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Abstract
Zinc (Zn) is a vital element for the growth of plants. However, soils often suffer from its deficiency, which 
adversely affects crops. Zn supplementation using chemical fertilizers is ineffective and negatively affects 
the environment. Zn is converted from an insoluble state to a soluble state by ZSB which improves 
the absorption of Zn by plants and promotes overall plant health. Integrating these microbes into 
agricultural practices through seed inoculation, soil amendment, and foliar sprays offers a sustainable 
solution to Zn deficiency, promoting healthier crops and contributing to food security. Field trials 
provide empirical evidence of the extent to which Zinc Solubilizing Bacteria enhances both the quality 
and quantity of the crops. ZSB into agricultural practices can improve agricultural land productivity, 
also food security, and promote environmentally sustainable farming practices. This review examines 
the potential of zinc solubilizing bacteria as an effective alternative for enhancing plant growth and 
increasing the availability of Zn.
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INTRODUCTION

 Biostimulants are compounds or 
microorganisms that improve plant growth, 
development, and overall plant health. They 
improve plant physiological processes to increase 
nutrient uptake, stress tolerance, and yield. Among 
the most frequent bio-stimulants used in plant 
cultivation are: Organic compounds such as humic 
and fulvic acids promote nutrient availability, 
water retention capacity, and soil structure.1,2 

They enhance root development, nutrient uptake, 
and plant vigor. Seaweed extracts are another 
important biostimulant that is derived from marine 
algae, and they contain various growth-promoting 
compounds, such as auxins, cytokinins, and 
microelements.3 They boost nutrient absorption, 
enhance stress tolerance, and encourage plant 
development.4 Microbial Inoculants: Beneficial 
microorganisms like mycorrhizal fungi and 
Rhizobacteria that promote plant development 
(PGPR) are known as bio-stimulants. They 
increase the availability of nutrients, encourage 
the growth of roots, guard against diseases, and 
boost the general health of plants.5 Amino acid-
based bio-stimulants provide a readily available 
source of organic nitrogen and stimulate plant 
metabolic processes. They promote root growth, 
flowering, and fruit development. Various plant 
extracts, such as extracts from algae, herbs, or 
plant tissues, are used as bio-stimulants. They 
contain natural growth-promoting compounds 
that improve nutrient uptake, photosynthesis, 
and stress tolerance. Chitin and Chitosan which 
are mainly derived from crustacean shells, 
chitin and chitosan bio-stimulants enhance 
plant growth, induce defence responses, and 
improve Nutrient absorption and abiotic stress 
resistance.6 Silicon Bio-stimulants: Silicon bio-
stimulants increase plant resistance to pests, 
diseases, and abiotic stressors.7 They improve cell 
strength, photosynthesis, and nutrition uptake. 
Enzymes: Enzyme-based Biostimulants improve 
nutrient availability and soil fertility. They boost 
nutrient cycling, break down organic materials, 
and encourage root growth. Seed treatments, 
foliar sprays, soil drenches, and fertigation 
systems can all be used to apply bio-stimulants. 
Specific application methods and dosages are 
determined on the crop, growth stage, and 

product instructions.8 Their application is often 
complementary to good agricultural practices, 
including proper nutrient management, irrigation, 
and pest control. However, Zn shortage is a 
ubiquitous problem that reduces crop output and 
nutritional quality, particularly in Zn-deficient soils.  
Traditional methods to address Zn deficiency, such 
as applying Zn fertilizers, have limitations, including 
environmental concerns and cost implications. 
These bacteria employ various mechanisms to 
solubilize Zn, including producing Siderophores 
chelating agents, and organic acids.9 For instance, 
organic acids such as gluconic acid and citric acid 
lower the pH of the soil microenvironment, thereby 
increasing Zn solubility. Conversely, Siderophores 
are high-affinity iron-chelating compounds that 
can also bind to Zn, facilitating plant mobilization 
and uptake.10 Applying ZSB as bioinoculants has 
shown promising results in enhancing Zn uptake 
and improving plant growth and yield.11 Studies 
have demonstrated that inoculating crops with ZSB 
can significantly increase Zn concentration in plant 
tissues, leading to better growth performance 
and higher nutritional quality of the produce.12 
Furthermore, ZSB can boost plant growth by 
creating phytohormones including indole-3-acetic 
acid (IAA) and gibberellins, which stimulate root 
formation and general plant vigour.13

