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Abstract
Traditional microbiological techniques, while effective, are often time-consuming and labour-
intensive. Machine learning and deep learning, enable rapid and accurate identification of microbial 
pathogens from complex datasets such as whole-genome sequencing, mass spectrometry, and clinical 
laboratory reports. Artificial Intelligence (AI) revolutionizes medical microbiology by enhancing 
pathogen detection, antimicrobial resistance prediction, and clinical decision-making. AI facilitates 
automated image analysis for culture-based diagnostics, improving the speed and accuracy of colony 
identification and antimicrobial susceptibility testing. One of the most impactful applications of 
AI is in antimicrobial resistance (AMR) surveillance. Machine learning models can analyse genetic 
determinants of resistance and predict antimicrobial susceptibility patterns, allowing for early detection 
of multidrug-resistant organisms. Moreover, AI-integrated clinical decision support systems (CDSS) 
enhance antimicrobial stewardship by providing real-time recommendations on appropriate antibiotic 
use, thereby reducing the spread of resistance. Natural language processing (NLP) further optimizes 
data extraction from electronic health records, improving diagnostic workflows and patient outcomes. 
Despite its transformative potential, challenges such as data standardization, model interpretability, 
and integration into routine laboratory workflows must be addressed. Ethical considerations, including 
data privacy and algorithmic bias, also warrant careful attention. As AI continues to evolve, its synergy 
with microbiology will pave the way for precision diagnostics, personalized treatment strategies, 
and global AMR mitigation. Leveraging AI-driven innovations will be crucial in shaping the future of 
infectious disease diagnostics and public health microbiology.
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INTRODUCTION

	 Medical microbiology, a foundation 
of modern healthcare, has long played an 
important role in diagnosing, preventing, and 
treating infectious diseases. From identifying 
pathogens to directing antimicrobial treatments, 
it offers the basis for battling diseases that pose 
a threat to the health of the world. However, 
conventional methods find it difficult to keep up 
with the increasing complexity of microbiological 
investigation as pathogens change and mutate. 
Artificial intelligence (AI), a revolutionary 
technology has the ability to improve the health 
care sector.1,2

	 AI’s contribution to medical microbiology 
is based on its unmatched speed and accuracy 
in analysing large datasets. AI can understand 
complicated microbial patterns, such as identifying 
antibiotic resistance mechanisms from genomic 
sequences, predicting pathogen virulence, 
and classifying microbial communities from 
metagenomic data, and improve diagnostic 
accuracy due to machine learning algorithms, 
neural networks, and predictive analytics. For 
instance, convolutional neural networks (CNNs) 
have been used to detect antimicrobial resistance 
genes from raw sequencing data,3 while machine 
learning models have accurately predicted 
Clostridioides difficile infection outcomes based 
on patient microbiome profiles.4 These capabilities 
surpass traditional rule-based methods by 
uncovering hidden, non-linear relationships in 
large datasets. Advanced AI models, can analyse 
genetic sequences to identify mutations linked 
to antibiotic resistance, offering vital information 
for precision healthcare. AI-powered image 
recognition technology also helps in automated 
microscope image analysis, which lessens the 
strain on human knowledge while reducing errors.5

	 AI also provides a proactive method for 
managing disease. AI can forecast epidemics, 
monitor pathogen progression, and direct 
public health actions by combining data from 
environmental sources, electronic health records, 
and real-time monitoring systems. This skill lessens 
the impact of epidemics by enhancing response 
times and assisting in the development of focused 
control measures.6

	 The potential of personalized treatment 
is being further expanded by the collaboration 
between microbiology and artificial intelligence. 
AI-powered systems can examine microbiological 
profiles and unique patient data, allowing for 
customized treatment regimens that optimize 
therapeutic effectiveness while reducing adverse 
effects. In situations where standard protocols 
might not be sufficient, this method can help 
in managing chronic infections. In the future, 
microbial risks will be addressed with creative, 
data-driven solutions with the help of  artificial 
intelligence (AI), which is improving diagnostic 
accuracy, optimizing workflows, and allowing 
predictive insights. As this shift takes place, it has 
the potential to reshape the fields of public health 
and healthcare, ushering in a new era of accuracy 
and readiness.1,2,5,6

	 Nevertheless ,  there are  certa in 
difficulties in incorporating AI into medical 
microbiology. Careful thought must be given to 
issues like algorithmic biases, data privacy, and 
the requirement for strong validation criteria. To 
guarantee the ethical and appropriate use of AI in 
healthcare, collaboration between microbiologists, 
data scientists, and legislators is crucial.1,2,5,6

