The goals of the present study were to use silver nitrate (AgNO3) solution to synthesize plant-mediated silver nanoparticles (AgNPs) using Boerhavia procumbens extract, to evaluate the antimicrobial potential of crude B. procumbens extracts as well as the antimicrobial potential of synthesized AgNPs. The antimicrobial activity was tested against ten pathogenic bacterial strains including Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Citrobacter braakii, Providentia spp., Salmonella typhi, Salmonella para typhi, Vibrio cholera, and Proteus vulgaris and seven fungal species; Rhizopus stolonifer, Candida albican, Alternaria alternata, Aspergillus flavus, Verticillium chlamydosporium, Penicillium chrysogenum, and Aspergillus oryzae. The methanol extract was fractionated using several solvents and subjected to phytochemical analysis along with FTIR. Phytochemical analyses revealed flavonoids, tannins, saponins, steroids, quinones, and phenols in the crude plant extract. AgNPs were synthesized using B. percumbens extract and characterized by UV-Vis, Fourier-transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). Synthesized AgNPs were spherical, with 20-80 nm diameter. The absorption peak of synthesized AgNPs was observed at 392 nm. AgNPs have significant antimicrobial potential against selected pathogenic bacterial and fungal species as compared to different fractions of crude B. procumbens extract. The current study suggests that green synthesis is a useful technique and can be used as an alternative to antimicrobial agents against pathogenic organisms.
Boerhavia procumbens, Nyctaginaceae, scanning electron microscopy, FTIR, silver nanoparticles, Quinones
© The Author(s) 2020. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.