Vital macro and micro nutrients: the cornerstones 
of optimal plant growth
 The number of micro and macro nutrients 
in soil varies greatly based on factors such as 
soil type, geographical location, land use, and 
management approaches (Table 1). It is hard to 
offer exact tabular statistics without taking these 
aspects into account.14,15 It's crucial to remember 
that these ranges are general guidelines, and 
specific nutrient levels can vary depending on 
factors such as soil type, climate, fertilization 
practices, and cropping history. Soil testing is the 
most accurate way to determine the actual nutrient 
levels in a particular soil sample.16 Professional soil 
testing laboratories can provide detailed reports 
of nutrient concentrations in soil, helping to guide 
nutrient management and fertilization practices. 
The ranges below are estimates that may change 
based on particular soil conditions.
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Brassica juncea L.: A resilient oilseed crop with 
multifaceted agricultural significance
 India is home to the world’s fourth-largest 
oilseed economy. Rapeseed-mustard, one of the 
Second only to groundnuts, which account for 
27.8% of India’s oilseed industry, seven edible 
oilseeds are grown there, accounting for 28.6% 
of the nation’s total oilseed production.22 Many 
types of rapeseed-mustard are cultivated all 
throughout India, and the agroclimatic conditions 
in the mustard-growing regions vary greatly. Under 
limited resource conditions, rapeseed-mustard 
agriculture becomes less profitable for farmers.23 
As a result, there is a significant imbalance 
between mustard demand and supply in India. 
As a result, Site-specific control of nutrients 
based on soil-test recommendations should be 
implemented to increase the current production 
levels attained by farmers in their fields.24 

Boosting and maintaining the yield of rapeseed 
and mustard and production will necessitate 
efficient natural resource management, spreading 
rapeseed-mustard agriculture to additional regions 
under different cropping methods, and using an 
integrated approach to plant-water, nutrition, and 
pest management.25

 Brassica juncea L., commonly known 
as Indian mustard or mustard greens, is a crop 
that is sensitive to zinc deficiency. Several studies 
have investigated the use of ZSB as bio-stimulants 
to enhance zinc availability and improve the 
growth and productivity of Brassica juncea L. 
The application of zinc solubilizing bacteria 
can lead to several beneficial effects on plants. 
Firstly, these bacteria can enhance zinc uptake 
by increasing its solubility in the rhizosphere, 
which is the soil region influenced by plant roots. 
Improved zinc uptake can then promote various 
physiological processes in plants, including enzyme 
activities, hormone synthesis, and carbohydrate 
metabolism.26 Furthermore, zinc-solubilizing 
bacteria can help promote plant development 
by producing chemicals including indole-3-acetic 
acid (IAA), gibberellins, and cytokinins which can 
promote root development, improve nutrient 
absorption, and boost overall plant vigour. Figure 
1 shows an overview of Brassica juncea L. and 
its importance in agriculture, environment, and 
medicine. Overall, the use of zinc solubilizing 
bacteria as bio-stimulants for Brassica juncea L. 
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holds promise for improving zinc availability and 
promoting plant growth. It’s crucial to remember, 
though, that the precise bacterial strain, soil type, 
and crop management techniques can all affect 
how successful ZSB is.

Reviving Micronutrient Dynamics: The plant 
growth-promoting potential of ZSB
 Zinc solubilising bacterial bio-stimulants, 
beneficial bacteria, promote sustainable Brassica 
juncea plant growth by improving nutrient 
availability naturally, replacing chemical fertilizers 
that can harm the environment.27 Zinc solubilizing 
bacteria (ZSB) can aid Brassica juncea producers in 
reducing zinc shortage, increasing nutrient uptake, 
and promoting crop growth by solubilizing zinc 
in soil.28 Impact of zinc solubilizing bacteria on 
various plants (Table 2). Crop specificity is crucial 
for Brassica juncea, as it has high zinc demand 
for chlorophyll synthesis, enzyme activation, and 
hormone regulation. Enhancing zinc solubility 
and availability can address these requirements. 