METHODOLOGY
	
	 The current literature review used a 
variety of reliable resources, such as  PubMed, 
Google Scholar, Scopus, and Web of Science, 
to find relevant research on the use of artificial 
intelligence in the field of medical microbiology. 
The key phrases used in the literature search for 
this review article were “AI in medical microbiology 
and its types”, “ML in medical microbiology”, “DL 
in medical microbiology”, “AI in Drug discovery”, 
“AI and AMR”, “AI and infection control”, “AI and 
medical diagnostics”, “AI in Vaccine Development”, 
“AI in HAI”, “AI in Epidemiology and Outbreak 
Prediction”, “AI in Personalised Treatment”, 
“Benefits and Challenges of AI in Healthcare” and 
“AI and Ethical issues”.
	 The criteria for inclusion were peer-
reviewed papers published between 2013 and 
2024. Non-peer-reviewed articles, editorials, and 
publications that did not specifically discuss AI in 
medical microbiology were excluded.
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	 Initial keyword searches were conducted  
as  part of the search process, and these were 
then refined using inclusion and exclusion criteria. 
Titles and abstracts were reviewed to determine 
their significance, and full-text articles  were 
gathered for further study. Data on the specific 
AI technology, its application, benefits, and 
challenges were categorized. 

Artificial Intelligence (AI)
	 Artificial intelligence (AI) is the creation 
of systems with cognitive functions including 
reasoning, meaning-finding, generalization, and/
or experience-based learning that are comparable 
to those of humans.2

	 Artificial Intelligence is divided into two 
broad categories (Figure 1):

1. Physical (Interaction with environment)
Sensors
	 Devices that collect real-world data (e.g., 
temperature, motion, sound) for AI systems to 
interpret.
Augmented Reality (AR)
	 Enhances the physical environment using 
digital overlays, often guided by AI for real-time 
interaction.

2. Virtual (Digital Intelligence and Processing)
	 Natural Language Processing (NLP): 
Allows AI to understand and generate human 
language (e.g., ChatGPT). 
Machine Learning (ML)
	 Enables AI to learn from data and improve 
over time (e.g., Deep Learning, a subset that uses 
neural networks).

Figure 1. Types of AI

Figure 2. Artificial intelligence across time Figure 3. Mechanism of ML
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Computer Vision
	 Allows AI to interpret and understand 
visual data (e.g., Reinforcement Learning can be 
used to improve visual recognition systems over 
time).1,2

	 Machine learning and deep learning 
are commonly employed in clinical microbiology 
laboratories.

Machine Learning (ML)
	 One aspect of AI that enables systems to 
learn and enhance procedures without the need 
for explicit programming is machine learning2 

(Figure 2).

Deep Learning (DL)
	 A subset of machine learning known 
as “deep learning” makes use of multi-layered 

neural networks, or “deep architectures,” to learn 
complex patterns in large datasets, often in image 
or sequence form2 (Figure 2).

Application
	 A u t o m a t e d  i m a g e  a n a l y s i s  o f 
microbiological slides, such as identifying bacterial 
morphology or colony characteristics.

Example
	 Convolutional neural networks (CNNs) 
used for automated identification and classification 
of Gram-stained slides or microbial colonies.2

Machine learning mechanism
	 Figure 3 illustrates the fundamental 
mechanism of machine learning as a continuous 
cycle. It begins with data collection and training, 
where large volumes of relevant data are gathered 
and used to train machine learning models. 
During this phase, the algorithm goes through a 
learning process, in which it identifies patterns, 
relationships, and unique features within the 
data. This acquired knowledge forms the basis for 
the next stage, which is algorithm development. 
Here, the algorithm is refined and optimized 
based on the insights gained during training. Once 
developed, the model moves to the forecasting 
and generalization phase, where it is applied 
to new or unseen data to make predictions or 
generate insights. This cycle can be repeated with 
new data or improved algorithms to continuously 
enhance the model’s performance and accuracy.2

Types of machine learning
	 In clinical microbiology laboratories, 
machine learning (ML) is increasingly being applied 
to improve the speed, accuracy, and efficiency 
of diagnostics, analysis, and decision-making 
processes. Here are some key machine learning 
mechanisms and their applications (Figure 4):

Supervised learning
Mechanism
	 Involves training models on labelled data 
(e.g., known pathogen identification from culture 
results) to predict outcomes for new, unseen data.

