ISSN: 0973-7510

E-ISSN: 2581-690X

Research Article | Open Access

Viol Dhea Kharisma1,2 and Arif Nur Muhammad Ansori2,3

1Master Program in Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.
2Division of Molecular Biology and Genetics, Generasi Biologi Indonesia (GENBINESIA) Foundation, Gresik, Indonesia.
3Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
J Pure Appl Microbiol. 2020;14(suppl 1):999-1005 | Article Number: 6248
Received: 25/04/2020 | Accepted: 05/05/2020 | Published: 10/05/2020
Abstract

Recently, a novel coronavirus (SARS-CoV-2) appeared which is conscientious for the current outbreak in China and rapidly spread worldwide. Unluckily, there is no approved vaccine found against SARS-CoV-2. Therefore, there is an urgent need for designing a suitable peptide vaccine constituent against the SARS-CoV-2. In this study, we characterized the spike glycoprotein of SARS-CoV-2 to obtain immunogenic epitopes. In addition, we used 58 SARS-CoV-2 isolates were retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) and National Center for Biotechnology Information (NCBI), then aligned to obtain the conserved region of SARS-CoV-2 spike glycoprotein. The interaction between the conserved region with ACE2 receptor, a SARS-CoV-2 receptor on the host cell, has been evaluated through molecular docking approach. The B-cell epitope was identified using the immune epitope database (IEDB) web server. Interestingly, we recommend Pep_4 ADHQPQTFVNTELH as a epitope-based peptide vaccine candidate to deal with the SARS-CoV-2 outbreak. Pep_4 has a high level of immunogenicity and does not trigger autoimmune mechanisms. Pep_4 is capable of forming BCR/Fab molecular complexes with the lowest binding energy for activation of transduction signal the direct B-cell immune response. However, further study is suggested for confirmation (in vitro and in vivo).

Keywords

Coronavirus, Epitope-based peptide vaccine, Immunoinformatics, SARS-CoV-2

Article Metrics

Article View: 374

Share This Article

© The Author(s) 2020. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.