Currently Scientists studying zinc-solubilizing 
bacteria, particularly Brassica juncea, to increase 
availability of zinc and stimulate plant growth, 
with extensive research on their isolation, 
identification, and characterization.29-31 To increase 
the current production levels in farmers’ fields, 
site-specific fertilizer management based on soil 
test recommendations should be implemented.24 
The expansion of rapeseed-mustard cultivation to 
newer areas under various cropping systems, an 
integrated approach to plant-water, nutrient, and 
pest management, and effective natural resource 
management will all contribute to the growth 
and stabilization of rapeseed-mustard production 
and productivity. Biostimulants based on zinc-
sulfur improve the zinc-deficient crop Brassica 
juncea L. By promoting physiological functions 
and raising zinc production and availability, 
these biostimulants boost root growth, nutrient 
absorption, and plant vigor, suppress weeds, 
control soil erosion, and benefit traditional 
medicine.32

Figure 1. Overview of Brassica Juncea L. and its importance
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Table 2. Impact of zinc solubilizing bacteria on various plants 

No. Zinc Solubilizing Insoluble Zinc Impact on different plant  Ref.
 Bacteria (ZSB) Compound

1. Azospirillum spp. Zinc oxide (ZnO) Enhanced growth and zinc [29,33]
   uptake in wheat, maize, and rice.
2. Pseudomonas spp. Zinc phosphate Zn₃ (PO₄)₂ Improved zinc uptake and growth [33]
   in soybean and tomato.
3. Bacillus spp. Zinc carbonate (ZnCO3) Increased zinc availability and plant [34-36]
   growth in various crops.
4. Enterobacter spp. Zinc silicate (ZnSiO3) Enhanced zinc acquisition and [37,38]
   growth in sunflower and mustard.
5. Rhizobium spp. Zinc sulfate (ZnSO₄) Improved zinc uptake and growth [39,40]
   in legumes
6. Bacillus paramycoides Zinc oxide (ZnO) Enhanced growth and zinc uptake [41]
   in rice.
7. Microbacterium oxydans Zinc phosphate Zn₃ (PO₄)₂ Enhanced growth and zinc uptake [20]
   in wheat, vegetable.
8. Enterococcus hirae Zinc oxide (ZnO) Enhancing the quality of wheat grains. [42]
9. Stenotrophomonas ZnO and ZnCO3 Increased zinc availability and plant [43]
 maltophilia  growth in chickpea.
10. Burkholderia and Zinc sulfate (ZnSO₄) Improved growth and zinc uptake  [44]
 Acinetobacter  in grains, etc.

Factors influencing the interaction between 
zinc-solubilizing bacteria and different crops for 
enhanced plant growth promotion
 Environmental factors, such as soil 
properties, and local conditions, can impact ZSB-
Brassica juncea interactions. Research and field 
trials in relevant agricultural environments should 
be conducted to determine optimal conditions for 
plant development.45 The sensitivity of Brassica 
juncea to ZSB varies across geographical regions, 
making it essential to refer to specific research 
papers and field experiments for comprehensive 
information on its effects on this crop.10,46 The 
response of Brassica juncea to ZSB may vary based 
on geographical conditions, so it’s recommended 
to refer to specific research studies and field trials 
for context-specific information on the effects 
of ZSB on various crop, like wheat, Rice, Maize, 
Soyabean, Tomato, Potato, and Spinach.47-51 
Bacillus sp. (SS9) and Enterobacter sp. (SS7) 
inoculation reduced Zn toxicity, promoting 
plant development and mobilizing Zn, N, and P 
to plant parts.36 Quantitative real-time reverse 
transcription PCR was used to examine the 
function of the zinc-solubilizing bacterial strain 
Enterobacter cloacae strain ZSB14 in the regulation 
of iron (Fe)-regulated transporter-like protein 