Figure 5. Uses of AI & Machine learning

Figure 4. Types of machine learning
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Application
	 Pathogen identification from blood 
cultures or PCR results using labelled datasets 
to train ML models for rapid bacterial or fungal 
identification.

Example
	 ML models trained on bacterial genome 
sequences can predict antibiotic resistance 

profiles, helping clinicians choose the most 
effective antibiotics.2,5

Unsupervised Learning
Mechanism
	 Identifies patterns in data without 
predefined labels, allowing the discovery of hidden 
relationships or clusters.

Figure 6. The APAS Independence: Intelligent imaging and machine learning technology to read and interpret the 
presence of significant bacteria in culture plates. (Source: https://cleverculturesystems.com/technology/intelligent-
automation/apas-independence)

Figure 7. Examples of AI in total laboratory automation- Kiestra Total Laboratory Automation (TLA) and WASP Lab 
(Source: https://bd.com/en-us/products-and-solutions/products/product-families/bd-kiestra-tla)
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Application
	 Microbial community profiling from 
metagenomic data to detect novel or rare 
pathogens.

Example
	 Clustering of bacterial species from 
patient samples to identify infection sources or 
track outbreaks.2,5

Natural Language Processing (NLP)
Mechanism
	 NLP  invo lves  the  process ing  of 
unstructured text data to extract meaningful 
information, such as clinical notes, lab reports, 
and research papers.

Application
	 Automated extraction of cl inical 
information from microbiology reports (e.g., 
identifying pathogen names, susceptibility results) 
for faster integration into the patient’s electronic 
health record (EHR). Example: NLP tools used to 
extract and categorize antibiotic resistance data 
from laboratory reports to support surveillance 
and treatment decision-making.2,5

Reinforcement Learning
Mechanism
	 A type of ML where models learn by 
interacting with an environment and receiving 
feedback to improve performance over time.

Application
	 Optimizing diagnostic workflows by 
learning from lab activities, adjusting processes, 
and recommending the best course of action (e.g., 
adjusting diagnostic tests or treatment options 
based on outcomes).

Example
	 Reinforcement learning algorithms can 
optimize the sequencing of diagnostic tests or 
identify the most efficient lab processes, reducing 
wait times for microbiological results.2,5

Predictive analytics
Mechanism
	 ML algorithms analyze historical data to 
predict future outcomes or trends.

Application
	 Antimicrobial resistance (AMR) prediction 
by analyzing patient data and microbial patterns 
over time to predict which antibiotics will be most 
effective for future infections.

Example
	 ML models predicting AMR patterns 
based on trends in laboratory data, helping 
clinicians make proactive treatment decisions.2,5,6

Key Benefits of ML in Clinical Microbiology
Faster diagnostics
	 Automates pathogen identification and 
antibiotic susceptibility testing, reducing the time 
to diagnosis.

Table 2. AI-Driven Approaches for Microbial Culture and Colony Identification

Author	 Purpose	 Input- Using AI Approach

Rattray et al.20	 Identification using data on colony images	 P. aeruginosa-Colony images using  
		  ResNet-50, VGG-19, MobileNetV2 and  
		  Xception
Zhang et al.21	 Bacterial colony detection using Deep	 E. coli-Colony images using Random cover  
	 Learning 	 targets algorithm (RCTA), YOLOv3
Ma et al.22	 Assessing a new method for Aspergillus	 Colony images  in dissecting microscopy-  
		  detection using stereomicroscopy using  
		  Xception
Meeda et al.23	 Using colony fingerprinting to distinguish	 Fungal cultures, confocal microscopy  
	 between different fungal species 	 images-using Support vector machine  
		  (SVM) and Random Forest (RF)
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Improved accuracy
	 Reduces human error in diagnostic 
interpretation, especially in complex cases.

Real-Time Surveillance
	 Facilitates early detection of infection 
outbreaks and AMR patterns, allowing for a quicker 
response.1,2,6

	 Machine learning is revolutionizing 
clinical microbiology by automating complex tasks, 
improving accuracy, and supporting real-time 
decision-making. 

Laboratory applications
	 AI can be used in laboratory medicine to 
improve or automate human-based procedures 
and make operational choices. These comprise 
automation of instruments, detection of errors, 
predictions, interpretation of result, utilization 
of tests, genomics and analysis of image. AI-

powered image analysis presently only supports 
human labour; it cannot take the place of human 
knowledge6 (Figure 5).

