to lack of information on vector 
biology and ecology.66 Sterility in mosquitoes was 
induced by chemicals, due to difficulty in adjusting 
the chemical concentration in the sterility process, 

later it was replaced with irradiation.67 Repeated 
SIT attempts improved the technique and marked 
it as a standard method for vector control.68 SIT, 
when applied in urban settings against pupae 
and adult mosquitoes of Aedes albopictus, 
has achieved significant outcomes, inducing 
70%-80% sterility in field populations.69 A large 
number of irradiated males need to be released 
into the surrounding area to facilitate a 10:1 or 
5:1 ratio of sterile:wild mosquitoes to compete 
with wild males in mating with wild females.70 A 
behavioral and survival study on sterile Ae. aegypti 
mosquitoes revealed reduced flying distance and 
decreased survival time from 54 days to 27 days 
when the mosquitoes were sterile with 90 gray.71,72

	 SIT is highly species-specific, it lowers 
the population of the target mosquito species 
alone, which reduces the population or eradicates 
it overtime. With the success of SIT in vector 
control, the World Health Organization/Special 
Programme for Research and Training in Tropical 
Diseases (WHO/TDR) and the Food and Agriculture 
Organization of the United Nations and the 
International Atomic Energy Agency (FAO/IAEA) 
released the guidelines for pilot testing of SIT. 
Pilot studies against Ae. aegypti and Ae. albopictus 
are in progress in Brazil, Cuba, Malaysia, Mexico, 
the USA, Thailand, Singapore, France, Germany, 
Greece, Italy, Mauritius, and Spain, respectively.73,74

Wolbachia
	 Wolbachia  is often isolated from 
mosquito gut; it is an obligate, Gram-negative 
gut parasitic bacteria. It was first isolated from 
gut of Cx. pipiens during 1924 by Hertig, later 
the bacteria was named Wolbachia pipientis.75 
Over the past two decades, several Wolbachia 
strains have been isolated from mosquitoes. 
Wolbachia forms endosymbiotic relationships 
with mosquitoes, ranging from parasitism to 
mutualism. As a parasite, Wolbachia interferes 
in mosquito physiology, immunity, and mosquito 
development, and it also reduces the reproductive 
ability and longevity of the mosquito, but its 
mutualism increases mosquito resistance towards 
viral infection.76,77 Wolbachia transmits vertically 
through eggs into the next generation, and it 
transmits horizontally by infection. Horizontal 
transmission was frequently recorded in Aedes 
and Culex mosquitoes but not reported from 
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Anopheles and Ae. aegypti.78 Physiological and 
behavioral changes have been reported from 
Wolbachia-infected Culex, it alters the host 
temperature preference, for instance, Culex 
infected with supergroup A Wolbachia prefers 
cold temperature, while supergroup B-infected 
mosquitoes prefer warm.79 Wolbachia increases 
the insecticidal resistance in mosquitoes, field-
collected mosquitoes infected with high-density 
Wolbachia showed higher resistance towards 
insecticides compared to infection with lower 
density Wolbachia. Similarly, wPipSJ-infected 
Cx. quinquefasciatus showed resistance towards 
infection of entomopathogenic bacteria (Figure 
6).80,81

	 The Wolbachia technique has become 
a promising, alternative method to control 
mosquito-borne diseases, particularly in Aedes. 
It was found that infected female mosquitoes 
can mate with uninfected males and give rise 
to Wolbachia-infected offspring.82 In contrast, 
infected male mosquitoes mating with uninfected 
females give rise to the production of non-viable 
eggs.83 Wolbachia colonizes in the midgut, fat 
body, brain, and salivary gland of mosquito, but 
more prevalence was found in the reproductive 
tissues of the mosquito (Figure 7).84 Mosquito 
host-seeking behavior and oviposition would affect 
when Wolbachia infects the mosquitoes brain.85 
Caragata et al. reported that Wolbachia brings 
nutritional stress to the mosquitoes, and it alters 
the cholesterol and lipid profiles, which increases 
the nutritional competition between Wolbachia 
and other pathogens as a result, it shortens the 
mosquito longevity (Figure 6).86

	 In Anopheles, it was first isolated from 
reproductive tissue of field-collected Anopheles 
gambiae, later from An. funestus, followed by 
An. stephensi.87-89 It was demonstrated that 
Wolbachia colonizes throughout the body parts 
of the mosquitoes, and it affects the development 
of the Plasmodium parasite inside the mosquito. 
Wolbachia showed varied effects on malaria 
parasites depending on their species, P. berghei 
oocyst density was increased in the midgut of 
An. gambiae infected with the Wolbachia strain 
wAlbB, while oocyst development was suppressed 
when mosquitoes were infected with the wMelPop 
strain.90 wAlbB reduced fecundity and male mating 
ability in An. stephensi, and it decreased parasite 

density.91 Reduced P. falciparum sporozoite 
was found in field-collected wAnga-infected 
An. coluzzii, and it was evidently reported that 
Wolbachia infection decreases the mosquito 
longevity and provides resistance to Anopheles 
mosquitoes against pathogen infection.92

CONCLUSION

	 The conventional, insecticide-mediated 
vector control strategies are unable to control 
vector-borne disease due to their inefficiency and 
increased resistance in the vector mosquitoes. 
A number of advanced techniques have proven 
potential, and they may become an effective 
intervention in reducing the disease transmission. 
These advanced techniques either modify 
the mosquito population or suppress them. 
Wolbachia, SIT, RIDL, and IIT are the techniques 
that have been tested at the field level, and most 
of these techniques do not require reapplication; 
therefore, they reduce the application cost, 
and they are also environmentally safe. These 
techniques have significant potential in controlling 
the mosquito population and limiting their vector 
capability, making them potential alternatives to 
conventional methods. The current research on 
these techniques has become vital in identifying 
new techniques that would be used effectively in 
controlling the disease transmission. However, the 
implementation of these techniques requires a 
thorough understanding of interactions between 
mosquitoes, pathogens, and the environment, and 
the evaluation of the associated risks and benefits 
should also be monitored. 
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