(ZIP) genes and Zn-regulated transporters in rice 
under iron-deficient and iron-sufficient conditions. 
Zinc oxide in the growth medium boosted the 
expression of all ZIP genes in rice seedling roots 
and shoots. ZSB was inoculated into rice seedlings 
cultured in growth medium containing insoluble 
zinc oxide.52 Inoculation of B. juncea plants with 
these strains increased plant growth and Pb 
uptake in metal-contaminated soil. A greenhouse 
experiment with Brassica juncea analysed bacterial 
inoculation’s impact on heavy metal uptake 
from Pb-Zn mining tailings, revealing beneficial 
bacteria that boost plant growth and protect 
against metal toxicity.53,54 Rhizobacteria infection 
reduced metal concentrations in plant tissues 
but increased above-ground biomass and soil 
metal bioavailability, enhancing phytoextraction 
efficiency compared to control treatments. A 
study found ZSB in wild legume root nodules, 
with Bacillus sp. and Enterobacter sp. isolates SS9 
and SS7 effective in tolerating 1 g Zn. Inoculation 
plants showed greater mung bean plant growth 
and biomass, with reduced Zn toxicity resulting 
in better plant development and mobilization.36,55 
Because of the abundance of nutrients available 
in the form of root exudates, the rhizosphere is 
a dynamic environment where microbe-microbe 
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and microbe-plant interaction is at its greatest.56,57 
There are many other species of Zinc Solubilizing 
Bacteria that may have an impact on different plant 
species. Some Environmental Factors given below:
• Soil pH: Acidic soil conditions, with a pH 

range of 5.0-6.5, are generally favourable for 
zinc solubilization by ZSB, promoting plant 
uptake.58 

• Soil organic matter content: Soil organic 
matter enhances ZSB growth and activity 
by providing carbon and contributing to the 
production of organic acids, promoting zinc 
solubilization.59

• Moisture and water availability: Soil moisture 
is crucial for zinc solubilization and activity 
of ZSB, while drought stress can negatively 
affect populations; hence, proper irrigation 
management is essential.

• Temperature: Temperature significantly 
influences ZSB growth and activity, with 
mesophilic temperatures (25-30 °C) generally 
promoting ZSB activity and plant growth for 
each bacterial strain.

• Nutrient availability: Essential nutrients 
like phosphorus, nitrogen, and potassium 
are crucial for ZSB activity and Brassica 
juncea’s nutrient status, while temperature 
significantly influences ZSB growth and 
activity.

• Heavy metal contamination: Heavy metals 
in soil can affect ZSB populations and activity, 
with some strains showing tolerance, 
potentially aiding in phytoremediation of 
contaminated soils.

• Pesticide and chemical application: Chemical 
inputs like pesticides can negatively impact 
ZSB populations, necessitating careful 
consideration to maintain beneficial 
interactions between ZSB and Brassica 
juncea.60

Rhizospheric Revolution: Mechanisms of zinc-
solubilizing bacteria driving plant vitality
 Zinc solubilizing bacteria (ZSB) enhance 
plant development and zinc uptake on Brassica 
juncea by converting insoluble zinc compounds 
into soluble forms and increasing soil nutrient 
availability.61 ZSB’s organic acids enhance nutrient 
mobilization, growth, and communication with 

Brassica juncea roots, overcoming zinc shortage 
and promoting symbiotic interaction, thereby 
boosting plant growth.47 Brassica juncea’s zinc 
uptake enhances growth, development, and yield, 
while its unique Defence Mechanism Induction 
mechanism induces systemic resistance against 
infections and creates antimicrobial compounds in 
rice (Figure 2). The activation of a plant’s immune 
system enhances its defence against diseases 
and stress conditions, thereby promoting overall 
plant health Zinc solubilizing bacteria (ZSB) can be 
used as bio-stimulants to promote plant growth 
in Brassica juncea, depending on factors like soil 
conditions and bacterial strains.62 Combination 
with Fertilisers or Bio-stimulants ZSB can be 
enhanced by blending it with other bio-stimulants, 
such as micronutrient-enriched fertilisers, to boost 
plant growth, depending on the crop, stage, soil 
conditions, and local practices.63,64 To optimize 
ZSB’s use as bio-stimulants in agriculture, it’s 
crucial to assess its compatibility with other inputs, 
bacterial culture formulation, and treatment 
rates through field trials and consultations.65 
Zinc is an essential micronutrient for the growth 
and development of Brassica juncea (Indian 
mustard). While zinc is crucial for plant health, 
excessive or deficient levels of zinc can have 
adverse effects on Brassica juncea.66 Here are 
some potential side effects of zinc on Brassica 
juncea.67-70 Zinc poisoning in Brassica juncea plants 
can cause chlorosis, slowed growth, diminished 
root development, necrosis, and impair nutrient 
uptake, leading to total plant stress and yield 
loss.67 Zinc deficiency in Brassica juncea can lead 
to nutritional imbalances and deficient symptoms 
due to the interference of excess zinc with the 
absorption of other metals. Zinc deficiency in 
Brassica juncea can hinder photosynthesis, seed 
germination, and physiological processes, leading 
to reduced growth and compromised plant well-
being. This can be due to soil conditions, zinc 
availability, and plant genotype. Zinc levels can also 
disrupt hormone regulation, enzyme activity, and 
cellular functions, affecting overall plant health.71 
ZSB interact with other bio-stimulants and 
fertilizers in soil
 Zinc Solubilizing Bacteria (ZSB) interact 
with other bio-stimulants and fertilizers in 
various ways, enhancing Increased plant growth 
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Table 3. List of Various Zinc-Solubilizing Bacterial Strains and Their Efficacy on Plant Growth