Diagnosis in Medical Microbiology
Image analysis
	 Diagnostic lab procedures could be 
drastically altered by machine learning-based 
image analysis, which could transform agar 
plate examination and microscopy (Table 1). AI 
diagnostics can be applied to clinical microbiology 
data sets such as digital pictures, mass spectra, 
metagenomic results, and genomic information. 
To advance clinical microbiology, researchers must 
investigate, create, and apply AI and computer 
vision.2,7 

	 A d d i t i o n a l l y,  f o o d  s a fe t y  a n d 
environmental protection, as well as water quality 
monitoring, use AI imaging technologies.

Example
	 In less than nine hours, time-lapse 
coherent imaging can identify bacterial 
development without the need for a culture and 
quickly detect and classify live bacteria, including 
E. coli.
	
Automated culture analysis
	 Artificial intelligence (AI) systems 
can identify bacterial species by analysing 
growth patterns in culture media. AI-enabled 
automated systems can track cultures in real 
time, yielding faster outcomes than conventional 
techniques. To find specific patterns or genetic 
markers connected to certain infections, these 
algorithms are trained (Table 2). The analysis 
of cultures has been enhanced by automated 
methods like PhenoMATRIX and the automated 
plate assessment system (APAS) Independence  
(Figure 6).2,19Figure 8. Workflow of drug development using AI

Figure 9. Combating antibiotic failure using AI
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	 Examples of AI in total laboratory 
automation is Kiestra Total Laboratory Automation 
(TLA). From sample processing and incubation to 
digital imaging, the BD KiestraTM Total Laboratory 
Automation (TLA) system automates several 
parts of microbiology lab workflows, increasing 
productivity and perhaps cutting down on 
turnaround times for culture findings (Figure 7).

Molecular tests
	 AI improves the interpretation of 
molecular diagnostic procedures like Next-
Generation Sequencing (NGS) and Polymerase 
Chain Reaction (PCR). The complex information 
produced by these methods may be processed 
by machine learning algorithms, resulting in 

more rapid and precise pathogen detection and 
resistance profiling. Rapid molecular testing can 
also speed up the process of identifying infections 
and locating important resistance factors.24

Drug discovery and antimicrobial resistance 
prediction
	 By analysing microbial  genomes, 
proteomes, and metabolic pathways, artificial 
intelligence makes it easier to identify potential 
treatment targets. Predicting the microbial targets 
and compounds having affinity and binding to 
microbial targets improves the drug development 
process and expedites the choice of potential 
drugs for experimental validation as shown in 
Figure 8. AI has a significant impact on predicting 

Figure 10. How AI expedited development of the COVID-19 vaccine

Figure 11. How AI helped in COVID-19 pandemic

pharmacokinetic and pharmacodynamic aspects of 
medications. With the help of AI-powered models, 
we can reduce side effects, optimise dosage levels, 
ensure compatibility, efficacy, and safety of clinical 
trials.25-28

Example
1. Predicting Drug- Target Interactions
	 Artificial Intelligence (AI) accelerates 
malaria drug discovery by analyzing large datasets, 
predicting drug-target interactions, and identifying 
potential antimalarial compounds faster and more 
cost-effectively than traditional methods. Example: 
DeepMind’s AlphaFold, an AI system, predicted the 
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3D structures of Plasmodium falciparum proteins 
(malaria parasite), helping researchers identify 
potential drug targets.25-27

2. Drug repurposing
	 AI algorithms can identify new uses for 
existing drugs by analyzing patterns in molecular 
data. This speeds up the drug development 
process, especially in urgent cases like pandemics. 
Example: During the COVID-19 pandemic, AI 
was used to identify potential repurposed drugs 
for treating COVID-19, such as Remdesivir, by 
screening vast databases of existing compounds.27

	 By analyzing the genetic sequences of 
pathogens, artificial intelligence (AI) can predict 
patterns of antimicrobial resistance and detect 
mutations linked to resistance, facilitating the 
timely detection, treatment, and containment 
of drug-resistant infections and resistant strains. 
By utilizing huge amounts of data, artificial 
intelligence (AI), particularly DL and ML, is 
being utilized to address issues in the field of 
antimicrobial resistance (AMR). AI has paved the 
way for new developments in AMR, including the 
discovery of novel AMR genes and mutations and 
the reduction of diagnostic time from days to hours 
as shown in Figure 9.25-28 