No. Isolated Microbial  Area and Plants Impact Ref.
 Strains Sites of 
  Isolation

1. Pseudomonas   Soil, water Wheat, Maize, Rice  Enhanced zinc  [76,77]
 aeruginosa  Potato, Apple  solubilization aiding 
    Grapes, Banana
    overall growth, 
    flowering, and fruit
    development
2. Pseudomonas Environmental  Wheat, Maize,  Improved zinc  [47]
 fra sources,  Potato, Apple,  availability benefiting 
  spoiled foods Grapes plant development
3. Pantoea dispersa Soil, plants,  Wheat, Maize,  Potential positive effect [71]
  water, clinical  Potato, Apple,   on zinc uptake by
  samples Grapes, Banana plants
4. Pantoea Plants, soil,  Wheat, Maize,  Potential enhancement  [47,78]
 agglomerans water, insects,  Potato, Apple,  of zinc absorption by 
  clinical samples Grapes plants. formation of 
    enzymes and proteins
    crucial for fruit
    maturation
5. E. cloacae  Soil, water,  Wheat, Maize,  Influence on zinc  [47]
  clinical  Potato, Apple,  availability for better
  samples, plants Grapes, Rice, Tomato plant growth
6. Rhizobium sp.  Root nodules  Wheat, Maize,  Possible improvement  [79,80]
  of legume  Potato, Apple, Rice,  in zinc utilization by
  plants, soil Grapes, Chickpea wheat, maize. Improve 
    legume crop yield and 
    protein content
7. Pseudomonas  Water, soil,  Wheat, Maize Unknown impact,  [81]
 striata plants Seed yield and shoot  further research is  
    dry mass needed 
8. Gluconacetobacte Sugarcane  Wheat, Maize,  Potential enhancement  [82]
 rdiazotrophicus plants, other  Potato, Apple,  of zinc uptake by these
  crops Grapes, Tomato, plants
9. Enterobacter  Soil, water,  Maize, Potato, Apple, Impact on zinc  [52]
 cloacae  clinical  Grapes availability for
   samples, plants different plant species. 
10. Bacillus mycoide Soil, water,  Wheat, Maize,  Improved zinc  [49]
  plants, clinical  Potato, Apple,  solubilization for
  samples Grapes various plants
11. P. megaterium Soil, water,  Wheat, Maize,  Enhanced zinc  [83,84]
  plants, clinical  Potato, Grapes absorption aiding plant  
  samples  growth 
12. P. aryabhattai  Soil, water,  Wheat, Maize,  Potential positive effect [84]
  plants Potato, Apple,  on zinc uptake by 
   Grapes plants. Increased grain 
    yield and quality
13. Bacillus  Soil, water,  Rice, Wheat, Maize,  Improved zinc  [83]
 megaterium plants, clinical  Potato, Apple,  availability for 
  samples Grapes different plant species
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Table 3. Cont...

No. Isolated Microbial  Area and Plants Impact Ref.
 Strains Sites of 
  Isolation

14. B. thuringiensis Soil, plants,  Wheat, Maize,  Possible enhancement  [83]
  insects Potato, Apple,  of zinc absorption by 
   Grapes these plants
15. B. tequilensis Soil, plants Maize, Potato, Apple, Potential improvement  [83]
   Grapes, Banana in zinc availability for plants
16. B. clausii and    Soil, water,  Wheat, Maize,  Potential positive effect [85]
 B. pumilus plants Potato, Apple,   on zinc uptake by 
   Grapes, Banana plants
17. B. licheniformis  Soil, water,  Wheat, Maize,  Influence on zinc  [86]
  plants Potato, Apple,  uptake by different 
   Grapes plant species
18. Enterobacter  Soil, water,  Wheat, Maize,  Impact on zinc  [52]
 cloacae plants, clinical  Potato, Apple,  availability for
  samples Grapes, Banana different plant species
19. Enterobacter  Soil, water,  Wheat, Maize,  Potential enhancement  [18]
 kobei plants, clinical  Potato, Apple,  of zinc absorption by 
  samples Grapes plants
20. E. hormaechei Soil, water,  Wheat, Maize,  Potential positive effect [19]
  plants Potato, Apple,  on zinc uptake by 
   Grapes plants
21. E. ludwigii Soil, water,  Rice, Walnut Unknown impact,  [19]
  plants  further research 
    needed
22. E. radicincitans Soil, water,  Wheat, Maize,  Possible improvement  [87]
  plants Potato, Apple,  in zinc utilization by 
   Grapes wheat, maize
23. E. gergoviae Soil, water,  Wheat, Maize,  Enhanced zinc  [87]
  plants Tomato, Banana solubilization aiding 
    plant growth
24. E. soli Soil, water,  Wheat, Maize,  Improved zinc  [20]
  plants Potato, Apple,  availability benefiting 
   Grapes plant development
25. E. taylorae Soil, water,  Wheat, Maize,  Potential positive effect [20]
  plants Potato, Apple,  on zinc uptake by 
   Grapes plants
26. E. turicensis Soil, water,  Wheat, Maize,  Potential enhancement  [17]
  plants Potato, Apple,  of zinc absorption by plants
   Grapes, tomato
27. E. arachidis Soil, water,  Wheat, Maize,  Influence on zinc  [17,20]
  plants Potato, Apple,  availability for better 
   Grapes plant growth
28. E. asburiae Soil, water,  Wheat, Maize,  Possible improvement  [88]
          plants Potato, Apple,  in zinc utilization by
   Grapes wheat, maize
29. E. hormaechei Soil, water,  Wheat, Maize,  Impact on zinc  [88]
          plants Potato, Apple,  availability for
   Grapes different plant species
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Table 4. Summarizing commercially available zinc-solubilizing bacteria formulations

No. Formulation Bacterial Strain Commercial Ref.
   Name

1. Liquid Bacillus sp. BioZinc [28]
2. Powder Pseudomonas sp. ZincSol [89]
3. Granules Gluconacetobacter sp. ZnGrow [90]
4. Biofertilizer Acinetobacter sp. ZnBoost [91]
5. Liquid Burkholderia sp. ZnMax [92]
6. Powder Enterobacter sp. ZnPower [93]
7. Granules Microbacterium sp. ZnMicro [94]
8. Biofertilizer Rhizobium sp. ZnRhizo [95]
9. Liquid Serratia sp. ZnSerr [96]
10. Powder Thiobacillus sp. ZnThio [97]
11. Granules Agrobacterium sp. ZnAgro [98]
12. Biofertilizer Azospirillum sp. ZnAzo [99]
13. Liquid Klebsiella sp. ZnKleb [100]
14. Powder Ralstonia sp. ZnRal [101]
15. Granules Ericoid mycorrhizal fungi ZnFungi [102]
16. Biofertilizer Bacillus subtilis ZnSub [103]
17. Liquid Pseudomonas fluorescens ZnFluo [91,104]
18. Powder Gluconacetobacter diazotrophicus ZnDiazo [105]
19. Granules Acinetobacter calcoaceticus ZnCalc [106]
20. Biofertilizer Burkholderia cepacia ZnCep [39,107]

and soil health (Table 3). ZSB primarily increase 
the bioavailability of zinc by solubilizing it from 
insoluble compounds in the soil, which enhances 
plant zinc uptake. This process can synergise with 
other bio-stimulants and fertilizers, promoting 
overall nutrient availability and plant health. 