Development of vaccine
	 Tradit ional  vaccine development 
methods are time-consuming and frequently 
fail to keep up with evolving challenges. In 
addition, the unpredictable nature of pathogen 
mutations and the immune system’s reaction to 

novel vaccines  complicate the process. In this 
context, artificial intelligence (AI) is emerging 
as a strong tool, providing novel solutions that 
improve the efficiency and precision of vaccine 
research. The phenomenon of viral escape 
mutations, in which viruses adapt to avoid the 
immune response brought on by vaccination or 
a natural infection, presents a challenge to the 
creation of vaccines. Hie et al.29 offer a novel 
method for comprehending and forecasting these 
escape mutations by using  machine learning 
techniques, particularly language models. Using 
only sequencing information, this technique 
effectively predicts escape mutations in the 
viral proteins of influenza, HIV, and SARS-CoV-2  
(Figure 10). These predictive tools are extremely 
useful because they enable scientists to create 
vaccines that are more resistant to virus evolution, 
which could result in immunity that lasts longer.5

Epidemiology and prediction of outbreaks
	 Epidemiological data can be analysed 
with the help of AI in order to forecast outbreaks 
and monitor the transmission of infectious 
diseases. ML models use data from multiple 
sources, such as weather trends, travel databases 
and social media to predict outbreaks of disease 
and guide public health actions. Real-time clinical 
and epidemiological data analysis by AI can 
help with contact tracking and assess how well 
containment strategies are working. Application of 
AI technology in microbial detection revolutionizes 
detection of epidemics and their management, 
thus helping in reducing infectious diseases impact 
on health globally and saving lives30,31 (Figure 11).

Figure 12. Prediction of HAI with the help of machine learning
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Surveillance of Hospital Acquired Infections & 
Prevention and Control of Infections
	 AI and ML have the potential to be used 
in the creation of HAI monitoring algorithms 
that will help identify transmission pathways, 
improve patient risk stratification, comprehend 
HAI risk factors, and detect infections in real time 
(Figure 12). Monitoring infection patterns and 
assessing therapeutic choices require the use of 
complex dataset analysis from electronic health 
records (EHRs). The term “forecasting” refers to 
the large number of AI and ML models that have 
been created that can predict the occurrence of 
an event in advance. To predict VAP, CLABSIs, and 
SSIs, the risk of colonization or infection with an 
MDR pathogen, and consequences in the hospital 
context, a growing number of machine learning 
models have been built thus far. But the discipline 
has been dominated by predicting sepsis and/or 
septic shock, with the majority of studies falling 
into this category.32-35 

Benefits and Challenges of AI
	 The dual-edged nature of Artificial 
Intelligence presents both opportunities for 
advancement and challenges that require 
thoughtful solutions. Table 3 shows Benefits of 
Artificial intelligence, encountered challenges and 
with possible solutions.1,2

Recommended Ethical  Frameworks for 
Implementation of AI
	 The rapid adoption of Artificial Intelligence 
(AI) across sectors necessitates the development of 
robust ethical frameworks to guide its responsible 
implementation. Following are the recommended 
ethical frameworks for implementation of AI.38,39 

FAT-ML Principles (Fairness, Accountability, and 
Transparency in ML)
	 Advocates building fair and accountable 
systems with clear documentation and bias checks.

AI Ethics Guidelines from WHO (2021)
	 Emphasizes inclusiveness, human 
oversight, privacy, and equitable access to AI 
technologies in health.

Bioethics Framework (Principles of Autonomy, 
Beneficence, Non-maleficence, and Justice)
	 A foundational guide for integrating AI 
ethically into patient care and diagnostics.

RE-AIM Framework (Reach, Effectiveness, 
Adoption, Implementation, and Maintenance)
	 Helps assess how ethically and practically 
an AI tool is deployed across clinical settings.38,39

Limitation of the study
	 This article only covered key uses of AI 
in medical microbiology. Additional applications 
might not have been included.

CONCLUSION

	 Artificial Intelligence is redefining the 
landscape of medical microbiology by enabling 
faster, more accurate diagnostics, streamlining 
workflows, and enhancing disease surveillance 
and outbreak prediction. Its applications-from 
automated image analysis and antimicrobial 
resistance prediction to personalized treatment 
strategies and vaccine development-are 
transforming laboratory and clinical practices. 
However, the successful integration of AI 
requires overcoming challenges related to data 
quality, ethical use, and infrastructure. Moving 
forward, collaborative efforts among clinicians, 
microbiologists, data scientists, and policymakers 
will be essential to ensure AI is implemented 
ethically, effectively, and equitably in advancing 
infectious disease management and public health.
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