Interaction with microbial inoculants
 ZSB can improve root and shoot 
growth, increase nutrient availability, and defend 
plants from diseases by interacting with other 
beneficial microbes such as Plant Development-
Promoting Rhizobacteria (PGPR) or mycorrhizal 
biofertilizers.28,72 

Combination with organic fertilizers
 When combined with organic fertilizers, 
ZSB can Improve plant nutrient absorption by 
boosting the solubilization of various nutrients 
such as phosphorous, through microbial activity.73

Effect of chemical fertilizers
 Applying chemical ferti l izers can 
sometimes affect ZSB activity. In some cases, 
high levels of synthetic inputs may suppress 
microbial populations, including ZSB. Therefore, 

balanced use of fertilizers is essential to maintain 
the beneficial effects of ZSB.74

Synergy with humic and fulvic acids
 Organic compounds like humic acid and 
fulvic acids, which are commonly used as bio-
stimulants, can enhance ZSB activity by improving 
soil structure and providing organic matter, which 
serves as a source of carbon for microbial growth.

Integration in sustainable farming
 Integrating ZSB with micronutrient-
enriched fertilizers or other Biostimulants can 
improve overall soil fertility and plant resilience, 
promoting sustainable agricultural practices and 
reducing the need for synthetic fertilizers also 
maintain the pH of the soil.75

Future prospects and contributes to the existing 
knowledge on zinc-solubilizing bacteria in 
agriculture
ZSB Interactions with multiple Crops
 The manuscript highlights the variable 
response of Wheat, Rice, Maize and Brassica juncea 
to ZSB based on geographical and environmental 
factors, suggesting the need for site-specific 
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research to optimize ZSB use under different agro-
climatic conditions. Future research could focus 
on field trials across different regions to fine-tune 
ZSB applications tailored to specific crops and 
environmental conditions.

Synergistic Use with other bio-stimulants
 The potential of combining ZSB with 
other bio-stimulants (e.g., micronutrient-enriched 
fertilizers) is mentioned, but this combination 
needs further research. To assess its effectiveness 
across various crops, comprehensive field studies 
are necessary. Investigating the compatibility and 
efficacy of ZSB with other agricultural inputs can 
provide a deeper understanding of how these 
bio-stimulants interact and their optimal use, 
thereby paving the way for practical application 
in agriculture.

Environmental and soil health impacts
 Since the manuscript discusses ZSB’s 
positive impact on environmental sustainability by 
reducing the reliance on chemical fertilizers, future 

research could delve deeper into its long-term 
effects on soil health, especially in contaminated 
or zinc-deficient soils. Exploring its role in 
phytoremediation and broader environmental 
benefits could provide new insight.

Scaling up ZSB use in agriculture
 The manuscript mentions the role of ZSB 
in sustainable agriculture, but future research 
should address the challenges in scaling up its 
use on a commercial level. Investigations into 
the formulation, application methods, and cost-
effectiveness of ZSB in large-scale farming systems 
could provide practical solutions for broader 
adoption.
 The study contributes to the knowledge 
of zinc-solubilizing bacteria (ZSB) in agriculture by 
offering empirical evidence and in-depth analysis 
of how ZSBs can enhance zinc availability in crops 
like Brassica juncea and other crops. It adds to 
the current understanding of the role ZSBs play in 
promoting sustainable agriculture through several 
key aspects:

Figure 2. Depiction of Mechanism of zinc solubilizing bacteria promotes plant growth
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Reduction of chemical fertilizer dependency
 The study emphasizes the potential of 
ZSBs as a replacement to chemical fertilizers that 
are frequently damaging to the environment. 
By converting insoluble zinc compounds into 
soluble forms, ZSBs make zinc more accessible 
to plants, improving plant growth while reducing 
environmental pollution.

Improvement in crop growth and yield
 ZSBs promote plants’ zinc absorption, 
enhancing crop growth, particularly in zinc-
deficient soils. This contributes to better yields 
and overall plant health, especially in crops with 
high zinc demands, such as Brassica juncea, wheat, 
maize, rice, etc.

Sustainable agricultural practices
 The research underscores how applying 
ZSBs aligns with and reinforces sustainable 
farming methods. By promoting nutrient uptake, 
enhancing soil health and cultivating eco-friendly 
farming techniques, ZSBs contribute significantly 
to sustainable agriculture.

Field trials and crop specificity
 The manuscript provides data from 
field trials that demonstrate the effectiveness of 
ZSBs in specific crops. It also outlines the crop 
Brassica juncea, wheat, maize, etc., explaining 
how ZSBs address zinc shortages, which is crucial 
for chlorophyll synthesis and enzyme activation in 
this crop.

Environmental and economic benefits
 By efficiently facilitating the use of natural 
resources, ZSBs reduce reliance on synthetic 
inputs, lowering farmers’ costs and mitigating 
environmental contamination this contributes to 
a better balance between agricultural productivity 
and sustainability.

ZSB innovation: a sustainable alternative to 
conventional zinc bio-stimulants
 This study presents a scientifically 
innovative and focused technique for boosting 
the growth, development, and productivity of 
important food crops such as Brassica juncea, 
wheat, maize, and rice. Unlike traditional bio-

stimulants, such as seaweed extracts, humic 
substances, and general microbial inoculants, 
which primarily provide broad-spectrum support 
for nutrient uptake or stress mitigation, this 
study focuses on resolving zinc-specific nutrient 
deficiencies, which are common in zinc-depleted 
agricultural soils commercially available zinc-
solubilizing bacterial formulations (Table 4). 
 The main distinctness of this study is 
its capacity to use naturally existing ZSB strains 
to successfully convert insoluble zinc into plant-
available forms via biological solubilization. 
This approach not only solves zinc's poor 
bioavailability but also provides an ecologically 
benign alternative to synthetic zinc fertilizers, 
which are often ineffectual over time, dangerous 
to the environment, and unsustainable for 
long-term agricultural application. Aside from 
zinc mobilization, the ZSB strains tested in this 
study display other plant growth-promoting 
characteristics, such as phytohormone (e.g., auxin) 
synthesis, phosphate solubilization, and improved 
root system development. These multifunctional 
features work together to meet the physiological 
demands of nutrient-demanding crops like 
Brassica juncea by increasing nutrient absorption 
efficiency, plant vigor, and tolerance to abiotic 
stress. 
 Most importantly, this study presents 
empirical, field-based data supporting the use 
of ZSB as a feasible technique for improving crop 
production, quality, and soil health. By providing 
a targeted, sustainable, and crop-specific solution, 
this study establishes ZSB-based bio stimulants 
as a next-generation tool in climate-resilient and 
ecologically aware agriculture.

CONCLUSION

 Furthermore, with the inescapable 
impacts of abiotic stress caused by soil 
contamination and climate change, Biostimulants 
may provide a strategy to mitigate their impact on 
the farming sector. However, a number of things 
must be considered that effects can fluctuate 
between agricultural species, productivity and 
extraction techniques for Biostimulants and 
constituent quantities, bioactive and effects 
might vary, and separate Biostimulants can 
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operate differently in the same species. When 
there is a zinc deficiency, IAA degrades quickly, 
carbon dioxide fixation becomes less effective, 
and tiny organic compounds like amino acids, 
potassium ions and carbohydrates leak out Zinc 
solubilizing bacteria (ZSB) are significant in today’s 
environment for various reasons, including their 
ability to provide a sustainable strategy to enhance 
soil fertility and plant nutrition. ZSB reduces the 
need for fertilizers made with chemicals, which 
may have significant environmental consequences, 
by increasing zinc availability. ZSB use can help 
to promote sustainable agriculture practices by 
lowering dependency on synthetic fertilizers and 
reducing environmental pollution by solubilizing 
zinc compounds, ZSB can help with environmental 
remediation by helping in the detoxification and 
removal of excess zinc from contaminated soils. 
This can aid in the restoration of ecosystem health 
and functionality. ZSB has potential applications 
outside of agriculture. We can increase agricultural 
output, reduce environmental impacts, and 
address zinc deficiency and contamination 
issues by leveraging ZSB’s strengths. In today’s 
world, they provide a natural and sustainable 
alternative to increase zinc availability, boost food 
security, and encourage more ecologically friendly 
agricultural practices.
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